4.1 Ζήτηση για Ασφάλιση. Πλήρη κάλυψη.

Save this PDF as:
Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4.1 Ζήτηση για Ασφάλιση. Πλήρη κάλυψη."

Transcript

1 4. Ζήτηση για Ασφάλιση. Πλήρη κάλυψη. Η αγορά ασφαλιστικών συµφωνιών είναι µία ιδιαίτερη περίπτωση αγοράς δικαιωµάτων. Αντικείµενο της αγοράς αυτής είναι να δώσει την ευκαιρία µεταβίβασης εισοδήµατος από µία κατάσταση σε µία άλλη, µέσα από την αγορά. Έτσι, είναι δυνατό έναντι αµοιβής, να συµφωνηθεί ότι αν προκύψει κάποιο γεγονός ζηµιογόνο στον φορέα αποφάσεων, κάποιος άλλος φορέας θα αναλάβει την αποκατάσταση της ζηµιάς ή µέρους αυτής, ή την καταβολή ισοδύναµου χρηµατικού ποσού. Έστω ότι η µόνη δυνατότητα που προσφέρεται στην αγορά είναι η σύναψη συµφωνίας για πλήρη αποζηµίωση του φορέα αποφάσεων σε περίπτωση ζηµιάς ενώ υπάρχουν µόνο δύο δυνατές καταστάσεις, µία όπου ο πλούτος του φορέα παραµένει αµετάβλητος και µία στην οποία µειώνεται κατά ένα δεδοµένο ποσό. Τότε αν W: ο αρχικός πλούτος του φορέα αποφάσεων x: το ύψος της ζηµιάς p: η πιθανότητα της ζηµιάς h: το ασφάλιστρο. Καθορίζεται από τις ασφαλιστικές εταιρείες. Η προσδοκώµενη χρησιµότητα αν δεν αγοράσει ασφάλιση είναι U pu( W x) + [ p] u( W ) () Η προσδοκώµενη χρησιµότητα αν αγοράσει πλήρη κάλυψη είναι U pu( W h) + [ p] u( W h) u(w - h) () η χρησιµότητα µεταβάλλεται αντίστροφα από το ύψος του ασφαλίστρου du dh u ( w h) < 0 (3)

2 Άρα το µέγιστο ασφάλιστρο, h*, που είναι διατεθειµένος να πληρώσει για πλήρη κάλυψη πρέπει να ικανοποιεί την σχέση uw ( h*) pu( W x) + ( p) uw ( ) (4) οπότε και uw ( x) < uw ( h*) uw ( ) < (5) h* < x Άρα το µέγιστο ασφάλιστρο θα είναι µικρότερο από το ύψος της δυνητικής ζηµιάς. Για να βρούµε ένα αντίστοιχο κατώτερο όριο χρησιµοποιούµε την ακόλουθη ιδιότητα της συνάρτησης χρησιµότητας φορέα που αποστρέφεται τον κίνδυνο.. εδοµένου ότι η χρησιµότητα της προσδοκώµενης απόδοσης είναι µεγαλύτερη από την προσδοκώµενη χρησιµότητα, όταν υπάρχει αποστροφή στον κίνδυνο, u( p( W x) + ( p) W) > pu( W x) + ( p) uw ( ) αντικαθιστώντας στην (4) έχουµε u( p( W x) + ( p) W) > u( W h*) ή uw ( px) > uw ( h*) οπότε h* > px το µέγιστο ασφάλιστρο που είναι διατεθειµένος να πληρώσει ένας φορέας που αποστρέφεται τον κίνδυνο είναι µεγαλύτερο από την προσδοκώµενη αξία της ζηµιάς. Η επίπτωση µίας µεταβολής της πιθανότητας της ζηµιάς ή του ύψους της ζηµιάς στο άριστο ασφάλιστρο έχει ως εξής. Από το διαφορικό της (4) έχουµε

3 dh * uw ( x ) uw ( ) dp u ( W h*) > 0 και dh * pu ( W x ) dx u ( W h*) > 0 Να εκτιµηθεί η έκφραση για το W. 4. Μερική Κάλυψη του Κινδύνου Γενικεύοντας την περίπτωση που εξετάσαµε στο προηγούµενο τµήµα, υποθέτουµε ότι είναι δυνατό (προσφέρονται συµβόλαια) να επιτευχθεί µερική κάλυψη του κινδύνου. Το ασφάλιστρο προσδιορίζεται από την εταιρεία ασφαλίσεων, σύµφωνα µε κάποιο κανόνα που είναι εξ αρχής γνωστός στους ασφαλιζόµενους. Η απόφαση του ασφαλιζόµενου συνίσταται στο να προσδιορίζει το ποσοστό του κινδύνου την κάλυψη του οποίου επιθυµεί. ηλαδή, ποίο µέρος της δυνητικής ζηµίας x, θα ήθελε να δεσµευτεί η εταιρεία ότι θα τον αποζηµιώσει αν παραστεί ανάγκη, έστω y. Η διαφορά µεταξύ της ζηµίας και της αποζηµίωσης αποκαλείται απαλλαγή ή απαλλασσόµενο ποσό, D x y Στο υπόδειγµα του τµήµατος αυτού, ο ασφαλιζόµενος υποτίθεται ότι αποστρέφεται τον κίνδυνο, και πάντα διαλέγει κάποιο D > 0, δηλαδή δεν διαλέγει πλήρη κάλυψη του κινδύνου. Το ασφάλιστρο h προσδιορίζεται µε τρόπο ώστε να καλύπτει την προσδοκώµενη ζηµιά py, και κάποιο διαχειριστικό κόστος που συνεπάγεται η αποζηµίωση, έστω k ανά µονάδα αποζηµίωσης. Το σύστηµα υπολογισµού είναι γνωστό στον ασφαλιζόµενο. Οπότε το συνολικό προσδοκώµενο κόστος για τον ασφαλιστή είναι e py + pky

4 Υποθέτοντας ότι h e έχουµε h p( + k)( x D) Η προσδοκώµενοι χρησιµότητα του ασφαλιζόµενου είναι U pu( W x + y h) + ( p) uw ( h) ή U pu( W D h) + ( p) uw ( h) Από την συνθήκη πρώτης τάξης, ( υπενθυµίζοντας ότι το h είναι συνάρτηση του D) έχουµε u ( W D * h) u ( W h) [ p][ + k] p[ + k] Η δεξιά πλευρά είναι µεγαλύτερη από την µονάδα οπότε u ( W D* h) > u ( W h) λόγω της κοιλότητας της συνάρτησης χρησιµότητας που συνεπάγεται η αποστροφή στον κίνδυνο, αυτό σηµαίνει και W D * h < W h D* > 0 Η αριστοποιητική λύση είναι η µερική κάλυψη της ζηµίας, απαλλάσσοντας ένα ποσό και ασφαλίζοντας στο ακέραιο το υπόλοιπο της ζηµίας. Το ασφάλιστρο που θα πληρωθεί

5 είναι h p( + k)( x D*) ενώ ο ασφαλιζόµενος έχει δικαίωµα σε αποζηµίωση µόνο αν η ζηµιά υπερβεί το απαλλασσόµενο ποσό. Στην περίπτωση αυτή η αποζηµίωση είναι η διαφορά της ζηµιάς και του απαλλασσόµενου ποσού. (Προσοχή. Το αποτέλεσµα αυτό εξαρτάται από τον τρόπο υπολογισµού του ασφαλίστρου.) Ας υποθέσουµε τώρα, ότι η ασφαλιστική εταιρεία δεν είναι σε θέση να γνωρίζει τον κίνδυνο ή την πιθανότητα ζηµιάς που αντιµετωπίζει ο κάθε ασφαλιζόµενος. Κατά συνέπεια υπολογίζει το ασφάλιστρο όπως πριν, µε την διαφορά ότι χρησιµοποιεί την µέση αξία της πιθανότητας ζηµίας του πληθυσµού, την οποία υποθέτουµε ότι γνωρίζει. Το πρόβληµα αριστοποίησης είναι το ίδιο µε πριν, µε µόνη τη διαφορά ότι το ασφάλιστρο είναι h p( + k)( x D) µε αποτέλεσµα η αριστοποιητική συνθήκη να γίνει u ( W D * h) u ( W h) [ p][ + k] p[ + k] Έστω δύο άτοµα που διαφέρουν µόνο κατά την πιθανότητα ζηµίας που αντιµετωπίζουν, p και p, µε p > p. Έστω ότι ο µέσος των πιθανοτήτων αυτών είναι ίσος µε τον µέσο που χρησιµοποιήθηκε για τον προσδιορισµό του κανόνα υπολογισµού του ασφαλίστρου. Ο ασφαλιστής δεν είναι σε θέση να διακρίνει µεταξύ των δύο τύπων ασφαλιζοµένων. Είναι απλό να αποδειχτεί ότι dd * < 0 για δεδοµένο p dp οπότε η οµάδα ψηλού κινδύνου επιλέγει χαµηλότερη απαλλαγή. Έτσι, υπάρχει έµµεσος τρόπος ώστε η εταιρεία να µάθει το ποιόν του ασφαλιζόµενου.

