Teorija kodiranja. Hamingov kod i njegova definicija

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Teorija kodiranja. Hamingov kod i njegova definicija"

Transcript

1 Teorija kodiranja. Hamingov kod i njegova definicija Erna Oklapi Gimnazija Novi Pazar Sanela Numanović Gimnazija Kruševac Rezime U ovom radu predstavljen je i definisan Hamingov kod. On nam pomaže pri otkrivanju i ispravljanju grešaka koje nastaju pri prenosu informacija, na primer u telekomunikacijama. Pored specijalnih slučajeva u radu je prikazano kako Hamingov kod funkcioniše za bilo koji opšti slučaj. Ključne reči: Kod, matrica, greška, bit parnosti, kodna distanca. Uvod Teorija kodiranja je grana matematike bazirana na analizi podataka koji se prenose kroz kanale sa šumom i na ispravljanje eventualnih grešaka koje pri tom nastaju. Glavna razlika izmedju kriptografije i kodiranja je u tome što je glavni zadatak kriptografije da napravi poruke koje su teške za razumevanje bez šifre, što sa kodiranjem nije slučaj. Dakle ako imamo reč koju prenosimo a koja je u binarnom zapisu, kodiranjem se dodaju neki pomoćni bitovi koji pomažu pronalaženju i ispravljanju eventualne greške nastale pri prenosu reči od pošiljaoca do promaoca. Najprostiji način kodiranja je pomoću bitova parnosti o čijoj će primeni biti više kasnije. Posle više pokušaja, prvi kod pomoću kojeg se pronalazi i ispravlja nastala greška, predstavio je Ričard Haming. 2 Savršeni kodovi Pre definisanja Hamingovog koda, pokazaćemo najbitnije karakteristike savršenih kodova u koje spada i sam Hamingov kod. U teoriji kodiranja posmatra se skup F od q različitih simbola, tj. slova koji se naziva azbuka. U praktičnim problemima je obično q = 2 i F = {, }, dok se u teorijskim razmatranjima uzima da je q = p r, tako da je p prost broj i F = GF (q). Tako je moguće formirati q n n-torki koristeći slova skupa F koje se nazivaju reči. Sa F n

2 se obeležava skup svih reči dužine n. Kada je q = p r reči se mogu predstaviti kao n dimenzionalni vektori nad poljem GF (q) i tada je F n vektorski prostor nad poljem. Poruke koje se šalju kroz telekomunikacioni kanal kodiraju se pomoću reči iz skpa F n. Ovakav način kodiranja naziva se blokovsko kodiranje. Možemo pretpostaviti da se reč prenosi slovo po slovo kroz kanal. Usled smetnji svako slovo može se pogrešno preneti i na kraju kanala korisnik ga registruje kao neko drugo slovo. Neka je p verovatnoća da se slovo na kraju kanala registruje kao neko drugo, tada je np srednja vrednost broja grešaka prilokom prenošenja reči dužine n. Na osnovu te verovatnoće može se odrediti maksimalan broj grešaka e koje se mogu prsktično pojaviti. Osnovni zadatak teorije kodova je da razradi metode za korekciju greške. Skup S(x, r) = {y y F n, d(x, y) r} n-torki y koje su od n-torke x udaljene za najviše r naziva se (zatvorena) kugla poluprečnika r sa centrom u x. Svaki podskup C skupa F n naziva se kod. Minimalno medjusobno rastojanje n-torki iz jednog koda C naziva se kodovsko rastojanje. Kod kodovskog rastojanja 2e + ima osobinu da se njegove n-torke mogu rekonstruisati na kraju telekomunikacionog kanala ako se prilikom prenošenja svake n-torke na napravi više od e grešaka, tj. ako bar n e prenošene reči tačno primi na kraju kanala. Definicija Kod C = {x, x 2,..., x m }( F n ) kodovskog rastojanja 2e + se naziva savrěn ako je m S(x i, e) = F n i= tj. ako je unija kugli poluprečnika e opisanih oko n-torki koda C jednaka skupu svih n-torki F n. 3 Hamingov kod Mašine treba da rade. Ljudi treba da razmišljaju., reči su američkog matematičara koji se zvao Ričard Vesli Haming (Richard Wesley Hamming). On je rodjen. februara 95. godine u Čikagu, a preminuo je 7. januara 998. godine u Montereju, Kalifornija. Imao je dosta uticaja na razvoj kompjuterskih nauka i telekomunikacija. Njegova najuticajnija otrića bila su Hamingov kod (iz kojeg proističe Hamingova matrica), Hamingovi brojevi i definisanje Hamingove distance. Zanimljivo je da je radio kao jedan od programera u Drugom svetskom ratu, čiji je zadatak bio da provere da li će eksplozija atomske bombe štetiti atmosferi. Dobio je više nagrada medju kojima je najznačajnija Tjuringova. Da bismo definisali Hamingov kod moramo se upoznati sa osnovnim karakteristikama koda. Definicija 2 Kod C je podskup skupa A n gde je A alfabet nad kojim se vrši kodiranje, a A n je skup svih uredjenih n torki. Definicija 3 Kod u alfabetskom prostoru i čiji je linearni prostor iznad tog polja onda je taj kod linearan. Definicija 4 Reč je element A n. Kodna reč je element C. 2

