Πυκνότητα καταστάσεων g(e)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πυκνότητα καταστάσεων g(e)"

Transcript

1 Ε. Κ. Παλούρα NF model_µέρος Πυκνότητα καταστάσεων g() Ορισµός ο αριθµός ενεργειακών καταστάσεων ανά µονάδα όγκου στην ενεργειακή περιοχή (,+d) ή αριθµός e ή τροχιακών ανά µονάδα ενέργειας g () = dn d Η g() είναι καθοριστική για τη συγκέντρωση φορέων είναι ιδιαίτερα σηµαντική για τις ιδιότητες µεταφοράς. Το πλήθος των e που καταλαµβάνουν τις διαθέσιµες καταστάσεις στην περιοχή ενεργειών (Ε,Ε+d) είναι: dn()=g()f()d όπου f() η πιθανότητα κατάληψης, δηλ. η κατανοµή Fermi-Dirac. Πυκνότητα καταστάσεων στο µοντέλο του ελεύθερου ηλεκτρονίου. Αυξανοµένης της Τ ηλεκτρόνια διεγείρονται από την περιοχή 1 στην. Page 1 of 7

2 Ε. Κ. Παλούρα NF model_µέρος Η πυκνότητα καταστάσεων αλλάζει αυξανοµένης της Τ. Επίσης µεταβάλλεται και η κατανοµή των κυµατοδιανυσµάτων στη σφαίρα Fermi. H g() εξαρτάται από τη µορφή των ταινιών και οι αποκλίσεις τους από τον παραβολικό χαρακτήρα επηρεάζουν και την πυκνότητα καταστάσεων. Υπολογισµός της g() Κοντά στον πυθµένα των ταινιών για 0 ισχύει: = h το σχήµα m των επιφανειών είναι σφαιρικό η κυψελίδα που περιέχει την g()d είναι επίσης σφαιρική µε όγκο 4π d όπου η ακτίνα και d το πάχος αυτής της κυψελίδας. Κάθε επιτρεπτή κατάσταση στον χώρο των έχει όγκο (π) το πλήθος των επιτρεπτών καταστάσεων ανά µονάδα όγκου στον χώρο είναι ( ) 1 π Το πλήθος των καταστάσεων στην κυψελίδα όπου ορίζεται η g() είναι: Page of 7

3 Ε. Κ. Παλούρα NF model_µέρος 1 π π Πλήθος καταστάσεων= 4 d ( ) και = h m g()d = 1 m 4π h 1 Λόγω spin x g()d = 1 m π h 1 Στην παραβολική περιοχή των ταινιών Η g() 1/ παραβολικό σχήµα Η g() m / η g() µε την m Αυξανοµένης της Ε παύει να ισχύει ο παραβολικός χαρακτήρας των ταινιών και της g() ενώ στα όρια της ζώνης και µέσα στο χάσµα g()=0. H g() αυξάνεται όταν αρχίζει η επόµενη ταινία. Η επιφάνεια Fermi Η επιφάνεια Fermi είναι ιδιαίτερα σηµαντική στα φαινόµενα µεταφοράς αφού µόνον τα e µε Ε Ε F συµµετέχουν σε φαινόµενα διέγερσης. Στο µοντέλο του ελεύθερου e η Fermi είναι σφαιρική. Η επίδραση του πλέγµατος αποκλίσεις από τη σφαιρικότητα. Page of 7

4 Ε. Κ. Παλούρα NF model_µέρος ηλαδή το σχήµα της Fermi καθορίζεται από τη γεωµετρία των ταινιών. Κοντά στο κέντρο της ζώνης και για χαµηλές ενέργειες ισχύει η παραβολική προσέγγιση (σφαιρική Fermi). Οσο γεµίζουν οι ταινίες και η Ε η Fermi παραµορφώνεται και η παραµόρφωση είναι µεγαλύτερη κοντά στα όρια της ΖΒ. Η θέση της F στην κατανοµή g(): Μονοσθενές µέταλλο: µόνον η µισή ταινία είναι γεµάτη. Mονωτής Υπολογισµός της Ε F στην παραβολική προσέγγιση. Για Τ=0 η Ε F ικανοποιεί τη συνθήκη F g ()d = n = αριθµός e. 0 1 m είξαµε ότι g()d = π h 1 F = h m ( π n) Page 4 of 7

5 Ε. Κ. Παλούρα NF model_µέρος Η ταχύτητα του ηλεκτρονίου Bloch. Ελεύθερο ηλεκτρόνιο µε κυµατοσυνάρτηση ψ έχει ταχύτητα p h v = = η v είναι πάντοτε //. mo m o 1 Στα ηλεκτρόνια Bloch v = () h δηλ. η ταχύτητα του ηλεκτρονίου µε κυµατοδιάνυσµα είναι ανάλογη της κλίσης της ενέργειας. Επειδή οι Ε() δεν είναι γενικώς σφαιρικές το δεν είναι πάντοτε // µε την v. Kοντά στο κέντρο της ζώνης Brillouin ( 0): = h m h v = m, δηλ. το e συµπεριφέρεται σαν ελεύθερο µε m η v //. Το e που περιγράφεται από την ψ αλλάζει κατάσταση µόνον όταν υποστεί σκέδαση από το πλέγµα. Η επίδραση του πλέγµατος περιλαµβάνεται στην Ε(). Στο 1D πλέγµα : 1 v = h, δηλ. η v είναι ανάλογη της κλίσης της Ε(). Page 5 of 7

6 Ε. Κ. Παλούρα NF model_µέρος Στο =0 v=0 Γραµµική αύξηση µε το Στο =±π/α v=0 Γιατί?? Λόγω ανάκλασης στα όρια της ΖΒ Για 0 το e συµπεριφέρεται σαν επίπεδο κύµα. Αυξανοµένου του το e σκεδάζεται από το πλέγµα εµφανίζεται ένα καινούριο κύµα οδεύον προς τα αριστερά µε κυµατοδιάνυσµα τo ηλεκτρόνιο στάσιµο κύµα και παρίσταται από το άθροισµα: ix π i x α ψ e + be και έχει ταχύτητα h h π v = b, m m α o o όπου ο συντελεστής b υπολογίζεται από θεωρία διαταραχών. π ' = α Αυξανοµένου του αυξάνεται και συντελεστής b σε κάποιο σηµείο η v αρχίζει αν µειώνεται και στα όρια της ΖΒ b=1 και v=0. Page 6 of 7