6 4.3 Αυτασφάλιση c : το κόστος ανά µονάδα αυτασφάλισης. Ο φορέας έχει την ικανότητα να µειώσει το ύψος της ζηµίας που θα αντιµετωπίσει, προβαίνοντας σε κάποια δαπάνη. Η συνάρτηση παραγωγής είναι xx(c ) Η συνάρτηση χρησιµότητας γίνεται U pu( W x( c) c) + ( p) uw ( c) οπότε η συνθήκη πρώτης τάξης δίνει p u ( W x( c) c) p u ( W c) x ( c) 4.4 Αυτοπροστασία z : η δαπάνη µεταβολής της πιθανότητας p. η προσδοκώµενη χρησιµότητα είναι U p()( zuw z x + y h) + ( p())( z u W z h) Ο φορέας αποφάσεων επιλέγει την πιθανότητα που µεγιστοποιεί την χρησιµότητα του p (*)[( z u W z* x + y h) u( W z* h) pz ( *) u ( W z* x h) + ( pz ( *)) u ( W z* h) > 0 αφού η πρώτη παράγωγος της συνάρτησης µεταβολής της πιθανότητας είναι αρνητική, έχουµε uw ( z* h) > uw ( z* x + y h) κατά συνέπεια θα υπάρχει κάποιο ακάλυπτο.

7 Κάνουµε την υπόθεση ότι το ασφάλιστρο δεν επηρεάζεται από το ύψος της δαπάνης για αυτασφάλιση, δηλαδή ότι dh dz 0 οπότε η συνθήκη πρώτης τάξης ως προς την ασφαλιστική δαπάνη, που θα προσδιορίσει το άριστο επίπεδο του ακάλυπτου είναι (το z* είναι συνάρτηση του y) dh pzu () ( W z h x+ y) ( pz ()) u( W z h) dh dz dy 4.5 Ισορροπία στην Αγορά Ασφάλισης. Έστω ότι υπάρχει ένας µεγάλος αριθµός ασφαλιστικών επιχειρήσεων, που είναι πανοµοιότυπες από την άποψη των καταναλωτών. Υπάρχει επίσης ένας µεγάλος αριθµός καταναλωτών που είναι πανοµοιότυποι από την άποψη των επιχειρήσεων. Ο κάθε καταναλωτής µπορεί να προµηθευτεί µόνο ένα συµβόλαιο ασφάλισης. Για τον τυπικό καταναλωτή, ο πλούτος του στην ευνοϊκή κατάσταση,, είναι W, ενώ στην κατάσταση όπου υφίσταται ζηµιά είναι W. Οπότε η προσδοκώµενη χρησιµότητα του καταναλωτού όταν προµηθευτεί κάλυψη y, καταβάλλοντας ασφάλιστρο h, είναι U pu( W x + y h) + ( p) uw ( h) pu(w ) + ( puw ) ( ) Ο καταναλωτής αποστρέφεται τον κίνδυνο. Οι προµηθευτές των συµβολαίων είναι, αντίθετα, ουδέτεροι στον κίνδυνο, και προσφέρουν όποιο συµβόλαιο έχει µη αρνητική προσδοκώµενη απόδοση. Η προσδοκώµενη απόδοση κάθε συµβολαίου είναι

8 π p( h y) + ( p) h που πρέπει να είναι ίση µε το µηδέν αν επικρατεί ανταγωνιστική ισορροπία. Τούτο σηµαίνει ότι το ασφάλιστρο είναι ίσο µε την προσδοκώµενη εκταµίευση των επιχειρήσεων. (εφ όσον δεν υπάρχουν άλλα κόστη). Θα υποθέσουµε κατ αρχή ότι οι καταναλωτές όχι µόνο φαίνονται ίδιοι στις επιχειρήσεις, άλλα ότι είναι ίδιοι, δηλαδή ότι αντιµετωπίζουν τις ίδιες πιθανότητες για κάθε κατάσταση κόσµου. Έτσι, ένα συµβόλαιο ισορροπίας είναι αυτό που µεγιστοποιεί την χρησιµότητα του καταναλωτού, ενώ µηδενίζει τα κέρδη για τις επιχειρήσεις. To συµβόλαιο αυτό προσφέρει την δυνατότητα στους καταναλωτές να ανταλλάξουν πλούτο από την ευνοϊκή κατάσταση για πλούτο στην δυσµενή κατάσταση, αγοράζοντας κάλυψη y. Κάθε πρόσθετη µονάδα κάλυψης προσθέτει (-p) στο W, αφαιρώντας p από το W. Τούτο συµβαίνει διότι λόγω µηδενικών κερδών έχουµε h py όποτε αντικαθιστώντας στις εκφράσεις για το W και W και οπότε W W py W W x + ( p) y p και dy dy ( p) άρα p ( ) p Η έκφραση είναι η κλίση του περιορισµού πλούτου κάθε καταναλωτού και εκφράζει τις δυνατές ευκαιρίες αγοραίας ανταλλαγής. (η γραµµή α, Ε στο σχήµα ) Από την άλλη η κλίση της καµπύλης αδιαφορίας σε κάθε σηµείο της είναι

9 U ( pu ) ( W ) pu ( W ) σε συνθήκες ισορροπίας έχουµε οι δύο αυτές σχέσεις εξισώνονται άρα u ( W ) u ( W ) W W πράγµα που σηµαίνει ζήτηση για πλήρη κάλυψη του κινδύνου. Στο σχήµα 4.5. το σηµείο Ε είναι το σηµείο ισορροπίας, ενώ το σηµείο α είναι το σηµείο αρχικής προικοδότησης. Η κίνηση από το α στο Ε, διατηρεί το επίπεδο των προσδοκώµενων κερδών των επιχειρήσεων, ενώ αυξάνει την ευηµερία των καταναλωτών. Η γραµµή των 45 ο είναι ο τόπος των σηµείων που εκφράζουν την πλήρη κάλυψη του κινδύνου. W E a Uc 45o W ΣΧΗΜΑ 4.5. Αν όµως οι καταναλωτές αντιµετωπίζουν διαφορετικές πιθανότητες έκβασης των δύο καταστάσεων κόσµου, ενώ οι επιχειρήσεις δεν έχουν την δυνατότητα να διακρίνουν µεταξύ διαφορετικών τύπων καταναλωτών, τότε τα πράγµατα αλλάζουν. Έστω, λοιπόν ότι υπάρχουν µόνο δύο τύποι καταναλωτών που διαφέρουν ως προς τα p που αντιµετωπίζουν. Ένα ποσοστό α του πληθυσµού αντιµετωπίζει πιθανότητα p, ενώ το υπόλοιπο -α, πιθανότητα p, όπου p > p. Η µέση προσδοκώµενη ζηµιά όπως την αντιλαµβάνονται οι επιχειρήσεις είναι