3 Dimenzija koda je broj vektora u bazi koda. Linearni kodovi dužine n i dimenzije k će se opisivati kao [n, k] kodovi. Hamingovi kodovi su linearni kodovi koji se opisuju kao [n, k] kodovi koji odredjuje i q koje predstavalja kardinalnost baze F q, gde je q = 2 jer je F q = {, }. Hamingov kod radi na principu dodavanja pomoćnih bitova parnosti bitova na pozicijama stepena dvojke reči koju treba da prenesemo. Definisaćemo matricu B pomoću koje odredjujemo zavisnost vrednost bitovi parnosti bitova od ostalih bitova kodne reči. Definicija 5 Matrica B[2 n, n], gde je b ij {, } se konstruiše tako što se svako i izrazi u obrnutom binarnom zapisu u i-toj vrsti,a ostala polja b ij imaju vrednost nula. Matrica za specijalan slučaj gde je n=3 izgleda: x x 2 x 4 x Definicija 6 Bit parnosti 2 j je odredjen svakim i iz j-te kolone ako je b ij =. Za specijalni slučaj imamo: x 4 = x 5 + x 6 + x 7 x 2 = x 3 + x 6 + x 7 x = x 3 + x 5 + x 7 Iz gore navedenog se može primetiti da svaki bit parnosti zavisi od bitova reči u čijem se indeksu sadrži indeks samog bita parnosti. Ako želimo preneti reč () onda se ona kodira na sledeći način:. (x x 2 x 4 ) 2. (x x 2 ) 3. (x ) 4. ( ) Za reč potrebna su 3 bita parnosti, što znači da će primalac dobiti reč od 7 bitova. Kodiranje se vrši tako što se ne popunjavaju mesta na kojima se bitovi parnosti nalaze već se datom rečju redom popunjavaju 3, 5, 6 i 7. mesto kodne reči. x, x 2, x 4 se izračunavaju po gore navedenim formulama. Za proveru greške u ovom slučaju koristićemo sledeće jednačine: z = x 4 + x 5 + x 6 + x 7 z 2 = x 2 + x 3 + x 6 + x 7 z 3 = x + x 3 + x 5 + x 7 3