7 Ε. Κ. Παλούρα NF model_µέρος Η δυναµική ενεργός µάζα. Όταν στον κρύσταλλο εφαρµόζεται ηλεκτρικό πεδίο, το e-bloch υφίσταται επιτάχυνση α: dv dv d α = = dt d dt όµως δείξαµε ότι 1 d v = και h = e = F h dt α = 1 h d d ος νόµος Newton αν θέσουµε h m = d d ηλαδή το e-bloch συµπεριφέρεται σαν ελεύθερο e µε m=m. H m είναι αντιστρόφως ανάλογη της καµπυλότητας των ταινιών. Κοντά στον πυθµένα της ταινίας η m σταθερή. Αυξανοµένου του αυξάνεται και η m. Για > σηµείο καµπής η m<0. Γιατί η µάζα γίνεται αρνητική?? Στην περιοχή =±π/α το e υφίσταται επιβράδυνση από το πλέγµα ισχυρότερη από το ηλεκτρικό πεδίο. Page 7 of 7

Ηλεκτρονική δομή ημιαγωγών-περίληψη. Σχέση διασποράς για ελεύθερα ηλεκτρόνια στα μέταλλα-

Ηλεκτρονική δομή ημιαγωγών-περίληψη. Σχέση διασποράς για ελεύθερα ηλεκτρόνια στα μέταλλα- E. K. Παλούρα Οπτοηλεκτρονική_semis_summary.doc Ηλεκτρονική δομή ημιαγωγών-περίληψη Σχέση διασποράς για ελεύθερα ηλεκτρόνια στα μέταλλα- Η κυματοσυνάρτηση ψ(r) του ελεύθερου e είναι λύση της Schrödinger:

Διαβάστε περισσότερα

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς (μέρος 2)

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς (μέρος 2) Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς (μέρος 2) Το μοντέλο του «άδειου πλέγματος» Βήμα 1: Στο μοντέλο του «άδειου πλέγματος» θεωρούμε ότι το ηλεκτρόνιο είναι ελεύθερο αλλά οι λύσεις της Schrödinger

Διαβάστε περισσότερα

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Στόχος : Να εξηγήσουμε την επίδραση του δυναμικού του κρυστάλλου στις Ε- Ειδικώτερα: Το δυναμικό του κρυστάλλου 1. εισάγονται χάσματα στα σημεία όπου τέμνονται

Διαβάστε περισσότερα

Κεφάλαιο 9: Κίνηση των Ηλεκτρονίων και Φαινόμενα Μεταφοράς

Κεφάλαιο 9: Κίνηση των Ηλεκτρονίων και Φαινόμενα Μεταφοράς Κεφάλαιο 9: Κίνηση των Ηλεκτρονίων και Φαινόμενα Μεταφοράς Στα στερεά η ηλεκτρική και η θερμική αγωγιμότητα βασίζονται στη κίνηση των ηλεκτρονίων που περιγράφεται από την χρονοεξαρτημένη εξίσωση του Schrödinger.

Διαβάστε περισσότερα

Κεφάλαιο 7: Η Ηλεκτρονική Δομή των Στερεών ( με άλλα λόγια: το ηλεκτρόνιο στο στερεό)

Κεφάλαιο 7: Η Ηλεκτρονική Δομή των Στερεών ( με άλλα λόγια: το ηλεκτρόνιο στο στερεό) Κεφάλαιο 7: Η Ηλεκτρονική Δομή των Στερεών ( με άλλα λόγια: το ηλεκτρόνιο στο στερεό) Η προσέγγιση του ενός ηλεκτρονίου σε τετραγωνικό πηγάδι δυναμικού είναι υπεραπλουστευμένη και δεν μπορεί να ερμηνεύσει

Διαβάστε περισσότερα

Κεφάλαιο 7. Ηλεκτρονική δομή τω ων στερεών

Κεφάλαιο 7. Ηλεκτρονική δομή τω ων στερεών Κεφ 7: Ηλεκτρονική δομή των στερεών με άλλα λόγια: το ηλεκτρόνιο στο στερεό Στόχος: Θα υπολογίσουμε τη συνάρτηση Ε(k) & την πυκνότητα καταστάσεων για τα στερεά Θα χρησιμοποιήσουμε την περιοδικότητα του

Διαβάστε περισσότερα

Ε. Κ. ΠΑΛΟΎΡΑ Ημιαγωγοί 1. Ημιαγωγοί. Το 1931 ο Pauli δήλωσε: "One shouldn't work on. semiconductors, that is a filthy mess; who knows if they really

Ε. Κ. ΠΑΛΟΎΡΑ Ημιαγωγοί 1. Ημιαγωγοί. Το 1931 ο Pauli δήλωσε: One shouldn't work on. semiconductors, that is a filthy mess; who knows if they really Ημιαγωγοί Ανακαλύφθηκαν το 190 Το 191 ο Pauli δήλωσε: "Oe should't work o semicoductors, that is a filthy mess; who kows if they really exist!" Πιο ήταν το πρόβλημα? Οι ανεπιθύμητες προσμείξεις Το 1947

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ Θεωρητικη αναλυση μεταλλα Έχουν κοινές φυσικές ιδιότητες που αποδεικνύεται πως είναι αλληλένδετες μεταξύ τους: Υψηλή φυσική αντοχή Υψηλή πυκνότητα Υψηλή ηλεκτρική και θερμική

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΕΝΕΡΓΕΙΑΚΩΝ ΤΑΙΝΙΩΝ (Ε.Τ.) ΣΤΑ ΣΤΕΡΕΑ ΥΛΙΚΑ. Σχηματισμός και μορφή ενεργειακών ταινιών στα στερεά υλικά:

ΘΕΩΡΙΑ ΕΝΕΡΓΕΙΑΚΩΝ ΤΑΙΝΙΩΝ (Ε.Τ.) ΣΤΑ ΣΤΕΡΕΑ ΥΛΙΚΑ. Σχηματισμός και μορφή ενεργειακών ταινιών στα στερεά υλικά: ΘΕΩΡΙΑ ΕΝΕΡΓΕΙΑΚΩΝ ΤΑΙΝΙΩΝ (Ε.Τ.) ΣΤΑ ΣΤΕΡΕΑ ΥΛΙΚΑ Σχηματισμός και μορφή ενεργειακών ταινιών στα στερεά υλικά: 1. Προσέγγιση της ισχυρής σύζευξης. Μοντέλο σχεδόν ελεύθερου ηλεκτρονίου - Οι συνέπειες του

Διαβάστε περισσότερα

Θεωρία του Sommerfeld ή jellium model (συνέχεια από το 1 ο μάθημα).