10 p αp + ( α) p και η κλίση του περιορισµού πλούτου είναι ( p) p Επιπλέον τώρα έχουµε δύο συναρτήσεις προσδοκώµενης χρησιµότητας, και η κλίση των αντίστοιχων καµπυλών αδιαφορίας είναι U U ( p) u ( W) pu ( W) ( p) u ( W) pu ( W) ή U p ( p) u ( W ) ( p ) pu ( W ) U Βλέπουµε ότι η κλίση της καµπύλης αδιαφορίας που ενέχει µεγαλύτερο κίνδυνο, είναι ένα ποσοστό της κλίσης της καµπύλης αδιαφορίας που ενέχει µικρότερο κίνδυνο, για κάθε επίπεδο W. Στο σηµείο όπου οι καµπύλες αδιαφορίας τέµνονται η γραµµή περιορισµού του πλούτου θα έχει κλίση ενδιάµεση των κλίσεων των δύο καµπυλών. Στο σχήµα 4.5. το σηµείο D παριστά ένα συµβόλαιο ασφάλισης που προσφέρεται σε όλους τους καταναλωτές. Έστω ότι το σηµείο αυτό είναι σηµείο ισορροπίας. εδοµένου ότι το σηµείο αυτό βρίσκεται πάνω στον περιορισµό πλούτου, οι επιχειρήσεις έχουν µηδενικά προσδοκώµενα κέρδη. Αν τώρα προσφερόταν ένα δεύτερο συµβόλαιο, το G. Τα άτοµα µε ψηλό κίνδυνο προτιµούν το D, ενώ αυτά που αντιµετωπίζουν χαµηλό κίνδυνο θα προτιµήσουν το νέο συµβόλαιο. Το πρόβληµα που προκύπτει είναι ότι τώρα τα προσδοκώµενα κέρδη που προκύπτουν από τα συµβόλαια που προσφέρονται στους χαµηλού κινδύνου πελάτες είναι θετικά. Κατά συνέπεια το σηµείο D δεν µπορεί να είναι

11 σηµείο ισορροπίας. Οι επιχειρήσεις µπορούν πάντα να αυξήσουν τα κέρδη τους αν προσφέρουν κάποιο διαφορετικό συµβόλαιο στους πελάτες χαµηλού κινδύνου. W D G U U W ΣΧΗΜΑ 4.5. Οπότε, ισορροπία σε µία αγορά µε διαφορετικές οµάδες κινδύνου είναι δυνατή µόνο αν προσφέρονται διαφορετικά συµβόλαια σε διαφορετικές οµάδες κινδύνου. Στην περίπτωση αυτή υπάρχουν δύο περιορισµοί πλούτου, ένας για κάθε οµάδα κινδύνου, οι γραµµές (a,c) (a,d) στο σχήµα Επειδή p > p, η κλίση του πρώτου περιορισµού θα είναι µικρότερη από αυτή του δευτέρου. Η οµάδα υψηλού κινδύνου θα ισορροπήσει στο ΕΗ, δηλαδή θα ζητήσει πλήρη κάλυψη του κινδύνου. Η οµάδα χαµηλού κινδύνου θα ζητούσε πλήρη κάλυψη αν προσφερόταν ένα συµβόλαιο Α. Στην περίπτωση αυτή όµως η οµάδα ψηλού κινδύνου θα ζητούσε το συµβόλαιο Α. Αφού όµως όλοι θα αγόραζαν το Α, που προσφέρει πλήρη κάλυψη, στις τιµές που προορίζονταν για την οµάδα χαµηλού κινδύνου, τα κέρδη των επιχειρήσεων θα ήταν αρνητικά. Οπότε το συµβόλαιο που προσφέρεται στην οµάδα χαµηλού κινδύνου περιορίζεται από την ανάγκη να κρατηθεί η οµάδα ψηλού κινδύνου πάνω στον δικό της περιορισµό πλούτου.

12 W d c A EH EL a U W U ΣΧΗΜΑ 4.5.3

Η προσδοκώµενη χρησιµότητα του κέρδους όταν η πιθανότητα η τιµή του προϊόντος Ρ1 είναι ψ, χ το επίπεδο παραγωγής και c(x) η συνάρτηση κόστους, είναι

Η προσδοκώµενη χρησιµότητα του κέρδους όταν η πιθανότητα η τιµή του προϊόντος Ρ1 είναι ψ, χ το επίπεδο παραγωγής και c(x) η συνάρτηση κόστους, είναι 3. Θεωρία της Επιχείρησης 3. Η Ανταγωνιστική Επιχείρηση. Το τµήµα αυτό έχει δύο στόχους. Πρώτα να δείξει ότι αν υπάρχει ουδετερότητα απέναντι στον κίνδυνο, τότε η µέση αξία ενός αβέβαιου γεγονότος είναι

Διαβάστε περισσότερα

5.1.1 Η ΖΗΤΗΣΗ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΥΠΗΡΕΣΙΩΝ

5.1.1 Η ΖΗΤΗΣΗ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΥΠΗΡΕΣΙΩΝ ΚΕΦΑΛΑΙΟ 5 ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ 5.1 ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΕΣ ΥΠΗΡΕΣΙΕΣ Ο κλάδος των Τηλεπικοινωνιών είναι από τους ταχέως αναπτυσσόµενους κλάδους σχεδόν σε κάθε χώρα. Οι υπηρεσίες τέτοιου είδους αποτελούν το πιο απλό

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΕΚΤΟ ΕΚΤΟ ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ-ΙΣΟΡΡΟΠΙΑ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 2011-2012 ΕΠΙΧ Μικροοικονοµική

Διαβάστε περισσότερα

Χρηµατικά µέτρα των ωφελειών από ανταλλαγή. ανταλλαγή. ανταλλαγή. Πλεόνασµα καταναλωτή. Διάλεξη 8

Χρηµατικά µέτρα των ωφελειών από ανταλλαγή. ανταλλαγή. ανταλλαγή. Πλεόνασµα καταναλωτή. Διάλεξη 8 Χρηµατικά µέτρα των ωφελειών από ανταλλαγή Διάλεξη 8 Πλεόνασµα καταναλωτή Μπορείτε να αγοράσετε όσο βενζίνη θέλετε, µε το λίτρο, όταν µπείτε στην αγορά πετρελαιοειδών. Ε: Ποιο είναι το µέγιστο που θα πληρώνατε

Διαβάστε περισσότερα

3. Η παρακάτω συνάρτηση παραγωγής παρουσιάζει φθίνουσες, σταθερές, ή αύξουσες οικονοµίες κλίµακας; παραγωγής παρουσιάζει σταθερές αποδόσεις κλίµακας.

3. Η παρακάτω συνάρτηση παραγωγής παρουσιάζει φθίνουσες, σταθερές, ή αύξουσες οικονοµίες κλίµακας; παραγωγής παρουσιάζει σταθερές αποδόσεις κλίµακας. 1. Μια επιχείρηση έχει συνάρτηση παραγωγής την f(k,l), όπου Κ είναι οι µονάδες κεφαλαίου και L είναι οι µονάδες εργασίας που χρησιµοποιεί. Αν ξέρουµε ότι το οριακό προϊόν της εργασίας είναι θετικό, αλλά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Κεφάλαιο 3 Οικονοµικά των Επιχειρήσεων Ε. Σαρτζετάκης 1 Καταναλωτική συµπεριφορά! Σκοπός αυτής της διάλεξης είναι να εξετάσουµε τον τρόπο µε τον οποίο οι καταναλωτές

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία

Μικροοικονοµική Θεωρία Μικροοικονοµική Θεωρία Ειδικά Θέµατα της Θεωρίας της Συµπεριφοράς του Καταναλωτή Το Συνολικό Αποτέλεσµα. Το Αποτέλεσµα Υποκατάστασης. Το Εισοδηµατικό Αποτέλεσµα. Κανονικά Αγαθά. Κατώτερα Αγαθά. Παράδοξο