4 z z 2 z 3 predstavlja binarni zapis indeksa bita na kojem se nalazi greška. Ako je z =, z 2 = i z 3 = onda se greška nalazi na 5. bitu, jer je (5) 2 =. Ukoliko je z z 2 z 3 = onda nema greške u primljenoj reči. Ovo treba dokazati u opštem slučaju. Svaki z se predstavlja zbirom odgovarajućeg bita parnosti i bitova od kojih taj bitovi parnosti bit zavisi.. Ako je z =, onda nema greške u kodnoj reči, jer zbir 2 istovetna bita parnosti treba da bude. 2. Ako!z i =, gde je z {z, z 2,..., z n } onda je greška na 2 n i bitu parnosti. 3. Ako postoji m z i takvih da je z i i m, onda je greška u bitovima koda, a mesto koda je predstavlja binarni zapis svih z j. Dokaz: Ako imamo grešku na x i bitu, posmatrajmo sldeće: z n = x + x 3 + x x 2 n z n = x 2 + x 3 + x 6 + x z n 2 = x 4 + x 5 + x 7... z n k = x 2 k +... z = x 2 n +... Ako je i indeks bita na kom je greška tada je (z z 2... z n ) 2 = i. z j =, gde je j =, 2, 3,... n ako x i bit učestvuje u sumi z j. x 2 n j bitovi parnosti bit z j i on će čekirati x i ako 2 n j učestvuje u zapisu broja i. Posmatrajmo binarni zapis broja i. Neka je to (a a 2...a n ) 2 = i = a 2 +a a n j 2 j +a j 2 n j +...+a n 2 n 2 +a n 2 n a j = Ovim je dokaz završen. a j = z j i = (z z 2... z n ) 2 Definicija 7 k- dimenzionalni potprostor C vektorskog prostora F n naziva se linearni (n, k) - kod nad poljem GF (q) Linearni kodovi C se obično predstavljaju pomoću generišuće matrice koda. Vrste generišuće matrice obrazuju bazu vektorskog prostora C. Ako C predstavlja (n, k) kod, njegova generišuća matrica je dimenzija k x n. Vektori koda C se dobijaju kao linearne kombinacije vrsta matrice G, pri čemu se koeficijenti uzimaju iz odgovarajućih polja GF ( q). Skup svih vektora koji su ortogonalni na sve vektore koda C naziva se dualni kod koda C i obeležava se sa C. Ako je C linearni (n,k)-kod, dualni kod C je linearni (n, n k)-kod. Generišuća matrica H dualnog koda C naziva se kontrolna matrica koda C. Generišuća matrica G i kontrolna matrica H koda C povezane su jednakošću GH T =, odnosno C = {x Hx T = } koja se neposredno proverava na osnovu navedenih definicija. 4

5 Definicija 8 Neka je H matrica tipa m 2 m čije su kolone binarni zapisi brojeva, 2,..., 2 m. Ova matrica predstavlja kontrolnu matricu Hamingovog koda, a kod je dimenzija [2 m, 2 m m], gde je m prirodan broj. Skup C svih n torki (n = 2 m ) iz F n (F = GF (2)) koje su ortogonalne na sve vrste matrice H predstavlja Hamingov kod. Kontrolna matrica [7, 4] binarnog Hamingovog koda za ovaj specijalni slučaj gde je m = 3 ima sledeći oblik: a kod će izgledati: ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) Za proveravanje grešaka pomoću matrice, neophodno je definisati pojam Hamingove distance. Definicija 9 Rastojanje d(x, y) reči x i y iz F n je jednako broju koordinata u kojima se reči x i y razlikuju. Lema Minimalna distanca izmedju dve kodne reči u Hamingovom kodu je 3. Dokaz: Neka su x i y dve kodne reči Hamingovog koda C sa kontrolnom matricom H. Kada x y C, C je linearan kod. Ako je d H (x, y) = onda matrica H(x y) je jedna od kolona matrice H. Sve kolone matrice H su različite od nule, ali ako je (x y) kodna reč, onda je H(x y) =. Kontradikcija. Ako je d H (x, y) = 2 onda je H(x y) = akko u matrici H postoje dve kolone koje su linearno zavisne. Pošto to ne važi, sledi da je d H (x, y) 3 za svaku x, y kodnu reč. Svaka kontrolna matrica Hamingovog koda će imati tri kolone koje su linearno zavisne, i iz te činjenice proizilazi da je Hamingova kodna distanca nekih kodnih reči 3. Ovim je tvrdjenje dokazano. On je linearan blokovski (n, n m) kod. Svaka nenulta n-torka koda sadrži bar 3 simbola jednaka, zato je kodovsko rastojanje koda jednako 3 i on može ispravljati jednu grešku. Broj n torki u kodu je 2 n m, a kugla poluprečnika sadrži n + n torku. Pošto je 2 (n m)(n+) = 2 n sve n-torke su pokrivene kuglama pa je Hamingov kod savršen. Za proizvoljno polje GF (q) sa q 2 elemenata konstrukcija matrice H je složenija. Broj kolona ove matrice iznosi qm q Matrica Hamingovog koda se koristi za proveravanje i ukazivanje na samo jednu grešku u primljenoj kodnoj reči. Pošto je Mx T = i ako je x = y gde je y primljena kodna reǒnda će važiti sledeće: My T = što znači da nije 5