Θεωρία του Sommerfeld ή jellium model (συνέχεια από το 1 ο μάθημα). MA8HMA _08.doc Θεωρία του Sommerfeld ή jellium model (συνέχεια από το ο μάθημα). Τα e καταλαμβάνουν ενεργειακές στάθμες σύμφωνα με την αρχή του Pauli και η κατανομή τους για Τ0 δίδεται από τη συνάρτηση

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης. Προτεινόμενη βιβλιογραφία. Π.Βαρώτσος, Κ.Αλεξόπουλος «Φυσική Στερεάς Κατάστασης»

Περιεχόμενο της άσκησης. Προτεινόμενη βιβλιογραφία. Π.Βαρώτσος, Κ.Αλεξόπουλος «Φυσική Στερεάς Κατάστασης» Προαπαιτούμενες γνώσεις Ενεργειακές ζώνες Πρότυπο Kroning- Penney Προτεινόμενη βιβλιογραφία Π.Βαρώτσος, Κ.Αλεξόπουλος «Φυσική Στερεάς Κατάστασης» Περιεχόμενο της άσκησης Όταν N άτομα έλθουν κοντά το ένα

Διαβάστε περισσότερα

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ) Κυματική εξίσωση του Schrödinger (196) Η Ψ = Ε Ψ Η: τελεστής Hamilton (Hamiltonian operator) εκτέλεση μαθηματικών πράξεων επί της κυματοσυνάρτησης Ψ. Ε: ολική ενέργεια των ηλεκτρονίων δυναμική ενέργεια

Διαβάστε περισσότερα

Φυσική Στερεάς Κατάστασης η ομάδα ασκήσεων Διδάσκουσα Ε. Κ. Παλούρα

Φυσική Στερεάς Κατάστασης η ομάδα ασκήσεων Διδάσκουσα Ε. Κ. Παλούρα Φυσική Στερεάς Κατάστασης -05 η ομάδα ασκήσεων. Έστω ημιαγωγός με συγκέντρωση προσμείξεων Ν>> i. Όλες οι προσμείξεις είναι ιονισμένες και ισχύει =, p= i /. Η πρόσμειξη είναι τύπου p ή? : Όλες οι προσμείξεις

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Β. υποθέτουμε ότι ένα σωματίδιο είναι μέσα σε ένα μεγάλο (ενεργειακή κβαντοποίηση) αλλά πεπερασμένο κουτί (φρεάτιο δυναμικού):

ΠΑΡΑΡΤΗΜΑ Β. υποθέτουμε ότι ένα σωματίδιο είναι μέσα σε ένα μεγάλο (ενεργειακή κβαντοποίηση) αλλά πεπερασμένο κουτί (φρεάτιο δυναμικού): ΠΑΡΑΡΤΗΜΑ Β H DOS περιγράφει ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ προσιτές σε προσδιορίσουμε ένα τον αριθμό σύστημα και των καταστάσεων είναι αρκετές ιδιότητες ενός συστήματος όπωs: σημαντική DOS που για είναι

Διαβάστε περισσότερα

Δομή ενεργειακών ζωνών

Δομή ενεργειακών ζωνών Ατομικό πρότυπο του Bohr Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Βασικές αρχές του προτύπου Bohr Θετικά φορτισμένος

Διαβάστε περισσότερα

Ηλεκτρικη αγωγιµοτητα

Ηλεκτρικη αγωγιµοτητα Ηλεκτρικη αγωγιµοτητα Κίνηση φορτιων σε ενα υλικο υπο την επιδραση ενος εφαρμοζομενου ηλεκτρικου πεδιου Αγωγοι: μεγαλο αριθμο ελευθερων ηλεκτρονιων Στα μεταλλα, λογω μεταλλικου δεσμου, δημιουργειται μια

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Β. ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ - ΠΥΚΝΟΤΗΤΑ ΚΑΤΑΣΤΑΣΕΩΝ D.O. S Density Of States

ΠΑΡΑΡΤΗΜΑ Β. ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ - ΠΥΚΝΟΤΗΤΑ ΚΑΤΑΣΤΑΣΕΩΝ D.O. S Density Of States ΠΑΡΑΡΤΗΜΑ Β ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ - ΠΥΚΝΟΤΗΤΑ ΚΑΤΑΣΤΑΣΕΩΝ D.O. S Density Of States Στατιστική Φυσική Διαφάνεια 1 DOS H DOS περιγράφει τον αριθμό των καταστάσεων που είναι προσιτές σε ένα σύστημα

Διαβάστε περισσότερα

John Bardeen, William Schockley, Walter Bratain, Bell Labs τρανζίστορ σημειακής επαφής Γερμανίου, Bell Labs

John Bardeen, William Schockley, Walter Bratain, Bell Labs τρανζίστορ σημειακής επαφής Γερμανίου, Bell Labs Ψηφιακή τεχνολογία Ε. Λοιδωρίκης Δ. Παπαγεωργίου Η εφεύρεση του τρανζίστορ Το πρώτο τρανζίστορ John rn, Willi Schocl Wltr rtin, ll Ls 948 τρανζίστορ σημειακής επαφής Γερμανίου, ll Ls 4 Τεχνολογία πυριτίου

Διαβάστε περισσότερα

και Φαινόμενα Μεταφοράς εισαγωγή

και Φαινόμενα Μεταφοράς εισαγωγή Κεφ. 9. Κίνηση των Ηλεκτρονίων και Φαινόμενα Μεταφοράς 1 εισαγωγή Στα στερεά η ηλεκτρική και η θερμική αγωγιμότητα βασίζονται στη κίνηση των ηλεκτρονίων η οποία περιγράφεται από την χρονικώς εξαρτώμενη

Διαβάστε περισσότερα

Επέκταση του μοντέλου DRUDE. - Θεωρία SOMMERFELD

Επέκταση του μοντέλου DRUDE. - Θεωρία SOMMERFELD Επέκταση του μοντέλου DRUDE - Θεωρία SOMMERFELD ΕΠΕΚΤΑΣΗ ΤΟΥ ΜΟΝΤΕΛΟΥ DRUDE-ΘΕΩΡΙΑ SOMMERFELD Drude: κατανομή ταχυτήτων e: f MB u = n m πkt 3/ e mu k BT u Sommerfeld: το e - είναι κύμα χρήση κυματοσυνάρτησης