Διαβάστε περισσότερα

Χρηματικά μέτρα των ωφελειών από ανταλλαγή

Χρηματικά μέτρα των ωφελειών από ανταλλαγή Χρηματικά μέτρα των ωφελειών από ανταλλαγή Έστω η αγορά πετρελαιοειδών. Μπορείτε να αγοράσετε όση βενζίνη θέλετε, με 1 το λίτρο, όταν μπείτε στην αγορά πετρελαιοειδών. Ε: Ποιο είναι το μέγιστο που θα πληρώνατε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Ένθετο Κεφάλαιο ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Μικροοικονομική Ε. Σαρτζετάκης 1 Καταναλωτική συμπεριφορά Σκοπός αυτής της διάλεξης είναι να εξετάσουμε τον τρόπο με τον οποίο οι καταναλωτές

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΙΑ ΓΕΝΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ ΧΡΗΣΕΩΝ ΓΗΣ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΙΑ ΓΕΝΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ ΧΡΗΣΕΩΝ ΓΗΣ ΚΕΦΑΛΑΙΟ 8 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΙΑ ΓΕΝΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ ΧΡΗΣΕΩΝ ΓΗΣ Όταν εξετάζουµε µία συγκεκριµένη αγορά, πχ. την αστική αγορά εργασίας, η ανάλυση αυτή ονοµάζεται µερικής ισορροπίας. Όταν η ανάλυση µας περιλαµβάνει

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία. Ζήτηση ενός αγαθού ως συνάρτηση της τιµής. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014

Μικροοικονοµική Θεωρία. Ζήτηση ενός αγαθού ως συνάρτηση της τιµής. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014 Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 22 Σεπτεµβρίου 2014 1 / 40 Ζήτηση ενός αγαθού ως συνάρτηση της τιµής

Διαβάστε περισσότερα

Η παρούσα αξία της επένδυσης αν αυτή υλοποιηθεί άµεσα είναι 0 K 0 1 K

Η παρούσα αξία της επένδυσης αν αυτή υλοποιηθεί άµεσα είναι 0 K 0 1 K 6. Αβεβαιότητα και µη Αναστρέψιµες Επενδύσεις Στην περίπτωση που µία επένδυση δεν µπορεί να αντιστραφεί χωρίς κόστος, δηλαδή αφού έχει πραγµατοποιηθεί η αγορά κεφαλαιακού εξοπλισµού, κατασκευή κτηρίων

Διαβάστε περισσότερα

Γενική Ισορροπία-Ευηµερία. 2ο Θεµελιώδες Θεώρηµα των Οικονοµικών της ευηµερίας. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς.

Γενική Ισορροπία-Ευηµερία. 2ο Θεµελιώδες Θεώρηµα των Οικονοµικών της ευηµερίας. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. Γενική Ισορροπία-Ευηµερία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 2013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία-Ευηµερία 19 Απριλίου 2013 1 / 20 Το πρώτο Θ.Θ.Ο.Ε. µας λέει ότι κάθε Βαλρασιανή

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή Εισαγωγή: Όπως γνωρίζουµε, το οικονοµικό πρόβληµα εστιάζεται στην αποτελεσµατική κατανοµή των ανεπαρκών οικονοµικών πόρων στις εναλλακτικές

Διαβάστε περισσότερα

Οικονοµικός ορθολογισµός

Οικονοµικός ορθολογισµός Οικονοµικός ορθολογισµός Διάλεξη 5 Επιλογή!1 Η βασική παραδοχή για τη συµπεριφορά του λήπτη αποφάσεων είναι ότι αυτός/αυτή επιλέγει την πλέον προτιµώµενη εναλλακτική επιλογή που του/της είναι διαθέσιµη.

Διαβάστε περισσότερα

2.10. Τιμή και ποσότητα ισορροπίας

2.10. Τιμή και ποσότητα ισορροπίας .. Τιμή και ποσότητα ισορροπίας ίδαμε ότι η βασική επιδίωξη των επιχειρήσεων είναι η επίτευξη του μέγιστου κέρδους με την πώληση όσο το δυνατόν μεγαλύτερων ποσοτήτων ενός αγαθού στη μεγαλύτερη δυνατή τιμή

Διαβάστε περισσότερα

Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1

Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1 Ολιγοπώλιο Με ιαφοροποιηµένο Προϊόν 1 Βασική ιάκριση: Προϊόντα κάθετα διαφοροποιηµένα (κοινός δείκτης ποιότητας) Προϊόντα οριζόντια διαφοροποιηµένα (δεν υπάρχει κοινός δείκτης ποιότητας) Προϊόντα Χώρος

Διαβάστε περισσότερα

1 ου πακέτου. Βαθµός πακέτου

1 ου πακέτου. Βαθµός πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2011-2012 Τµήµα Οικονοµικών Επιστηµών Χειµώνας-Άνοιξη Μάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

Κεφάλαιο 2. Ζήτηση των Αγαθών

Κεφάλαιο 2. Ζήτηση των Αγαθών Κεφάλαιο 2 Ζήτηση των Αγαθών Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς (demand & supply). Χρησιμότητα ενός αγαθού είναι η ικανοποίηση

Διαβάστε περισσότερα

0 χ1 χ2 Ι2 χ3 Ι5 Ι3 χ

0 χ1 χ2 Ι2 χ3 Ι5 Ι3 χ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ - ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΓΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ Ι1 χ/ Ρ=0 χ/ Ρ>0 χ/ Ρ

Διαβάστε περισσότερα

Μεγιστοποίηση της Χρησιμότητας

Μεγιστοποίηση της Χρησιμότητας Μεγιστοποίηση της Χρησιμότητας - Πρόβλημα Καταναλωτή: Επιλογή καταναλωτικού συνδυασμού x=(x, x ) υπό ένα σύνολο φυσικών, θεσμικών και οικονομικών περιορισμών κατά τρόπο ώστε να μεγιστοποιεί τη χρησιμότητά

Διαβάστε περισσότερα

Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς.

Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς. ΤΙΜΗ ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ: Η ΖΗΤΗΣΗ Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς. Χρησιμότητα ενός αγαθού, για τον καταναλωτή, είναι η ικανοποίηση

Διαβάστε περισσότερα

Κεφάλαιο 2. Σύνολα καταναλωτικών επιλογών. Εισοδηµατικοί και άλλοι περιορισµοί στην επιλογή. Εισοδηµατικοί περιορισµοί

Κεφάλαιο 2. Σύνολα καταναλωτικών επιλογών. Εισοδηµατικοί και άλλοι περιορισµοί στην επιλογή. Εισοδηµατικοί περιορισµοί Κεφάλαιο 2 Εισοδηµατικοί και άλλοι περιορισµοί στην επιλογή Σύνολα καταναλωτικών επιλογών p Ένα σύνολο καταναλωτικών επιλογών είναι η δέσµη καταναλωτικών επιλογών που είναι στη διάθεση του καταναλωτή!

Διαβάστε περισσότερα

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος 2016-17 ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΤΗΣ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass) 1 ιάλεξη2 Ανταγωνισμός, οικονομική

Διαβάστε περισσότερα

3. Παίγνια Αλληλουχίας

3. Παίγνια Αλληλουχίας 3. Παίγνια Αλληλουχίας Τα παίγνια αλληλουχίας πραγµατεύονται περιπτώσεις όπου οι κινήσεις των παικτών διαδέχονται η µια την άλλη, σε αντίθεση µε τα παίγνια όπου οι αποφάσεις των παικτών γίνονται ταυτόχρονα

Διαβάστε περισσότερα

Τιµή, αξία (πρόθεση για πληρωµή) και µέτρα ευηµερίας του καταναλωτή

Τιµή, αξία (πρόθεση για πληρωµή) και µέτρα ευηµερίας του καταναλωτή 3: Μέτρα ευηµερίας του καταναλωτή Τιµή, αξία (πρόθεση για πληρωµή) και µέτρα ευηµερίας του καταναλωτή (Πλεόνασµα καταναλωτή Ισοδύναµη µεταβολή και µεταβολή αποζηµίωσης) Ο ορισµός της κοινωνικής ευηµερίας