6 došlo do greške u prenosu. Ukoliko Mx T, onda je greška na bitu čija pozicija odgovara broju koji je u binarnom zapisu dobijen množenjem M i x T. Za specijalan slučaj imamo Hamingovu matricu kod koje je m = 3 i primljenu kodnu reč []. = Iz ovoga se vidi da je greška na 5. bitu kodne reči jer je () 2 = 5. Za opšti slučaj treba dokazati sledeću teoremu. Teorema Proizvod matrica A[2 (m ), m] i B i je binarni zapis indeksa bita na kome se nalazi greška. Dokaz:Neka se greška nalazi na i tom mestu u kodnoj reči. Po definiciji Hamingove matrice A njena i ta kolona predstavlja binarni zapis broja i. Pošto je nula neutralni element za operaciju konjukcije, onda sve jedinice koje se nalaze na a ij poziciji postaju z. Posle operacije konjukcije, bitovi se sabiraju po modulu dva i to daje konačan rezultat.. Ukoliko je x i = (greškom prelazi u ), onda se na osnovi navedenog postupka za vrednost z j dobija. =, nakon greške to prelazi u ( = ) 2 m j= a ij b j = 2 2. Za x =, analogno prethodnom, važi =, gde zbog greške prelazi u =, pa se zbog promene nakon sabiranja po modulu 2 umesto nule dobija. Hamingov kod se koristi i za pronalaženje više od jedne greške u nekoj kodnoj reči. Koristi se način proširene Hamingove matrice. Ako na primer imamo primljenu reč (), gde su greške na. i 5. mestu, i ukoliko tu reč pomnožimo sa kontrolnom Hamingovom matricom dobićemo sledeće: = () je binarni zapis broja 4 i iz prethodnog sledi da je greška na 4. bitu, što ovde nije slučaj. Pošto se prethodno opisan način koristi za odredjivanje greške na jednom bitu mora postojati njena neka složenija kontrolna matrica 6