Διαβάστε περισσότερα

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 ) vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς

Διαβάστε περισσότερα

ΕΓΚΑΡΣΙΑ ΗΠΙΑ ΔΙΑΤΑΡΑΧΗ ΣΕ ΤΕΝΤΩΜΕΝΗ ΕΛΑΣΤΙΚΗ ΧΟΡΔΗ ΔΙΑΔΙΔΕΤΑΙ ΩΣ ΚΥΜΑ;

ΕΓΚΑΡΣΙΑ ΗΠΙΑ ΔΙΑΤΑΡΑΧΗ ΣΕ ΤΕΝΤΩΜΕΝΗ ΕΛΑΣΤΙΚΗ ΧΟΡΔΗ ΔΙΑΔΙΔΕΤΑΙ ΩΣ ΚΥΜΑ; ΕΓΚΑΡΣΙΑ ΗΠΙΑ ΔΙΑΤΑΡΑΧΗ ΣΕ ΤΕΝΤΩΜΕΝΗ ΕΛΑΣΤΙΚΗ ΧΟΡΔΗ ΔΙΑΔΙΔΕΤΑΙ ΩΣ ΚΥΜΑ; K. EYTAΞΙΑΣ H KYMATIKH EΞΙΣΩΣΗ ΚΑΘΕ ΣΥΝΑΡΤΗΣΗ ΤΗΣ ΜΟΡΦΗΣ y, f y, g ΠΕΡΙΓΡΑΦΕΙ ΜΙΑ ΔΙΑΤΑΡΑΧΗ ΠΟΥ ΟΔΕΥΕΙ ΠΡΟΣ ΤΑ ΔΕΞΙΑ / AΡΙΣΤΕΡΑ ΑΝΑΛΛΟΙΩΤΗ

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Να υπολογιστεί η πιθανότερη ακτίνα, *, στην οποία θα βρίσκεται

Διαβάστε περισσότερα

1.1 ΗΜΙΑΓΩΓΟΙ. σ = 1/ρ (1.1) J = σ. ξ (νόμος του Ohm) (1.2)

1.1 ΗΜΙΑΓΩΓΟΙ. σ = 1/ρ (1.1) J = σ. ξ (νόμος του Ohm) (1.2) 1.1 ΗΜΙΑΓΩΓΟΙ 1.1.1 Ειδική ηλεκτρική αγωγιμότητα Ορισμός Κατάταξη των υλικών Η ηλεκτρική αγωγιμότητα (G) είναι μια ιδιότητα μεταφοράς όπως η θερμική αγωγιμότητα και το ιξώδες των σωμάτων. Συγκεκριμένα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΕΠΙΦΑΝΕΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ΕΠΙΦΑΝΕΙΕΣ ΚΕΦΑΛΑΙΟ 7 ΕΠΙΦΑΝΕΙΕΣ 1. οµή των επιφανειών Για να περιγράψουµε µια επιφάνεια πρέπει να ξέρουµε σε ποιο κρυσταλλογραφικό επίπεδο (hkl) αναφέρεται. Τότε φανταζόµαστε τον κρύσταλλο ως σειρά επιπέδων από

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς Δρ. Ιούλιος Γεωργίου Required Text: Microelectronic Devices, Keith Leaver (1 st Chapter) Τρέχον περιεχόμενο Αγωγή ηλεκτρικών φορτίων σε ημιαγωγούς

Διαβάστε περισσότερα

Ημιαγωγοί. Ημιαγωγοί. Ενδογενείς εξωγενείς ημιαγωγοί. Ενδογενείς ημιαγωγοί Πυρίτιο. Δομή ενεργειακών ζωνών

Ημιαγωγοί. Ημιαγωγοί. Ενδογενείς εξωγενείς ημιαγωγοί. Ενδογενείς ημιαγωγοί Πυρίτιο. Δομή ενεργειακών ζωνών Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Δομή ενεργειακών ζωνών Δεν υπάρχουν διαθέσιμες θέσεις Κενή ζώνη αγωγιμότητας

Διαβάστε περισσότερα

Ελεύθερο ηλεκτρόνιο: η E k 2. Η κυματοσυνάρτηση ψ(r) του ελεύθερου e είναι λύση της Schrödinger:

Ελεύθερο ηλεκτρόνιο: η E k 2. Η κυματοσυνάρτηση ψ(r) του ελεύθερου e είναι λύση της Schrödinger: Κεφάλαιο 6. Ελεύθερα Ηλεκτρόνια στα Στερεά. Η περιγραφή των ηλεκτρονίων στα στερεά (κεφάλαια 6 και 7 του βιβλίου των Ibach-Luth) θα γίνει με τα παρακάτω 3 μοντέλα: 1. πρότυπο των Sommerfeld και Bethe (1933)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons.

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση Α.1. Κατά την πλαστική κρούση δύο σωµάτων ισχύει ότι : (δ) η ορµή του συστήµατος των δύο σωµάτων παραµένει

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες. ΘΕΜΑ [5575] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Αυγούστου ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης,5 ώρες (α) Να αποδειχθεί ότι για οποιοδήποτε µη εξαρτώµενο από τον χρόνο τελεστή Α, ισχύει d A / dt = A,

Διαβάστε περισσότερα

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöding για το κεντρικό δυναμικό Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 3 k V ) Αποδεικνύεται ότι οι λύσεις της ακτινικής εξίσωσης

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Φλοιώδης Δομή των Πυρήνων Η σύζευξη Spin Τροχιάς (L S)( Διέγερση και Αποδιέγερση

Διαβάστε περισσότερα

Μοριακά Τροχιακά ιατοµικών Μορίων

Μοριακά Τροχιακά ιατοµικών Μορίων Μοριακά Τροχιακά ιατοµικών Μορίων Για την περιγραφή της ηλεκτρονικής δοµής των µορίων θα χρησιµοποιήσουµε µοριακά τροχιακά που θα είναι γραµµικοί συνδυασµοί ατοµικών τροχιακών. Τα µοριακά τροχιακά θα αποτελούν

Διαβάστε περισσότερα

Από τι αποτελείται το Φως (1873)

Από τι αποτελείται το Φως (1873) Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ Θέμα1: Α. Η ταχύτητα διάδοσης ενός ηλεκτρομαγνητικού κύματος: α. εξαρτάται από τη συχνότητα ταλάντωσης της πηγής β. εξαρτάται