Διαβάστε περισσότερα

ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ MARSHALL ΚΑΙ HICKS. 1. Η καµπύλη Engel

ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ MARSHALL ΚΑΙ HICKS. 1. Η καµπύλη Engel ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ ΚΑΜΠΥΛΗ ENGEL ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΖΗΤΗΣΗΣ ΚΑΤΑ ARSALL ΚΑΙ ICKS. Η καµπύλη Egel Η καµπύλη Egel παράγεται από την

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes

Notes. Notes. Notes. Notes Αγορές - Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 6 Δεκεμβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Αγορές - 6 Δεκεμβρίου 2012 1 / 26 Ως τώρα, υποθέσαμε ότι οι αγορές είναι ανταγωνιστικές. Μία συνέπεια των

Διαβάστε περισσότερα

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 3: Εργαλεία Κανονιστικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ TΩN ΤΙΜΩΝ

Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ TΩN ΤΙΜΩΝ ΚΕΦΑΛΑΙΟ ΠΕΜ Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ TΩN ΤΙΜΩΝ 1. Έννοια και λειτουργία της αγοράς Σε μια πρωτόγονη οικονομία, όπως του Ροβινσώνα Κρούσου, όπου δεν υπάρχει καταμερισμός της εργασίας ο άνθρωπος παράγει μόνος του

Διαβάστε περισσότερα

Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης

Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης Συνθήκες για αποτελεσματικότητα κατά areto Συνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes. T A = ŵ A p 1 e A 1 p 2e A 2 T B = ŵ B p 1 e A 1 p 2e B 2. 1 x A. 2 x B

Notes. Notes. Notes. Notes. T A = ŵ A p 1 e A 1 p 2e A 2 T B = ŵ B p 1 e A 1 p 2e B 2. 1 x A. 2 x B Γενική Ισορροπία-Ευημερία Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Δεκεμβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Γενική Ισορροπία-Ευημερία 3 Δεκεμβρίου 2012 1 / 17 Το πρώτο Θ.Θ.Ο.Ε. μας λέει ότι κάθε

Διαβάστε περισσότερα

Επιλογές του Καταναλωτή και Αποφάσεις Ζήτησης Εκδόσεις Κριτική

Επιλογές του Καταναλωτή και Αποφάσεις Ζήτησης Εκδόσεις Κριτική 5 Επιλογές του Καταναλωτή και Αποφάσεις Ζήτησης Τέσσερα βασικά στοιχεία του υποδείγματος επιλογής του καταναλωτή Το εισόδημα του καταναλωτή. Οι τιμές των αγαθών. Οι προτιμήσεις του καταναλωτή. Η υπόθεση

Διαβάστε περισσότερα

Έστω ότι έχουµε 2 µάρκες υπολογιστών: A (Apricot), B (Banana) [ ιαρκή Αγαθά].

Έστω ότι έχουµε 2 µάρκες υπολογιστών: A (Apricot), B (Banana) [ ιαρκή Αγαθά]. 2.2. ΥΟΠΩΛΙΟ ΙΑΦΟΡΕΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΜΕ ΕΤΕΡΟΓΕΝΕΙΣ ΚΑΤΑΝΑΛΩΤΕΣ Έστω ότι έχουµε 2 µάρκες υπολογιστών: (pricot), (anana) [ ιαρκή Αγαθά]. Υποθέτουµε µηδενικό κόστος παραγωγής και P, P, οι τιµές για το Α, αντίστοιχα.

Διαβάστε περισσότερα

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN 3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HESHER-OHIN Υπάρχουν δύο συντελεστές παραγωγής, το κεφάλαιο και η εργασία τους οποίους χρησιμοποιεί η επιχείρηση για να παράγει προϊόν Y μέσω μιας συνάρτησης παραγωγής

Διαβάστε περισσότερα

Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός.

Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός. Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης υνθήκες για αποτελεσματικότητα κατά areto υνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα

Διαβάστε περισσότερα

Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού

Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού Βασική θεωρία Ολιγοπωλιακού ανταγωνισµού Οµοιογενή Προϊόντα Ισορροπία Courot-Nash Έστω δυοπώλιο µε συνάρτηση ζήτησης: ( ) a b a, b > 0 () Βέβαια ισχύει ότι: + () Ακόµα υποθέτουµε ότι η τεχνολογία παραγωγής

Διαβάστε περισσότερα

Κίνδυνος και Πληροφορία

Κίνδυνος και Πληροφορία Κίνδυνος και Πληροφορία Η αβεβαιότητα είναι βασικό χαρακτηριστικό της οικονομικής ζωής. Πως η αβεβαιότητα ή η παρουσία του κινδύνου επηρεάζει τις ατομικές επιλογές; Κίνδυνος: Μια σημερινή επιλογή έχει

Διαβάστε περισσότερα

Ακαδημαϊκό έτος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Ακαδημαϊκό έτος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Ακαδημαϊκό έτος 2017-2018 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής ΛΥΣΕΙΣ ΔΕΥΤΕΡΟΥ ΠΑΚΕΤΟΥ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ 1 Εάν D(p) = 20 2p η

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ

ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ Άσκηση 1 Αν το επιτόκιο είναι 10%, ποια είναι η παρούσα αξία των κερδών της Monroe orporation στα επόμενα 5 χρόνια; Χρόνια στο μέλλον

Διαβάστε περισσότερα

Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος

Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος - Τα προϊόντα που παράγουν οι επιχειρήσεις μπορούν να διαφοροποιούνται ως προς ένα πλήθος χαρακτηριστικών. Παράδειγμα: Τα αυτοκίνητα διαφοροποιούνται

Διαβάστε περισσότερα

Δεύτερο πακέτο ασκήσεων

Δεύτερο πακέτο ασκήσεων ΕΚΠΑ Ακαδημαϊκό έτος 018-019 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι Δεύτερο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 7 Δεκεμβρίου (στο μάθημα της κ. Κουραντή, του κ. Παπανδρέου

Διαβάστε περισσότερα

1 = = = x x = x. 4 u = = = MRS MRS. x x. MRS = MRS = = x = x x [1] x12 x x W W

1 = = = x x = x. 4 u = = = MRS MRS. x x. MRS = MRS = = x = x x [1] x12 x x W W Θέµα ο (α) Μια κατανοµή στο εσωτερικό του κουτιού Edgeworth είναι άριστη κατά areto αν MRS MRS Έχουµε τα ακόλουθα MRS 3 3 4 4 4 3 3 4 4 4, MRS 3 3 3 3 3 3 Στην αρχική κατανοµή βρίσκουµε 00 MRS(50, 00)

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ιοίκηση Επιχειρήσεων & Οργανισµών Θεµατική Ενότητα: ΕΟ 34 - Οικονοµική Ανάλυση & Πολιτική Ακαδ. Έτος: 2009-10 ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΟΝΟΜΑ - ΕΠΩΝΥΜΟ:.