7 koja ukazuje na dve greške. Zato se konstruiše proširena Hamingova matrica koja će biti u mogućnosti da detektuje dve grške. Da bi se konstruisala potreban je još jedan bitovi parnosti bit x koji je odredjen nasledeći način: x = x + x 2 + x 3 + x 4 + x 5 + x 6 + x 7 Sada kod ima dužinu 8, ali je i dalje linearan sa dimenzijom 4. Sada se konstruiše [8, 4] prošireni Hamingov kod koji za bilo koju dužinu dodaje novi bit parnosti. Proširena Hamingova matrica se lako konstruiše iz kontrolne matrice običnog Hamingovog koda tako što se nule dodaju sa leve strane, a jedinice na dno matrice. Imamo x i y binarne reči Hamingovog koda distance 3, gde x ili y imaju jedan paran, drugi neparan broj bitova parnosti. Uzmimo da x ima paran broj bitova parnosti. Ako su x i y kodne reči proširene Hamingove matrice, onda je x =, pošto x ima parni broj bitova parnosti, a y =, zato što je broj bitova parnosti u y neparan. Distanca izmedju x i y je veća od distance izmedju x i y, tako da je minimalna kodna distanca proširenog Hamingovog koda 4. Ako primimo reč koja u odnosu na poslatu reč ima distancu, onda možemo da ispravimo tu grešku jer se ona javlja samo na jednom bitu. Ukoliko se poslata i primljena reč razlikuju za 2, onda se ukazuje na to da su u prenosu nastale greške na dva bita u reči. Dekodiranje proširenom Hamingovom matricom je malo komplikovanije. Njegova kontrolna matrica proširenog Hamingovog koda je M, a H matrica običnog Hamingovog koda od kojeg je proširena matrica nastala i neka je y = (y, y,..., y n ) primljena reč. Pretpostavimo da se pojaqvila greška na samo jednom bitu i to na poslednjem. My T množenje je ekvivalentno M(y, y,..., y n ) T množenju. Poslednji red My T će biti zato što postoji samo jedna greška, tako da binarni zapis broja n odgovara koloni M koja je brojem r odredjena. Pretpostavimo da je greška na bitu parnosti. Tada je M (y, y,..., y n ) T =, tako da će prvih n kolona biti jednako, ali poslednja će imati vrednost jer je greška samo na bitu parnosti koji odgovara jednoj koloni matrice M. Na kraju pretpostavimo da su se javile dve grške u primljenoj reči. Bilo gde da su detektovani, patiti bitovi će biti tačni zato što će proizvod biti u poslednjoj vrsti i to neće biti kolona kontrolne matrice. Možemo generalisati konstrukciju linearnog q Hamingovog koda gde je [n, k] Hamingov kod linearni prostor nad poljem odredjenim nad q. Za dato r izaberimo r torku elemenata iz F q. Izaberimo još jednu r torku koja je linearno nezavisna od prve. To pravi 2 kolone. Nastavlja se sabiranje r torki sve dokle je moguće da one budu linearno nezavisne. Ove r torke se rasporedjuju kao kolone matrice M. Postoji q r takvih r torki. Broj kolona matrice M je qr q. Definišimo linearan kod čija kontrolna matrica ima sledeće dimenzije: (q r )(q ), qn q r. Kontrolna matrica je generišuća matrica dualnog koda, koji u ovom slučaju mora da ima dimenziju r, jer dimenzija našeg Hamingovog koda mora da bude: n r = qr q r. Za [4, 2] Hamingov kod (q = 3) kontrolna matrica će biti: 7

8 a kod će izgledati: [ 2 ] ( ), ( ), ( 2 2 2), ( 2), (2 2 ), ( 2 ), (2 2 ), (2 ), (2 2) Isti [4, 2] Hamingov kod se može predstaviti i sledećom matricom: [ ] a čiji je kod: ( ), ( 2 ), ( 2 2), ( ), (2 2 2), ( 2), (2 2 ), ( 2 2 ), (2 ) Dakle imamo proizvod My T za kontrolnu matricu M a primljenu reč y. Ako je proizvod nula, onda nema greške, a ako nije nula onda proizvod odgovara nekoj koloni matrice M. Ukoliko je proizvod αm i gde je α F q i i iz m i predstavlja redni broj kolone matrice M i uzmimo da je to vektor greške koji je kodu dodat prilikom prenosa poruke. To je vektor (... α... ), gde je α na i-tom mestu. Sledi da je vektor koji prestavlja primljenu reč y (... α... ). Definicija Kod koji ispravlja e grešaka(e kod) nazivamo e perfektni kod ako je C S e (x) F q n ili e ( ) n F q n = C (q ) i i i= Lema 2 Za Hamingov kod važi C = q n r. Dokaz: Od q elemenata možemo izabrati tačno q n n torki. Pošto vrednosti bitova parnosti kojih ima tačno m, zavise od vrednosti ostalih bitova, onda se broj n torki smanjuje 2 r puta. Teorema 2 Hamingov kod je perfektan kod. Dokaz: Imamo na osnovu definicije perfektnog koda da je ( ) n F q n = C (q ) i i i= i iz definicije Hamingovog koda da je C = q n r. Kombinacijom ovih dveju jednakosti dobijamo sledeće: F q n = q n r ( + n(q )) pa kako je n = qr q onda F q n = q n r ( + q r ) što je i trebalo dokazati. F q n = q n 8