Διαβάστε περισσότερα

Ελεύθερα Ηλεκτρόνια στα Στερεά

Ελεύθερα Ηλεκτρόνια στα Στερεά Ελεύθερα Ηλεκτρόνια στα Στερεά (Κεφάλαιο 6 στοβιβλίοτωνibach των & Luth) Σχέση διασποράς Ε k για ελεύθερο ηλεκτρόνιο Σχέση διασποράς Ε k για ηλεκτρόνιο σε μονοδιάστατο πηγάδι δυναμικού εύρους a. 1 Ύλη

Διαβάστε περισσότερα

Ανιχνευτές σωματιδίων

Ανιχνευτές σωματιδίων Ανιχνευτές σωματιδίων Προκειμένου να κατανοήσουμε την φύση του πυρήνα αλλά και να καταγράψουμε τις ιδιότητες των στοιχειωδών σωματιδίων εκτός των επιταχυντικών συστημάτων και υποδομών εξίσου απαραίτητη

Διαβάστε περισσότερα

Μάθημα 7ο. Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία

Μάθημα 7ο. Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία Μάθημα 7ο Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία h m U(x,y,z, t) ih t (x, y,z,t) (x, y,z)e iet / h H E Γενική & Ανόργανη Χημεία 06-7 Ewin Schöinge Η ανεξάρτητη από τον χρόνο εξίσωση Schöinge U m H E E

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Ημιαγωγοί Θεωρία ζωνών Ενδογενής αγωγιμότητα Ζώνη σθένους Ζώνη αγωγιμότητας Προτεινόμενη βιβλιογραφία 1) Π.Βαρώτσος Κ.Αλεξόπουλος «Φυσική Στερεάς Κατάστασης» 2) C.Kittl, «Εισαγωγή

Διαβάστε περισσότερα

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1 ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων

Διαβάστε περισσότερα

ΝΑΝΟΥΛΙΚΑ ΚΑΙ ΝΑΝΟΤΕΧΝΟΛΟΓΙΑ ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ

ΝΑΝΟΥΛΙΚΑ ΚΑΙ ΝΑΝΟΤΕΧΝΟΛΟΓΙΑ ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ 1 Ιδιότητες εξαρτώμενες από το μέγεθος Στην νανοκλίμακα, οι ιδιότητες εξαρτώνται δραματικά από το μέγεθος Για παράδειγμα, ΙΔΙΟΤΗΤΕΣ ΝΑΝΟΥΛΙΚΩΝ (1) Θερμικές ιδιότητες θερμοκρασία

Διαβάστε περισσότερα

KYMATA Ανάκλαση - Μετάδοση

KYMATA Ανάκλαση - Μετάδοση ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω

Διαβάστε περισσότερα

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης Μοριακή Φασματοσκοπία I Παραδόσεις μαθήματος Θ. Λαζαρίδης 2 Τι μελετά η μοριακή φασματοσκοπία; Η μοριακή φασματοσκοπία μελετά την αλληλεπίδραση των μορίων με την ηλεκτρομαγνητική ακτινοβολία Από τη μελέτη

Διαβάστε περισσότερα

Κεφάλαιο 6. Ελεύθερα α Ηλεκτρόνια στα Στερεά

Κεφάλαιο 6. Ελεύθερα α Ηλεκτρόνια στα Στερεά Ελεύθερα Ηλεκτρόνια στα Στερεά (Κεφάλαιο 6 στο βιβλίο των Ibach & Luth) Στόχος του μαθήματος είναι η κατανόηση των ηλεκτρικών, οπτικών, δονητικών καιθερμικώνιδιοτήτωντωνυλικών ιδιοτήτων των υλικών. Ο απλούστερος

Διαβάστε περισσότερα

Ανακλώμενο ηλεκτρόνιο KE = E γ - E γ = E mc 2

Ανακλώμενο ηλεκτρόνιο KE = E γ - E γ = E mc 2 Σκέδαση Compton Το φαινόμενο Compton περιγράφει τη σκέδαση ενός φωτονίου από ένα ελεύθερο ατομικό ηλεκτρόνιο: γ + γ +. To φωτόνιο δεν εξαφανίζεται μετά τη σκέδαση αλλά αλλάζει κατεύθυνση και ενέργεια.

Διαβάστε περισσότερα

ΣΤΑΣΙΜΟ ΚΥΜΑ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΥΤΑΞΙΑΣ

ΣΤΑΣΙΜΟ ΚΥΜΑ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΥΤΑΞΙΑΣ ΣΤΑΣΙΜΟ ΚΥΜΑ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΥΤΑΞΙΑΣ TO ΣTΣIMO KYM: ΠΟΤΕΛΕΣΜΑ ΜΙΑΣ ΙΔΙΑΖΟΥΣΑΣ ΑΡΧΙΚΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ =0 = φ. T Σε χορδή έχει δοθεί το περίγραμμα =0 = φ. O μηχανισμός που δίνει το περίγραμμα αποσύρεται απότομα

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς Ορισμοί. Ενεργός διατομή 3. Ενεργός διατομή στο μοντέλο των σκληρών σφαιρών

Διαβάστε περισσότερα

7.a. Οι δεσμοί στα στερεά

7.a. Οι δεσμοί στα στερεά ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 7-1 Κεφάλαιο 7. Στερεά Εδάφια: 7.a. Οι δεσμοί στα στερεά 7.b. Η θεωρία των ενεργειακών ζωνών 7.c. Νόθευση ημιαγωγών και εφαρμογές 7.d. Υπεραγωγοί 7.a. Οι δεσμοί στα στερεά Με

Διαβάστε περισσότερα

4. Παρατηρείστε το ίχνος ενός ηλεκτρονίου (click here to select an electron

4. Παρατηρείστε το ίχνος ενός ηλεκτρονίου (click here to select an electron Τα ηλεκτρόνια στα Μέταλλα Α. Χωρίς ηλεκτρικό πεδίο: 1. Τι είδους κίνηση κάνουν τα ηλεκτρόνια; Τα ηλεκτρόνια συγκρούονται μεταξύ τους; 2. Πόσα ηλεκτρόνια περνάνε προς τα δεξιά και πόσα προς τας αριστερά

Διαβάστε περισσότερα

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κινούμενα ηλεκτρόνια συμπεριφέρονται σαν κύματα (κύματα de Broglie)

Διαβάστε περισσότερα

Πειραµατική Θεµελείωση της Φυσικής

Πειραµατική Θεµελείωση της Φυσικής Πειραµατική Θεµελείωση της Φυσικής Στοιχειωδών Σωματιδίων (8ου εξαμήνου) Χ. Πετρίδου Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 23 Μαρτίου 2017

Διαβάστε περισσότερα

b proj a b είναι κάθετο στο

b proj a b είναι κάθετο στο ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.