Διαβάστε περισσότερα

Διάλεξη 15. Βραχυχρόνια προσφορά. Προσφορά κλάδου. Προσφορά από ανταγωνιστικό κλάδο

Διάλεξη 15. Βραχυχρόνια προσφορά. Προσφορά κλάδου. Προσφορά από ανταγωνιστικό κλάδο από ανταγωνιστικό κλάδο Διάλεξη 15 κλάδου Πώς συνδυάζονται οι αποφάσεις προσφοράς των πολλών ιδιωτικών επιχειρήσεων σε µια ανταγωνιστική αγορά για να βρούµε την καµπύλη προσφοράς ενός κλάδου;!1!2 1 2 από

Διαβάστε περισσότερα

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Μέχρι τώρα, αντιμετωπίζουμε ένα μονοπώλιο ως μια εταιρεία η οποία

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Μονάδες ΟΜΑ Α Α Στις προτάσεις από Α µέχρι και Α, να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και

Διαβάστε περισσότερα

(2β) Το Υπόδειγμα της Κυκλικής Πόλης ή Υπόδειγμα του Salop

(2β) Το Υπόδειγμα της Κυκλικής Πόλης ή Υπόδειγμα του Salop (2β) Το Υπόδειγμα της Κυκλικής Πόλης ή Υπόδειγμα του alop (alop, teve 979, Moopolstc Competto wth Outsde Goods) - Υποθέτουμε μια πόλη που παριστάνεται από την περιφέρεια ενός κύκλου με περίμετρο L=. p

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes. p x. x x

Notes. Notes. Notes. Notes. p x. x x Θεωρία ζήτησης Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 9 Οκτωβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία ζήτησης 9 Οκτωβρίου 2012 1 / 40 Ζήτηση ενός αγαθού ως συνάρτηση της τιμής Δεδομένου ότι ένας

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΔΗΜΟΣΙΑ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΔΗΜΟΣΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΔΗΜΟΣΙΑ 1. Στην περίπτωση των εξωτερικών επιβαρύνσεων στην παραγωγή, η επιβολή ενός φόρου ανά µονάδα προϊόντος ίσου µε το µέγεθος της οριακής εξωτερικής επιβάρυνσης µπορεί να οδηγήσει:

Διαβάστε περισσότερα

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ. Διπλωματική Εργασία ΠΑΡΟΧΗ ΑΣΦΑΛΙΣΗΣ ΥΓΕΙΑΣ ΑΠΟ ΙΔΙΩΤΙΚΟΥΣ ΚΑΙ ΚΡΑΤΙΚΟΥΣ ΦΟΡΕΙΣ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ. Διπλωματική Εργασία ΠΑΡΟΧΗ ΑΣΦΑΛΙΣΗΣ ΥΓΕΙΑΣ ΑΠΟ ΙΔΙΩΤΙΚΟΥΣ ΚΑΙ ΚΡΑΤΙΚΟΥΣ ΦΟΡΕΙΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ Διπλωματική Εργασία ΠΑΡΟΧΗ ΑΣΦΑΛΙΣΗΣ ΥΓΕΙΑΣ ΑΠΟ ΙΔΙΩΤΙΚΟΥΣ ΚΑΙ ΚΡΑΤΙΚΟΥΣ ΦΟΡΕΙΣ ΕΠΙΜΕΛΕΙΑ ΣΑΛΜΑΝΛΗΣ ΖΑΦΕΙΡΙΟΣ ΕΠΙΒΛΕΠΟΥΣΑ ΚΑΘΗΓΗΤΡΙΑ

Διαβάστε περισσότερα

Άσκηση 1. Μικροοικονοµική 5. ΖΗΤΗΣΗ ΚΑΙ ΠΡΟΣΦΟΡΑ. 5η Εισήγηση. Αξία ραδιοφώνων. Αριθµός ραδιοφώνων που χάνονται κάθε εβδοµάδα

Άσκηση 1. Μικροοικονοµική 5. ΖΗΤΗΣΗ ΚΑΙ ΠΡΟΣΦΟΡΑ. 5η Εισήγηση. Αξία ραδιοφώνων. Αριθµός ραδιοφώνων που χάνονται κάθε εβδοµάδα Αριθµός φυλάκων Αριθµός ραδιοφώνων που χάνονται κάθε Άσκηση 1 Αξία ραδιοφώνων που χάνονται κάθε Πρόσθετο όφελος από κάθε φρουρό 0 100 1000 1 70 700 300 2 50 500 200 3 40 400 100 4 32 320 80 5 25 250 70

Διαβάστε περισσότερα

Ιδιότητες καµπυλών ζήτησης

Ιδιότητες καµπυλών ζήτησης Ιδιότητες καµπυλών ζήτησης Διάλεξη 6 ΖΗΤΗΣΗ Συγκριτική στατική ανάλυση των συναρτήσεων της κανονικής ζήτησης είναι η µελέτη του πώς οι συναρτήσεις κανονικής ζήτησης (, 2,) και (, 2,) αλλάζουν όταν οι τιµές,

Διαβάστε περισσότερα

3.1 Ανεξάρτητες αποφάσεις - Κατανομή χρόνου μεταξύ εργασίας και σχόλης

3.1 Ανεξάρτητες αποφάσεις - Κατανομή χρόνου μεταξύ εργασίας και σχόλης 3. ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΑΓΟΡΑΣ ΕΡΓΑΣΙΑΣ (ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ). ΠΡΟΣΦΟΡΑ ΕΡΓΑΣΙΑΣ Ως προσφορά εργασίας ορίζεται το σύνολο των ωρών εργασίας που προσφέρονται προς εκμίσθωση μία δεδομένη χρονική στιγμή.

Διαβάστε περισσότερα

Διάλεξη 10. Γενική Ισορροπία VA 30

Διάλεξη 10. Γενική Ισορροπία VA 30 Διάλεξη 10 Γενική Ισορροπία V 30 1 Μερική & Γενική Ισορροπία Μέχρι τώρα εξετάζαμε γενικά την αγορά ενός αγαθού μεμονωμένα. Το πώς δηλαδή η προσφορά και η ζήτηση επηρεάζονται από την τιμή του συγκεκριμένου

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ Σάββατο Proslipsis.gr ΚΛΑ ΟΣ ΠΕ 18 ΠΤΥΧΙΟΥΧΩΝ ΛΟΙΠΩΝ ΤΜΗΜΑΤΩΝ ΤΕΙ

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ Σάββατο Proslipsis.gr ΚΛΑ ΟΣ ΠΕ 18 ΠΤΥΧΙΟΥΧΩΝ ΛΟΙΠΩΝ ΤΜΗΜΑΤΩΝ ΤΕΙ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΟΥ ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΤΟΥΣ 2002 ΚΛΑ ΟΣ ΠΕ 18 ΠΤΥΧΙΟΥΧΩΝ ΛΟΙΠΩΝ ΤΜΗΜΑΤΩΝ ΤΕΙ ΕΙ ΙΚΟΤΗΤΕΣ: ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ, ΛΟΓΙΣΤΙΚΗΣ, ΤΟΥΡΙΣΤΙΚΩΝ

Διαβάστε περισσότερα

ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΕΞΕΤΑΣΕΩΝ 2000 2013

ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΕΞΕΤΑΣΕΩΝ 2000 2013 12 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΕΞΕΤΑΣΕΩΝ 2000 2013 ΚΕΦΑΛΑΙΟ 5ο (µε 2ο, 3ο και 4ο) ΗΜΕΡΗΣΙΑ 9/2000 ΗΜΕΡΗΣΙΑ 6/2000 ΕΣΜΕΣ 2000 ΕΣΜΕΣ 1998 28. ίνονται οι συναρτήσεις ζήτησης και προσφοράς

Διαβάστε περισσότερα

Διάλεξη 4. Οικονομική της ευημερίας. 1 Ράπανος-Καπλάνογλου 2016/7

Διάλεξη 4. Οικονομική της ευημερίας. 1 Ράπανος-Καπλάνογλου 2016/7 Διάλεξη 4 Οικονομική της ευημερίας 1 Οικονομικά της ευημερίας: Γενική ισορροπία Οικονομικά της ευημερίας είναι ο κλάδος της οικονομικής θεωρίας που ασχολείται με το κατά πόσο είναι επιθυμητές από την κοινωνία

Διαβάστε περισσότερα

ΜΕΡΟΣ Α Ερώτηση Α1 Η ερώτηση Α.1 περιλαμβάνει 2 υπό-ερωτήσεις. α) Υποθέστε ότι η παραγωγική δραστηριότητα μιας επιχείρησης επηρεάζει αρνητικά την παραγωγική δραστηριότητα άλλων επιχειρήσεων. Εξηγήστε,

Διαβάστε περισσότερα

Οικονομικά για Μη Οικονομολόγους Ενότητα 2: Θεωρία Καταναλωτή

Οικονομικά για Μη Οικονομολόγους Ενότητα 2: Θεωρία Καταναλωτή Οικονομικά για Μη Οικονομολόγους Ενότητα 2: Θεωρία Καταναλωτή Καθηγητής: Κώστας Τσεκούρας Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Οικονομικών Επιστημών Σκοποί ενότητας Στην ενότητα αυτή παρουσιάζονται

Διαβάστε περισσότερα

Ερωτήσεις και Ασκήσεις κεφ. 5, Ο προσδιορισμός των τιμών Ερωτήσεις πολλαπλής επιλογής : Ερωτήσεις σωστού λάθους.