9 4 Zaključak Hamingov kod ima veliku primenu u telekomunikacijama. Trenutno postoje pretpostavke da Hamingov kod može koristiti u detektovanju i ispravljanju grešaka na digitalnim slikama (fotografijama). To se može realizovati time što bi se Hamingov kod definisao uz još parametara koji bi omogućili ispravljanje ne samo jedne greške. Literatura [] Dr Dragoš Cvetković, Dr Slobodan Simić, Kombinatorika i grafovi, Računarski fakultet, Beograd, 26. [2] Gojko Kalajdžić, Linearna algebra, Procesor, Matematički fakultet, Beograd, 994. [3] Filip Dž. Devis (Philip J. Davis), The Mathematics of matrices, GINN and Company, 965. [4] Radosav v Z. Djordjević, Gradimir V. Milovanović, Linearna algebra, Edicija: Osnovni udžbenici, 24. [5] James Fiedler, Hamming Codes 9

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Sistemi linearnih jednačina

Sistemi linearnih jednačina Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia. Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013. Linearna algebra skripta Januar 3 Reč autora Ovaj tekst je nastao od materijala sa kursa Linearna algebra i analitička geometrija za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Relacije poretka ure denja

Relacije poretka ure denja Relacije poretka ure denja Relacija na skupu A je relacija poretka na A ako je ➀ refleksivna ➁ antisimetrična ➂ tranzitivna Umesto relacija poretka često kažemo i parcijalno ured enje ili samo ured enje.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

4 Matrice i determinante

4 Matrice i determinante 4 Matrice i determinante 32 4 Matrice i determinante Definicija 1 Pod matricom tipa (formata) m n nad skupom (brojeva) P podrazumevamo funkciju koja preslikava Dekartov proizvod {1, 2,, m} {1, 2,, n} u

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Determinante. Inverzna matrica

Determinante. Inverzna matrica Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Norme vektora i matrica

Norme vektora i matrica 2 Norme vektora i matrica Pojam norme u vektorskim prostorima se najčešće povezuje sa određenom merom veličine elemenata tog prostora. Tako je u prostoru realnih brojeva R, norma elementa x R najčešće

Διαβάστε περισσότερα

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova. Pojam skupa U matematici se pojam skup ne definiše eksplicitno. On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA

LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA Predrag Tanović February 11, 211 {WARNING: Sadržaj ovog materijala NI U KOM SLUČAJU NE MOŽE ZAMENITI UDŽBENIK: radi se o prepravljanim slajdovima predavanja. Reference

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Prediktor-korektor metodi

Prediktor-korektor metodi Prediktor-korektor metodi Prilikom numeričkog rešavanja primenom KP: x = fx,, x 0 = 0, x 0 x b LVM α j = h β j f n = 0, 1, 2,..., N, javlja se kompromis izmed u eksplicitnih metoda, koji su lakši za primenu

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Binarno kodirani dekadni brojevi

Binarno kodirani dekadni brojevi Binarno kodirani dekadni brojevi Koriste se radi tačnog zapisa mešovitih brojeva u računarskom sistemu. Princip zapisa je da se svaka dekadna cifra kodira odredjenim binarnim zapisom. Za uspešno kodiranje

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Geometrija (I smer) deo 2: Afine transformacije

Geometrija (I smer) deo 2: Afine transformacije Geometrija (I smer) deo 2: Afine transformacije Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Transformacije koordinata tačaka Transformacije koordinata tačaka Pretpostavimo da za bazne

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

FUNKCIJE - 2. deo. Logika i teorija skupova. 1 Logika FUNKCIJE - 2. deo

FUNKCIJE - 2. deo. Logika i teorija skupova. 1 Logika FUNKCIJE - 2. deo FUNKCIJE - 2. deo Logika i teorija skupova 1 Logika FUNKCIJE - 2. deo Inverzna korespondencija Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa f 1 = {(b, a) B A (a, b) f}

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

Matrice linearnih operatora i množenje matrica. Franka Miriam Brückler

Matrice linearnih operatora i množenje matrica. Franka Miriam Brückler Matrice linearnih operatora i množenje matrica Franka Miriam Brückler Kako je svaki vektorski prostor konačne dimenzije izomorfan nekom R n (odnosno C n ), pri čemu se ta izomorfnost očituje odabirom baze,