Διαβάστε περισσότερα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού

Διαβάστε περισσότερα

Παραγωγή ακτίνων Χ. V e = h ν = h c/λ λ min = h c/v e λ min (Å) 12400/V

Παραγωγή ακτίνων Χ. V e = h ν = h c/λ λ min = h c/v e λ min (Å) 12400/V Παραγωγή ακτίνων Χ Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε µήκη κύµατος της τάξης των Å (=10-10 m). Στο ηλεκτροµαγνητικό φάσµα η ακτινοβολία Χ εκτείνεται µεταξύ της περιοχής των ακτίνων γ και

Διαβάστε περισσότερα

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου. Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου. Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 19 Μαρτίου 2015 Σκέδαση, ενεργός διατομή

Διαβάστε περισσότερα

Δομή Διάλεξης. Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης. Κβαντική θεωρία σκέδασης Πλάτος σκέδασης

Δομή Διάλεξης. Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης. Κβαντική θεωρία σκέδασης Πλάτος σκέδασης Σκέδαση Δομή Διάλεξης Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης Κβαντική θεωρία σκέδασης Πλάτος σκέδασης Υπολογισμός διατομής σκέδασης με την μέθοδο στοιχειωδών κυμάτων (partial waves) Υπολογισμός

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΥΜΠΛΗΡΩΜΑ ΘΕΩΡΙΑΣ

ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΥΜΠΛΗΡΩΜΑ ΘΕΩΡΙΑΣ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΥΜΠΛΗΡΩΜΑ ΘΕΩΡΙΑΣ 1. ΕΓΚΑΡΣΙΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ Κύματα κατά μήκος τεντωμένου νήματος Στο τεντωμένο με δύναμη νήμα του Σχήματος 1.1α δημιουργούμε μια εγκάρσια διαταραχή (παράλληλη με τη διεύθυνση

Διαβάστε περισσότερα

ΑΤΟΜΙΚΑ ΤΟΜΙΚΑ ΠΡΟΤΥΠΑ

ΑΤΟΜΙΚΑ ΤΟΜΙΚΑ ΠΡΟΤΥΠΑ ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ Thomson (σταφιδόψωμο) Rutherford (πλανητικό μοντέλο) Bohr (επιτρεπόμενες τροχιές ενεργειακές στάθμες) Κβαντομηχανική β ή (τροχιακό) ρχ 24/9/2008 1 ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ Bohr 1η Συνθήκη (Μηχανική

Διαβάστε περισσότερα

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f ΤΕΣΤ Α ΟΜΑΔΑ Ι Θεωρούμε την συνάρτηση: f() = pln(+ ) για, με p>. Να διερευνηθεί αν είναι κυρτή η κοίλη. Να βρεθούν οι τιμές της παραμέτρου p για τις οποίες η μέγιστη τιμή της βρίσκεται στο =.. Η συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (Θεώρ Frmat) σχολικό βιβλίο σελ 6-6 Α Θεωρία (Ορισµός) σχολικό βιβλίο σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

H ENNOIA TΗΣ ΕΜΠΕΔΗΣΗΣ ΑΝΑΚΛΑΣΗ - ΔΙΑΘΛΑΣΗ ΜΕΡΟΣ I. Κωνσταντίνος Ευταξίας

H ENNOIA TΗΣ ΕΜΠΕΔΗΣΗΣ ΑΝΑΚΛΑΣΗ - ΔΙΑΘΛΑΣΗ ΜΕΡΟΣ I. Κωνσταντίνος Ευταξίας H ENNOI TΗΣ ΕΜΠΕΔΗΣΗΣ ΑΝΑΚΛΑΣΗ - ΔΙΑΘΛΑΣΗ ΜΕΡΟΣ I Κωνσταντίνος Ευταξίας H ΕΜΠΕΔΗΣΗ ΣΤΗΝ ΕΙΣΟΔΟ ΙΔΕΑΤΗΣ ΤΕΝΤΩΜΕΝΗΣ ΕΛΑΣΤΙΚΗΣ ΧΟΡΔΗΣ ΑΠΕΙΡΟΥ ΜΗΚΟΥΣ dm ή F dm έ F dm 0 0 0, y dm F F dm έ dm ή 0 dm έ y dm

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

Κύριος κβαντικός αριθμός (n)

Κύριος κβαντικός αριθμός (n) Κύριος κβαντικός αριθμός (n) Επιτρεπτές τιμές: n = 1, 2, 3, Καθορίζει: το μέγεθος του ηλεκτρονιακού νέφους κατά μεγάλο μέρος, την ενέργεια του τροχιακού τη στιβάδα στην οποία κινείται το ηλεκτρόνιο Όσομεγαλύτερηείναιητιμήτουn

Διαβάστε περισσότερα

Ε.Μ.Π. Σχολή Πολιτικών Μηχανικών Μάθημα «Φυσική (Ταλαντώσεις και Κύματα)», ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (Διάρκεια 2 h 30 min)

Ε.Μ.Π. Σχολή Πολιτικών Μηχανικών Μάθημα «Φυσική (Ταλαντώσεις και Κύματα)», ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (Διάρκεια 2 h 30 min) Ε.Μ.Π. Σχολή Πολιτικών Μηχανικών Μάθημα «Φυσική (Ταλαντώσεις και Κύματα)», 4-5 ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (Διάρκεια h 3 min) Η. Σ. Ζουμπούλης, Γ. Σ. Ράπτης Αθήνα, /9/5 Θέμα. Το ελατήριο του καθίσματος αυτοκινήτου

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Τοπική μονοτονία Αν μια συνεχής συνάρτηση έχει γνήσια θετική αρνητική παράγωγο

Διαβάστε περισσότερα

3. Το πρότυπο του Bohr εξήγησε το ότι το φάσμα της ακτινοβολίας που εκπέμπει το αέριο υδρογόνο, είναι γραμμικό.

3. Το πρότυπο του Bohr εξήγησε το ότι το φάσμα της ακτινοβολίας που εκπέμπει το αέριο υδρογόνο, είναι γραμμικό. ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 16 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ-ΠΡΟΤΥΠΟ BOHR ΟΜΑΔΑ Α Να χαρακτηρίσετε τις παρακάτω προτάσεις ως Σωστές ή Λάθος και να αιτιολογήσετε αυτές που είναι λάθος : 1.

Διαβάστε περισσότερα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας

Διαβάστε περισσότερα

Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών

Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο

Διαβάστε περισσότερα

Z U REC (cm) (V) i =log(z) y i =log(u REC ) x i x i y i 10 74,306 1,000 1,871 1,000 1, ,528 1,079 1,796 1,165 1, ,085 1,146 1,749

Z U REC (cm) (V) i =log(z) y i =log(u REC ) x i x i y i 10 74,306 1,000 1,871 1,000 1, ,528 1,079 1,796 1,165 1, ,085 1,146 1,749 ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΦΥΣΙΚΗ ΙΙ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ (ΑΣΚΗΣΗ 3) - set 00 ΣΤΟΙΧΕΙΑ ΦΟΙΤΗΤΗ Ονοµατεπώνυµο: Γηρούσης Θεόδωρος

Διαβάστε περισσότερα

ΜΟΡΦΟΠΟΙΗΣΗ ΜΕΤΑΛΛΩΝ ΜΕ ΔΙΑΜΟΡΦΩΣΗ. Πλαστική παραμόρφωση με διατήρηση όγκου

ΜΟΡΦΟΠΟΙΗΣΗ ΜΕΤΑΛΛΩΝ ΜΕ ΔΙΑΜΟΡΦΩΣΗ. Πλαστική παραμόρφωση με διατήρηση όγκου ΜΟΡΦΟΠΟΙΗΣΗ ΜΕΤΑΛΛΩΝ ΜΕ ΔΙΑΜΟΡΦΩΣΗ Πλαστική παραμόρφωση με διατήρηση όγκου Περιοχή ευσταθούς πλαστικής παραμόρφωσης Η πλαστική παραμορφωση πέρα από το σημείο διαρροής απαιτεί την αύξηση της επιβαλλόμενης

Διαβάστε περισσότερα

ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ

ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ ΧΩΡΗΤΙΚΟΤΗΤΑ και ΔΙΗΛΕΚΤΡΙΚΑ ΧΩΡΗΤΙΚΟΤΗΤΑ Ένας πυκνωτής έχει ως σκοπό να αποθηκεύει ηλεκτρική ενέργεια που μπορεί να ελευθερώνεται με ελεγχόμενο τρόπο σε βραχύ χρονικό διάστημα. Αποτελείται από 2 χωρικά

Διαβάστε περισσότερα

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x A3. ΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ. εύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σηµεία καµπής ΠΑΡΑΡΤΗΜΑ 7. εύτερη πλεγµένη παραγώγιση 8.Χαρακτηρισµός

Διαβάστε περισσότερα

ΟΠΤΙΚΟΗΛΕΚΤΡΟΝΙΚΗ. Μάθημα 6ο Φωτοπηγές Φωτοεκπέμπουσες δίοδοι LED. Αρ. Τσίπουρας, Phd ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ &ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΟΠΤΙΚΟΗΛΕΚΤΡΟΝΙΚΗ. Μάθημα 6ο Φωτοπηγές Φωτοεκπέμπουσες δίοδοι LED. Αρ. Τσίπουρας, Phd   ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ &ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΟΗΛΕΚΤΡΟΝΙΚΗ Μάθημα 6ο Φωτοπηγές Φωτοεκπέμπουσες δίοδοι LED Αρ. Τσίπουρας, Phd Email: aris@di.uoa.gr 1 Περιεχόμενα Παραγωγή φωτός Απαιτούμενα χαρακτηριστικά φωτοπηγών Λειτουργία LED 2 Εκπομπή φωτός

Διαβάστε περισσότερα

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις 1 ο Κεφάλαιο Χημείας Θετικής Κατεύθυνσης Γ Λυκείου 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις 1. Η εξίσωση E = h v μας δίνει την ενέργεια μιας ηλεκτρομαγνητικής ακτινοβολίας 2. H κβαντική

Διαβάστε περισσότερα

ύναµη: αλληλεπίδραση µεταξύ δύο σωµάτων ή µεταξύ ενός σώµατος και του περιβάλλοντός του (πεδίο δυνάµεων). υνάµεις επαφής Τριβή Τάσεις Βάρος Μέτρο και

ύναµη: αλληλεπίδραση µεταξύ δύο σωµάτων ή µεταξύ ενός σώµατος και του περιβάλλοντός του (πεδίο δυνάµεων). υνάµεις επαφής Τριβή Τάσεις Βάρος Μέτρο και ύναµη: αλληλεπίδραση µεταξύ δύο σωµάτων ή µεταξύ ενός σώµατος και του περιβάλλοντός του (πεδίο δυνάµεων). υνάµεις επαφής Τριβή Τάσεις Βάρος Μέτρο και φορά Συµβολίζεται µε F, µονάδα µέτρησης Newton (N).

Διαβάστε περισσότερα

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Γενάρη ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης 3 ώρες ΘΕΜΑ [555555553] Θεωρούµε κβαντικό σύστηµα που περιγράφεται από την Χαµιλτονιανή H 3ε µ iε µε ιδιοσυναρτήσεις κάποιου

Διαβάστε περισσότερα

ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012

ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 Εκπομπή και απορρόφηση ακτινοβολίας ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ Στέλιος Τζωρτζάκης 1 3 4 Ηλεκτρομαγνητικά πεδία Απορρόφηση είναι Σε αυτή τη διαδικασία το ηλεκτρόνιο

Διαβάστε περισσότερα

Τι γνώριζαν για τους κρυστάλλους: ΚΡΥΣΤΑΛΛΙΚΑ ΣΤΕΡΕΑ - ΚΡΥΣΤΑΛΛΟΙ Πρώτοι παρατηρητές: Κανονικότητα της εξωτερικής μορφής των κρυστάλλων οι κρύσταλλοι σχηματίζονται από την κανονική επανάληψη ταυτόσημων

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ. Διάχυση Συναγωγή. Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak

ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ. Διάχυση Συναγωγή. Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak 1 ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ Διάχυση Συναγωγή Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak Μεταφορά μάζας Κινητήρια δύναμη: Διαφορά συγκέντρωσης, ΔC Μηχανισμός: Διάχυση (diffusion)

Διαβάστε περισσότερα

ΦΥΣ Διαλ.33 1 KYMATA

ΦΥΣ Διαλ.33 1 KYMATA ΦΥΣ 131 - Διαλ.33 1 KYMATA q Κύµατα εµφανίζονται σε συστήµατα µε καταστάσεις ισορροπίας. Τα κύµατα είναι διαταραχές από τη θέση ισορροπίας. q Τα κύµατα προκαλούν κίνηση σε πολλά διαφορετικά σηµεία σε ένα

Διαβάστε περισσότερα

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1: Α. Στις ερωτήσεις 1-3 να σημειώσετε το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα σώμα μάζας m

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΑΤΟΜΙΚΗΣ (FineStructureA) Ακαδ. Ετος: Ε. Βιτωράτος

ΣΗΜΕΙΩΣΕΙΣ ΑΤΟΜΙΚΗΣ (FineStructureA) Ακαδ. Ετος: Ε. Βιτωράτος ΣΗΜΕΙΩΣΕΙΣ ΑΤΟΜΙΚΗΣ (FineStructureA) Ακαδ. Ετος: 016-017 Ε. Βιτωράτος Υπολογισμός της ενέργειας αλληλεπίδρασης σπιν-τροχιάς στην περίπτωση του υδρογόνου Η τιμή της ενέργειας αλληλεπίδρασης σπιν-τροχιάς

Διαβάστε περισσότερα

Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες:

Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες: ΔΙΑΓΩΝΙΣΜΑ ΚΥΜΑΤΩΝ (1) ΘΕΜΑ 1 ο Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες: 1) Κατά τη διάδοση ενός κύματος μεταφέρεται ενέργεια και ορμή, αλλά όχι ύλη. 2) Σε

Διαβάστε περισσότερα

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά Ακτίνες Χ (Roentgen) Είναι ηλεκτρομαγνητικά κύματα με μήκος κύματος μεταξύ 10 nm και 0.01 nm, δηλαδή περίπου 10 4 φορές μικρότερο από το μήκος κύματος της ορατής ακτινοβολίας. ( Φάσμα ηλεκτρομαγνητικής

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το

Διαβάστε περισσότερα

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη

Διαβάστε περισσότερα

Nανοσωλήνες άνθρακα. Ηλεκτρονική δομή ηλεκτρικές ιδιότητες. Εφαρμογές στα ηλεκτρονικά

Nανοσωλήνες άνθρακα. Ηλεκτρονική δομή ηλεκτρικές ιδιότητες. Εφαρμογές στα ηλεκτρονικά Nανοσωλήνες άνθρακα Ηλεκτρονική δομή ηλεκτρικές ιδιότητες Εφαρμογές στα ηλεκτρονικά Νανοσωλήνες άνθρακα ιστορική αναδρομή Από το γραφίτη στους Νανοσωλήνες άνθρακα Στο γραφίτη τα άτομα C συνδέονται ισχυρά

Διαβάστε περισσότερα

Κομβικές επιφάνειες. Από τη γνωστή σχέση: Ψ(r, θ, φ) = R(r).Θ(θ).Φ(φ) για Ψ = 0 θα πρέπει είτε R(r) = 0 ή Θ(θ).Φ(φ) = 0

Κομβικές επιφάνειες. Από τη γνωστή σχέση: Ψ(r, θ, φ) = R(r).Θ(θ).Φ(φ) για Ψ = 0 θα πρέπει είτε R(r) = 0 ή Θ(θ).Φ(φ) = 0 Κομβικές επιφάνειες Από τα σχήματα των ατομικών τροχιακών αλλά και από τις μαθηματικές εκφράσεις είναι φανερό ότι υπάρχουν επιφάνειες όπου το Ψ 2 μηδενίζεται, πάνω στις οποίες δηλαδή είναι αδύνατο να βρεθεί

Διαβάστε περισσότερα

Αφορά τη συμπλήρωση των τροχιακών με ηλεκτρόνια, στα πολυηλεκτρονικά άτομα. Γίνεται λαμβάνοντας υπόψη μας τρεις αρχές (aufbeau)

Αφορά τη συμπλήρωση των τροχιακών με ηλεκτρόνια, στα πολυηλεκτρονικά άτομα. Γίνεται λαμβάνοντας υπόψη μας τρεις αρχές (aufbeau) Ηλεκτρονιακή δόμηση Αφορά τη συμπλήρωση των τροχιακών με ηλεκτρόνια, στα πολυηλεκτρονικά άτομα. Γίνεται λαμβάνοντας υπόψη μας τρεις αρχές (aufbeau) Απαγορευτική αρχή Pauli Αρχή ελάχιστης ενέργειας Κανόνας

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ 1. Οι δυναμικές γραμμές ηλεκτροστατικού πεδίου α Είναι κλειστές β Είναι δυνατόν να τέμνονται γ Είναι πυκνότερες σε περιοχές όπου η ένταση του πεδίου είναι μεγαλύτερη δ Ξεκινούν

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

και μάζας m 9.1*10 Kg, το οποίο βρίσκεται στον χώρο επιρροής ενός ηλεκτρικού πεδίου, υφίσταται την επιρροή του. Πάνω

και μάζας m 9.1*10 Kg, το οποίο βρίσκεται στον χώρο επιρροής ενός ηλεκτρικού πεδίου, υφίσταται την επιρροή του. Πάνω Άσκηση Η31 Ο λόγος του ηλεκτρονίου Το ηλεκτρόνιο σε ηλεκτρικό πεδίο Επιτάχυνση του ηλεκτρονίου Ένα ηλεκτρόνιο φορτίου 1.6*1 19 As και μάζας 9.1*1 31 Kg, το οποίο βρίσκεται στον χώρο επιρροής ενός ηλεκτρικού

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paula (Atkins

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1. Θεωρία (θεώρηµα Fermat) σχολικό βιβλίο, σελ Α2. Θεωρία (ορισµός) σχολικό βιβλίο, σελ Α3.

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1. Θεωρία (θεώρηµα Fermat) σχολικό βιβλίο, σελ Α2. Θεωρία (ορισµός) σχολικό βιβλίο, σελ Α3. ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρηµα Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση ότι: z 3i z 3i () Όµως z 3i z 3i z 3 i ()

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ ΑΣΚΗΣΕΙΣ ΚΟΡΜΟΥ ΙΙ 164 ΑΣΚΗΣΗ Σ1-Σ2 Προαπαιτούμενες γνώσεις Θεωρία ζωνών Ημιαγωγοί Ενδογενής αγωγιμότητα Προτεινόμενη βιβλιογραφία 1) Π. Βαρώτσος Κ. Αλεξόπουλος «Φυσική

Διαβάστε περισσότερα