Ερωτήσεις και Ασκήσεις κεφ. 5, Ο προσδιορισμός των τιμών Ερωτήσεις πολλαπλής επιλογής : Ερωτήσεις σωστού λάθους. Ερωτήσεις και Ασκήσεις κεφ. 5, Ο προσδιορισμός των τιμών. Η τιμή ισορροπίας ενός κανονικού αγαθού αυξάνεται όταν: 0 α. η προσφορά μειώνεται και η ζήτηση παραμένει σταθερή β. η ζήτηση παραμένει σταθερή

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ. max. ( ) (16 ) Q Q = +. [1]

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ. max. ( ) (16 ) Q Q = +. [1] ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΠΑΚΕΤΟΥ Θέµα ο. (α) Η µονοπωλιακή επιχείρηση µεγιστοποιεί το κέρδος της οποίο δίνεται από τη συνάρτηση π µε τύπο π ( ) = (6 ), δηλαδή λύνει το πρόβληµα max. π ( ) = (6 ) π '( ) =

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΟΜΑ Α Α

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΟΜΑ Α Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΜΑ Α Α Στις προτάσεις από Α1 µέχρι και Α5, να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό

Διαβάστε περισσότερα

10/3/17. Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά. Μικροοικονομική. Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Πολιτικές διάκρισης τιµών

10/3/17. Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά. Μικροοικονομική. Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Πολιτικές διάκρισης τιµών /3/7 HL R. VRIN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 26 Μονοπωλιακή συμπεριφόρά Πώς πρέπει να τιµολογεί ένα µονοπώλιο; Μέχρι τώρα, αντιμετωπίζουμε ένα μονοπώλιο ως μια εταιρεία η

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 8: Πλεόνασμα καταναλωτή Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Χρηματικά μέτρα των ωφελειών

Διαβάστε περισσότερα

Μονοπωλιακή Ισορροπία - Αν η αγορά του αγαθού Α είναι πλήρως ανταγωνιστική, τότε η ατομική επιχείρηση θεωρεί δεδομένη την τιμή (p) και, επομένως,

Μονοπωλιακή Ισορροπία - Αν η αγορά του αγαθού Α είναι πλήρως ανταγωνιστική, τότε η ατομική επιχείρηση θεωρεί δεδομένη την τιμή (p) και, επομένως, Μονοπωλιακή Ισορροπία - Αν η αγορά του αγαθού Α είναι πλήρως ανταγωνιστική, τότε η ατομική επιχείρηση θεωρεί δεδομένη την τιμή (p) και, επομένως, αντιμετωπίζει μια πλήρως ελαστική (οριζόντια) καμπύλη ζήτησης

Διαβάστε περισσότερα

Μικροοικονομική. Ζήτηση και προσφορά

Μικροοικονομική. Ζήτηση και προσφορά Μικροοικονομική Ζήτηση και προσφορά Ο νόμος της ζήτησης Σύμφωνα με το Νόμο της Ζήτησης, όταν μειώνεται η τιμή ενός αγαθού, αυξάνεται η ζητούμενη ποσότητά του και το αντίστροφο με τους προσδιοριστικούς

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ÌÁÈÅÉÍ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ÌÁÈÅÉÍ ΘΕΜΑ Α ΑΡΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. α. Σωστό β. Λάθος γ. Σωστό δ. Σωστό ε. Λάθος Α2. α Α3. γ ΘΕΜΑ Β ΟΜΑ Α ΕΥΤΕΡΗ

Διαβάστε περισσότερα

To 2 ο Θεμελιώδες Θεώρημα Ευημερίας

To 2 ο Θεμελιώδες Θεώρημα Ευημερίας o 2 ο Θεμελιώδες Θεώρημα Ευημερίας - Το 1 ο Θεώρημα Ευημερίας (FW) εξασφαλίζει ότι η ανταγωνιστική ισορροπία είναι άριστη κατά Pareto αλλά δεν εξασφαλίζει μια ίση διανομή των οικονομικών οφελών μεταξύ

Διαβάστε περισσότερα

q = O αριθµός των αγοραστών φ = Το κόστος ανάπτυξης µ = Το κόστος µεταφοράς λογισµικού σε έναν καταναλωτή TC(q) = Το συνολικό κόστος

q = O αριθµός των αγοραστών φ = Το κόστος ανάπτυξης µ = Το κόστος µεταφοράς λογισµικού σε έναν καταναλωτή TC(q) = Το συνολικό κόστος ΚΕΦΑΛΑΙΟ 3 ΕΙΣΑΓΩΓΗ Θα µπορούσαµε να πούµε ότι το λογισµικό αποτελείται από bits που αποθηκεύονται στις συσκευές αποθήκευσης του ηλεκτρονικού υπολογιστή και από λογισµικά πακέτα που σχεδιάστηκαν για να

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΘΕΜΑ Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας,

Διαβάστε περισσότερα

Ανταγωνιστικές Οικονοµίες Ανταλλαγής

Ανταγωνιστικές Οικονοµίες Ανταλλαγής Κεφάλαιο 1 Ανταγωνιστικές Οικονοµίες Ανταλλαγής 1.1 Οικονοµία Ανταλλαγής Οπως και στο προηγουµενο κεφάλαιο, υποθέτουµε ότι ο χώρος αγα- ϑών είναι διατεταγµένος χώρος µε norm E και το σύνολο κατανάλωσης

Διαβάστε περισσότερα

Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος

Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος υποδο?ών?εταφράζεταισε?ίαγενικότερηεξοικονό?ησηπαραγωγικώνπόρωνγιατηκοινωνία. τεχνικέςυποδο?ές,όπωςείναιαυτοκινητόδρο?οι,γέφυρεςκ.λ.π.ηκατασκευήτέτοιων Μιααπ τιςβασικέςλειτουργίεςτουκράτουςείναιοεφοδιασ?όςτηςκοινωνίας?εβασικές

Διαβάστε περισσότερα

Κεφάλαιο 1. Θεωρία Ζήτησης

Κεφάλαιο 1. Θεωρία Ζήτησης Κεφάλαιο 1 Θεωρία Ζήτησης Στο κεφάλαιο αυτό υποθέτουµε ότι καταναλωτής εισέρχεται στην αγορά µε πλούτο w > 0 και επιθυµεί να τον ανταλλάξει µε διάνυσµα αγαθών x που να µεγιστοποιεί τις προτιµήσεις του.

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

25. Μία τυπική επιχείρηση που λειτουργεί σε καθεστώς τέλειου ανταγωνισμού, στη μακροχρόνια θέση ισορροπίας της: α. πραγματοποιεί θετικά οικονομικά κέρδη. β. πραγματοποιεί μηδενικά οικονομικά κέρδη. γ.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:

Διαβάστε περισσότερα

(i) Νόμος Ζήτησης. Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης)

(i) Νόμος Ζήτησης. Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης) ΕΙΣΑΩΗ Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης) Μικροοικονομία ή Θεωρία Τιμών Σημείο αναφοράς είναι ο προσδιορισμός της τιμής ενός αγαθού. Ν Ο

Διαβάστε περισσότερα

Λύσεις 2. Ψ χ /Β χ = Ψ υ /Β υ 10 - ½ B X = 5 B X * = 10 Β Υ = 10

Λύσεις 2. Ψ χ /Β χ = Ψ υ /Β υ 10 - ½ B X = 5 B X * = 10 Β Υ = 10 Λύσεις 2 1. (α) Όταν η πρόσβαση στις λίµνες είναι ελεύθερη τότε ο κάθε ψαράς κοιτάζει την δικιά του σοδειά που είναι το µέσο προϊόν: Ψ χ /Β χ = 10 - ½ B X για την λίµνη Χ, και Ψ υ /Β υ = 5 για την λίµνη

Διαβάστε περισσότερα

Διάλεξη 4. Οικονομικά της ευημερίας: Γενική ισορροπία 9/3/2017. Οικονομικά της ευημερίας: Γενική ισορροπία. Οικονομική της ευημερίας

Διάλεξη 4. Οικονομικά της ευημερίας: Γενική ισορροπία 9/3/2017. Οικονομικά της ευημερίας: Γενική ισορροπία. Οικονομική της ευημερίας Διάλεξη 4 Οικονομική της Οικονομικά της : Γενική ισορροπία Οικονομικά της είναι ο κλάδος της οικονομικής θεωρίας που ασχολείται με το κατά πόσο είναι επιθυμητές από την κοινωνία κάποιες εναλλακτικές οικονομικές.

Διαβάστε περισσότερα

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ . ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού

Διαβάστε περισσότερα

Θεωρία επιλογών του καταναλωτή

Θεωρία επιλογών του καταναλωτή Καθηγήτρια: Β. ΠΕΚΚΑ- ΟΙΚΟΝΟΜΟΥ Υποψήφια Διδάκτωρ: Σ. ΤΑΚΑΟΓΛΟΥ Θεωρία επιλογών του καταναλωτή Θα Εξετάσαμε: Χρησιμότητα Συνολική και Οριακή Χρησιμότητα Ισορροπία Καταναλωτή και Νόμος Ζήτησης Εισοδηματικός

Διαβάστε περισσότερα

Πρώτο πακέτο ασκήσεων

Πρώτο πακέτο ασκήσεων ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Μικροοικονομική Θεωρία ΙΙ Εαρινό εξάμηνο Ακαδ. έτους 08-09 Αν. Παπανδρέου, Φ. Κουραντή, Ηρ. Κόλλιας Πρώτο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή Απριλίου. Θα υπάρξει

Διαβάστε περισσότερα

Ελαστικότητες Ζήτησης

Ελαστικότητες Ζήτησης Ελαστικότητες Ζήτησης - Η ευαισθησία της ζητούμενης ποσότητας x σε μεταβολές της τιμής μπορεί να μετρηθεί άμεσα από το λόγο Δx / Δ (ήαπότην παράγωγο x / ). - Αυτό το μέτρο ευαισθησίας έχει το μειονέκτημα

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Β. Καθ. Π. Κάπρος ΕΜΠ 2003

ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Β. Καθ. Π. Κάπρος ΕΜΠ 2003 ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Β Καθ. Π. Κάπρος ΕΜΠ 2003 ΑΘΡΟΙΣΤΙΚΗ ΖΗΤΗΣΗ & ΠΡΟΣΦΟΡΑ 1. Αθροιστική Καµπύλη Ζήτησης 2. Ειδικές Περιπτώσεις 3. Ελαστικότητα τιµής της ζήτησης 4. Εισόδηµα, απάνη, Έσοδο

Διαβάστε περισσότερα

Σηµειώσεις. Μικροοικονοµικής Θεωρίας ΙΙΙ (ΜΙΚΟ 201)

Σηµειώσεις. Μικροοικονοµικής Θεωρίας ΙΙΙ (ΜΙΚΟ 201) Σηµειώσεις Μικροοικονοµικής Θεωρίας ΙΙΙ (ΜΙΚΟ 201) «Γενική Ισορροπία του Πλήρους Ανταγωνισµού» Βαγγέλης Τζουβελέκας Ρέθυµνο, 2003 ΚΕΦΑΛΑΙΟ 2 ΓΕΝΙΚΗ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΠΛΗΡΟΥΣ ΑΝΤΑΓΩΝΙΣΜΟΥ 2.1 Γενική Ισορροπία

Διαβάστε περισσότερα

Θεωρία παραγωγού. Μικροοικονομική Θεωρία Ι / Διάλεξη 11 / Φ. Κουραντή 1

Θεωρία παραγωγού. Μικροοικονομική Θεωρία Ι / Διάλεξη 11 / Φ. Κουραντή 1 Θεωρία παραγωγού Σκοπός: Μεγιστοποίηση κερδών (υπάρχουν κι άλλοι σκοποί, π.χ. ένας μάνατζερ επιδιώκει την μεγιστοποίηση εσόδων κτλ. Τελικά όμως σκοπεύει στην μεγιστοποίηση των κερδών για να μπορέσει να

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 20-202 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Ημερομηνία παράδοσης: Απριλίου 202 Οι

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλών επιλογών

Ερωτήσεις πολλαπλών επιλογών Ερωτήσεις πολλαπλών επιλογών 1. Έστω ότι μία οικονομία, που βρίσκεται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων, παράγει σε μία συγκεκριμένη χρονική στιγμή 10 τόνους υφάσματος και 00 τόνους τροφίμων.

Διαβάστε περισσότερα

Προτιµήσεις-Υπενθύµιση

Προτιµήσεις-Υπενθύµιση Προτιµήσεις-Υπενθύµιση Διάλεξη 4 x y: To x προτιµάται σαφώς από το y.! x ~ y: Το x και το y προτιµούνται εξίσου. Χρησιµότητα! x y: Το x προτιµάται τουλάχιστο όσο και το y.!1! 1 Προτιµήσεις-Υπενθύµιση Προτιµήσεις-Υπενθύµιση

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΚΑΙ ΠΟΛΙΤΙΚΗ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΚΑΙ ΠΟΛΙΤΙΚΗ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΚΑΙ ΠΟΛΙΤΙΚΗ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Μακροοικονομική Θεωρία Υπόδειγμα IS/LM Στο υπόδειγμα IS/LM εξετάζονται

Διαβάστε περισσότερα

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =

Διαβάστε περισσότερα

Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών

Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών Καθ. ΓΙΩΡΓΟΣ ΑΛΟΓΟΣΚΟΥΦΗΣ Οικονομικό Πανεπιστήμιο Αθηνών 1 Η Διαχρονική Προσέγγιση Η διαχρονική προσέγγιση έχει ως σημείο εκκίνησης τις τεχνολογικές και αγοραίες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΘΕΩΡΙΑ ΖΗΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 2 ΘΕΩΡΙΑ ΖΗΤΗΣΗΣ ΚΕΦΑΛΑΙΟ 2 ΘΕΩΡΙΑ ΖΗΤΗΣΗΣ Οι τιµές Στην οικονοµία οι τιµές παίζουν βασικό ρόλο. Κατανέµουν τους παραγωγικούς πόρους στις τοµείς όπου υπάρχει µεγαλύτερη ζήτηση µε το πιο αποτελεσµατικό τρόπο. Αυτό το οποίο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ (ECΟ465) ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΜΕΡΟΣ Α

ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ (ECΟ465) ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΜΕΡΟΣ Α ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ (ECΟ465) ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΜΕΡΟΣ Α 1 o Ο κλάδος των τηλεπικοινωνιών (τηλέφωνο, fax, e-mail, υπηρεσίες μηνυμάτων, κ.τ.λ) αποτελεί το πιο απλό και φυσικό παράδειγμα

Διαβάστε περισσότερα

Πρώτο πακέτο ασκήσεων

Πρώτο πακέτο ασκήσεων ΕΚΠΑ Ακαδημαϊκό έτος 208-209 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι Πρώτο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 6 Νοεμβρίου (στο μάθημα της κ. Κουραντή, του κ. Παπανδρέου

Διαβάστε περισσότερα

Q D1 = P και Q S = P.

Q D1 = P και Q S = P. ΚΕΦΑΛΑΙΟ 5: Ο ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΩΝ ΤΙΜΩΝ Να σηµειώσετε µε Σ (σωστό) ή Λ (λάθος) στο τέλος των προτάσεων: 1. Τιµή ισορροπίας είναι η τιµή στην οποία η ζητούµενη ποσότητα είναι ίση µε την προσφερόµενη ποσότητα.

Διαβάστε περισσότερα