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Granične vrednosti realnih funkcija i neprekidnost

Granične vrednosti realnih funkcija i neprekidnost Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

O Šturmovim rečima i njihovim primenama u teoriji brojeva

O Šturmovim rečima i njihovim primenama u teoriji brojeva UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Kristina Ago O Šturmovim rečima i njihovim primenama u teoriji brojeva - Master rad- Mentor: dr Bojan Bašić

Διαβάστε περισσότερα

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.yu/mii Математика и информатика 1 (3) (2009), 19-24 KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Celi brojevi su svi nerazlomljeni brojevi, pozitivni, negativni i nula. To su

Celi brojevi su svi nerazlomljeni brojevi, pozitivni, negativni i nula. To su Poglavlje 1 Brojevi i brojni sistemi Cvetana Krstev 1.1 O brojevima Prirodni brojevi su brojevi sa kojima se broji, uključujući i nulu: 0, 1, 2, 3,.... Pojam pozitivnih i negativnih brojeva nije definisan

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone.

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone. Matrice Uvod u matrice i vektore Pretpostavite da ste odgovorni za iznajmljivanje automobila zaposlenicima svoje firme Sedmični najmovi za različite veličine automobila su: kompaktni 9KM, srednji 60KM,

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Matematička logika. novembar 2012

Matematička logika. novembar 2012 Predikatska logika 1 Matematička logika Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia novembar 2012 1 različiti nazivi: predikatska logika, logika prvog

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

Osnovne definicije i rezultati iz Uvoda u linearnu algebru

Osnovne definicije i rezultati iz Uvoda u linearnu algebru Osnovne definicije i rezultati iz Uvoda u linearnu algebru (0.01) Simetrije Neka je A = [a ij ] kvadratna matrica (matrica oblika n n). a) Za A kažemo da je simetrična matrica kadgod je A = A, tj. kadgod

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: Refleksija S φ u odnosu na pravu kroz koordinatni početak Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: ( ) ( ) ( ) x cos 2φ

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

METODA SEČICE I REGULA FALSI

METODA SEČICE I REGULA FALSI METODA SEČICE I REGULA FALSI Zadatak: Naći ulu fukcije f a itervalu (a,b), odoso aći za koje je f()=0. Rešeje: Prvo, tražimo iterval (a,b) a kome je fukcija eprekida, mootoa i važi: f(a)f(b)

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

8 Predikatski račun kao deduktivni sistem

8 Predikatski račun kao deduktivni sistem 26 8 Predikatski račun kao deduktivni sistem Neka je L neki jezik prvog reda. Da bismo odredili predikatski račun K L tipa L, prvo ćemo se dogovoriti šta će biti azbuka nad kojom radimo. Znamo da se svaka

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

VEKTORSKI PROSTORI I ELEMENTI VEKTORSKE ANALIZE

VEKTORSKI PROSTORI I ELEMENTI VEKTORSKE ANALIZE VEKTORSKI PROSTORI I ELEMENTI VEKTORSKE ANALIZE Ivanka Milošević Univerzitet u Beogradu 1997 Predgovor Kurs MATEMATIČKA FIZIKA I prvi put sam predavala 1995/1996 godine, pri čemu sam se velikom delu držla

Διαβάστε περισσότερα

8 Funkcije više promenljivih

8 Funkcije više promenljivih 8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen

Διαβάστε περισσότερα

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom.

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. 1 Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. Pravilo 2. Svaki atribut entiteta postaje atribut relacione šeme pod istim imenom. Pravilo 3. Primarni ključ entiteta postaje

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Diskretna matematika. Prof. dr Olivera Nikolić

Diskretna matematika. Prof. dr Olivera Nikolić Diskretna matematika Prof. dr Olivera Nikolić onikolic@singidunum.ac.rs 1 OSNOVNI POJMOVI MATEMATIČKE LOGIKE 2 1. Diskretna matematika 2. Kontinualna matematika 3 Pojam diskretne matematike Diskretna matematika

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα