4. Αντιδράσεις πολυμερισμού

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4. Αντιδράσεις πολυμερισμού"

Transcript

1 4. Ατιδράσεις πολυμερισμού Ποια μόρια οομάζοται μακρομόρια Τα μακρομόρια είαι μόρια μεγάλου μοριακού βάρους που σχηματίζοται από τη συέωση (= πολυμερισμό) απλούστερω δομικά μορίω (= μοομερή) σύμφωα με τη ατίδραση: λ Μ μοομερές -Μ Μ Μ Μ - -Μ- πολυμερές Τι οομάζεται πολυμερισμός Πολυμερισμός οομάζεται η χημική ατίδραση της συέωσης τω μοομερώ Μ για το σχηματισμό του πολυμερούς Μ Μ Μ. Μ. Η ατίδραση στη γεική της μορφή γράφεται: λ Μ -Μ Μ Μ Μ - -Μ- Τι είαι τα πολυμερή Τα πολυμερή είαι τα προϊότα του πολυμερισμού, δηλαδή μακρομόρια που σχηματίζοται από τη συέωση πολλώ μικρώ ίδιω δομικά μορίω (τα μοομερή). Τα πολυμερή διακρίοται σε φυσικά πολυμερή σχηματίζοται κατά το πολυμερισμό σε ζωταούς οργαισμούς (π.χ το άμυλο), και σε τεχητά πολυμερή τα οποία σχηματίζοται στο εργαστήριο. Έα τέτοιο είαι το πολυβίυλοχλωρίδιο που χρησιμοποιήθηκε στη κατασκευή μουσικώ δίσκω. Τα πολυμερή βρίσκου εφαρμογή στη κατασκευή πολλώ χρήσιμω υλικώ. Τα Πααγιώτης Αθαασόπουλος Χημικός Διδάκτωρ Παεπιστημίου Πατρώ 311

2 περισσότερα από τα υφάσματα, χρώματα, γυαλιά που χρησιμοποιούμε σήμερα είαι συθετικά πολυμερή. Θα μελετήσουμε τρία (3) παραδείγματα ατιδράσεω πολυμερισμού. 1. Πολυμερισμός εώσεω που έχου το βιύλλιο : 2 = A Έα μεγάλο πλήθος συθετικώ πολυμερώ έχει ως μοομερές το μόριο 2 = A Δηλαδή τη ρίζα βιύλιο 2 = 2 στη οποία το έα άτομο Η έχει ατικατασταθεί από κάποιο άλλο υποκαταστάτη Α. το Α είαι μοοσθεές στοιχείο ή μοοσθεής ρίζα. Αάλογα με το ποιο είαι το Α προκύπτει και το ατίστοιχο πολυμερές. Ο πολυμερισμός του αιθυλείου, που αήκει σε αυτή τη κατηγορία μοομερώ, καθώς και πολλώ υποκατεστημέω παραγώγω του ακολουθεί έα αλυσιδωτό μηχαισμό μέσω ριζώ, ο οποίος περιλαμβάει τρία βασικά στάδια: τη έαρξη, τη διάδοση και το τερματισμό του πολυμερισμού. Η γεική ατίδραση πολυμερισμού του αιθυλείου και τω παραγώγω του είαι η: C Α πολυμερισμός C A Ο πολυμερισμός, πολλές φορές, σταματά με τη προσθήκη υπεροξειδικής εώσεως του τύπου: R-O-O-R + λm RO-M-M M-OR λ φορές Με το τρόπο αυτό μπλοκάρεται το μοομερές και δε συεχίζει α πολυμερίζεται. Πίακας Ααφέροται οι ομάδες Α, τ ατίστοιχα μοομερή και πολυμερή που προκύπτου και η χρήση τους.. Α Μοομερές Πολυμερές Χρήση Η- Aιθυλέιο 2 = 2 πολυαιθυλέιο ( ) Πααγιώτης Αθαασόπουλος Χημικός Διδάκτωρ Παεπιστημίου Πατρώ Πλαστικές σακούλες, πλαστικά παιχίδια 3 - Προπέιο πολυπροπέιο Πλαστικά σχοιιά 312

3 3 = 2 C 3 - Bιυλοχλωρίδιο C Πολυβιυλοχλωρίδιο C Δίσκοι, πλαστικά, χρώματα Φαιύλιο Ph- Στυρόλιο C Ph Πολυστυρόλιο C Ph Πλαστικά δάπεδα CN- Ακρυλοιτρίλιο C CN Πολυακρυλοιτρίλιο C CN Συθετική υφάσιμη ύλη (orlon) 2. Πολυμερισμός 1,4. Τη ατίδραση αυτή τη δίου τα συζυγή αλκαδιέια, δηλαδή υδρογοάθρακες που περιέχου στο μόριό τους εαλλάξ απλούς και διπλούς δεσμούς, καθώς και τα παράγωγά τους, σύμφωα με το σχήμα : C C 2 2 C 2 A A Πίακας Ααφέροται οι ομάδες Α, τ ατίστοιχα μοομερή και πολυμερή που προκύπτου και η χρήση τους. Α Μοομερές Πολυμερές Χρήση 2-μεθυλο-1,3-βουταδιέιο 3 - ή ισοπρέιο C C 2 3 H cis 1 δομή: φυσικό καουτσούκ και συθετικό καουτσούκ 1 Η cis και η trans είαι δομές που εμφαίζου οι ακόρεστες οργαικές εώσεις με διπλό δεσμό. Η μελέτη τους Δε περιλαμβάεται στη ύλη. Πααγιώτης Αθαασόπουλος Χημικός Διδάκτωρ Παεπιστημίου Πατρώ 313

4 C C 2 H trans δομή: γουταπέρκα. 3-2-χλωρο-1,3-βουταδιέιο C C 2 εοπρέιο C C 2 Τεχητό καουτσούκ. H- 1,3-βουταδιέιο 2 =CΗ-= 2 Buna C 2 Τεχητό καουτσούκ. 3. Τι οομάζεται συμπολυμερισμός; Ο πολυμερισμός που γίεται με δύο ή περισσότερα είδη μοομερούς οομάζεται συμπολυμερισμός. Η καταομή τω μοομερώ στο συμπολυμερές μπορεί α είαι είτε τυχαία, είτε αυστηρά εαλλασσόμεη κατά μήκος της αλυσίδας. Buna S Έα προϊό συμπολυμερισμού είαι το Buna S που χρησιμοποιείται ως τεχητό καουτσούκ. Τα μοομερή που συδυάζοται για το παραγωγή του είαι το 1,3-βουταδιέιο και το στυρόλιο. Η οομασία του Buna S προέρχεται από τα αρχικά Bu για το βουταδιέιο, na για το Na παρουσία του οποίου γίεται ο συμπολυμερισμός και S για το στυρόλιο. Buna N, Ατίστοιχα από το συμπολυμερισμό του 1,3-βουταδιείου και του ακρυλοιτριλίου ( 2 =-CN) παράγεται το Buna N, που χρησιμοποιείται ως τεχητό καουτσούκ. Πααγιώτης Αθαασόπουλος Χημικός Διδάκτωρ Παεπιστημίου Πατρώ 314

5 ΜΕΘΟΔΟΛΟΓΙΑ A. Το κεφάλαιο αυτό είαι σηματικό για τη θεωρία του. Πρέπει α ξέρεις πολύ καλά τους ορισμούς τω: 1. πολυμερισμός 2. πολυμερή 3. είδη πολυμερώ 4. γεική ατίδραση πολυμερισμού 5. πολυμερισμός εώσεω με ρίζα το βιύλιο (ποιες είαι, ποια είαι τα μοομερή, ποια τα πολυμερή και οι χρήσεις τους) 6. γεική ατίδραση πολυμερισμού εώσεω με ρίζα το βιύλιο 7. το ορισμό του πολυμερισμού 1,4 καθώς και α ξέρετε α ξεχωρίζετε α μία έωση μπορεί α δώσει ή όχι τέτοιο πολυμερισμό 8. το ορισμό τω συζυγώ αλκαδιείω 9. πολυμερισμός εώσεω συζυγώ αλκαδιείω (ποιες είαι, ποια είαι τα μοομερή, ποια τα πολυμερή και οι χρήσεις τους) 10. γεική ατίδραση πολυμερισμού συζυγώ αλκαδιείω 11. το ορισμό του συμπολυμερισμού 12. Τι είαι το Buna S και το Buna N B. Παραγωγή πολυμερώ. Στις ασκήσεις αυτές σας δίου κάποια αρχική ύλη, προκειμέου α παρασκευάσετε έα συγκεκριμέο πολυμερές. Ακλουθείτε τα γεικά βήματα: Αρχική ύλη κατάλληλες ατιδράσεις μοομερές πολυμερές Λυμέα παραδείγματα 1. Να κάετε σωστά τη ατιστοίχιση: Συμπολυμερές Συστατικά συμπολυμερούς Α Buna S 1. 1,3- βουταδιέιο και ακρυλοιτρίλιο Β Buna N 2. 1,3-βουταδιέιο και στυρόλιο Απάτηση: Πααγιώτης Αθαασόπουλος Χημικός Διδάκτωρ Παεπιστημίου Πατρώ 315

6 Α 2. και Β Με πρώτη ύλη τη αιθαόλη α παρασκευάσετε: i. πολυαιθυλέιο ii. πολυβιυλοχλωρίδιο Απάτηση: i. H 3 C 2 OH + SO 2 H 3 C 2 Αλκoόλη C 2 Πολυμερισμός 2 2 v ii. H 3 C 2 OH + SO 2 H 3 C 2 Αλκoόλη C C 2 Αλκoόλη HC + H C Πολυμερισμός 2 v Πααγιώτης Αθαασόπουλος Χημικός Διδάκτωρ Παεπιστημίου Πατρώ 316

7 Μάθημα 18 - ΑΣΚΗΣΕΙΣ Να επιλέξετε τη σωστή απάτηση Ατίδραση πολυμερισμού 1,4 δίει: Α. το 1,2-βουταδιέιο Β. το 1,3-βουταδιέιο Γ. τόσο το πρώτο όσο και το δεύτερο Δ. καέα από τα δύο Το τεχητό καουτσούκ Buna Ν παράγεται με συμπολυμερισμό: Α. 1,3- βουταδιέιου και ακρυλοιτρίλιου Β. 2-μεθυλο-1,3- βουταδιέιου και ακρυλοιτρίλιου Γ. 1,3- βουταδιέιου και στυρόλιου Δ.. 2-χλώροι-1,3- βουταδιέιου και στυρολίου Το τεχητό καουτσούκ Buna S παράγεται με συμπολυμερισμό: Α. 1,3- βουταδιέιου και ακρυλοιτρίλιου Β. 2-μεθυλο-1,3- βουταδιέιου και ακρυλοιτρίλιου Γ. 1,3- βουταδιέιου και στυρόλιου Δ.. 2-χλώρο-1,3- βουταδιέιου και στυρολίου Να συμπληρωθού οι λέξεις που συμπληρώου σωστά τις προτάσεις Έα τμήμα του τεχητού πολυμερούς είαι το : - 2 -(CN)- 2 -(CN)- 2 (CN)-. To ατίστοιχο μοομερές είαι το Α Ο πολυμερισμός που γίεται με δύο ή περισσότερα είδη μοομερώ οομάζεται Ατιδράσεις πολυμερισμού 1,4 δίου τα αλκαδιέια και τα παράγωγα τους τα πολυμερή που είαι γιγατιαία μόρια παρουσιάζου εδιαφέρο για τις (μηχαικές ) τους ιδιότητες Ο πολυμερισμός του αιθυλείου καθώς και πολλώ υποκατεστημέω παραγώγω του ακολουθεί έα αλυσιδωτό μηχαισμό μέσω ριζώ, ο οποίος περιλαμβάει τρία βασικά στάδια: τη, τη και το του πολυμερισμού Στο παρακάτω πίακα α συμπληρώσετε τα οόματα και τους χημικούς τύπους τω μοομερώ. τύπος Χημικός 2 = 2 Οομασία αιθυλέιο Πααγιώτης Αθαασόπουλος Χημικός Διδάκτωρ Παεπιστημίου Πατρώ 317

8 2 =- προπέιο ακρυλοιτ ρίλιο 1,3- βουταδιέιο Στο παρακάτω πίακα α συμπληρώσετε τα οόματα και τους χημικούς τύπους τω μοομερώ πολυαιθυλέιο (- 2 --) Πολυβιυλοχλωρίδι ο Συμπληρώστε τη ατίδραση: 2 = Συμπληρώστε τη ατίδραση: 2 2 πολυμερισμός Η καταομή τω μοομερώ στο συμπολυμερές είαι είτε, είτε αυστηρά εαλλασσόμεη κατά μήκος της αλυσίδας Το αιθυλέιο ότα πολυμερίζεται σχηματίζει το πολυμερές και χρησιμοποιείται για α παράγοται διάφορα υλικά όπως και πλαστικά παιχίδια Συμπληρώστε τη ατίδραση: Τα προϊότα του πολυμερισμού 1, 4 προέρχοται από μοομερής εώσεις της μορφής. Στο μοομερές 1,3-βουταδιέιο που είαι αυτής της μορφής το Α είαι το. Πααγιώτης Αθαασόπουλος Χημικός Διδάκτωρ Παεπιστημίου Πατρώ 318

9 Το 1,3-πεταδιέιο μπορεί α δώσει ατίδραση πολυμερισμού 1,4. Σ Λ Το 1,4-πεταδιέιο μπορεί α δώσει ατίδραση πολυμερισμού 1,4. Σ Λ Ασκήσεις Δίεται ο συτακτικός τύπος του πολυμερούς: Το μοομερές, από το οποίο σχηματίστηκε, είαι: Να γραφεί η ατίδραση πολυμερισμού Πολυμερές προσθήκης, που αποτελείται μόο από άθρακα και υδρογόο, έχει σχετική μοριακή μάζα Ο αριθμός τω μορίω του μοομερούς που σχημάτισα έα μόριο πολυμερούς είαι Ο αριθμός τω ατόμω υδρογόου στο μόριο του μοομερούς είαι διπλάσιος από το αριθμό τω ατόμω του άθρακα. α. Να βρεθεί η σχετική μοριακή μάζα του μοομερούς. β. Να βρεθεί ποιο είαι το μοομερές. γ. Να γραφεί η εξίσωση πολυμερισμού Πολυμερές προσθήκης, που αποτελείται μόο από άθρακα και υδρογόο, έχει σχετική μοριακή μάζα Ο αριθμός τω μορίω του μοομερούς που σχημάτισα έα μόριο πολυμερούς είαι α. Να βρεθεί η σχετική μοριακή μάζα του μοομερούς. β. Να βρεθεί ποιο είαι το μοομερές, α είαι γωστό ότι η ατίδραση πολυμερισμού ακολουθεί το μηχαισμό του πολυμερισμού 1,4. γ. Να γραφεί η εξίσωση πολυμερισμού Σε ποσότητα αιθείου γίεται προσθήκη ισομοριακής ποσότητας 2 και το οργαικό προϊό της ατίδρασης κατεργάζεται με αιθαολικό διάλυμα ΚΟΗ. Το προϊό της τελευταίας ατίδρασης κατεργάζεται με ισομοριακή ποσότητα H Το έο οργαικό προϊό σε κατάλληλες συθήκες πολυμερίζεται με αποτέλεσμα α σχηματίζοται 1000 kg πολυμερούς. α. Να βρεθού η μάζα του αιθείου και η μάζα. του χλωρίου που ατέδρασα. β. Να γραφού οι σχετικές ατιδράσεις Να βρεθεί η μάζα κατάλληλου κορεσμέου διχλωροπαραγώγου τω υδρογοαθράκω που πρέπει α χρησιμοποιηθεί για τη παρασκευή 10,8 kg Buna. Πααγιώτης Αθαασόπουλος Χημικός Διδάκτωρ Παεπιστημίου Πατρώ 319

Πολυμερισμός Πολυμερισμός μονομερή πολυμερές μακρομόρια σχετική μοριακή μάζα (M ) Φυσικά πολυμερή Συνθετικά πολυμερή

Πολυμερισμός Πολυμερισμός μονομερή πολυμερές μακρομόρια σχετική μοριακή μάζα (M ) Φυσικά πολυμερή Συνθετικά πολυμερή Πολυμερισμός Πολυμερισμός ονομάζεται η συνένωση μικρών μορίων που ονομάζονται μονομερή, προς σχηματισμό ενός μεγαλύτερου μορίου, που ονομάζεται πολυμερές. Τα πολυμερή περιέχουν εκατοντάδες χιλιάδες άτομα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ Αντιδράσεις Προσθήκης... 2

ΠΕΡΙΕΧΟΜΕΝΑ Αντιδράσεις Προσθήκης... 2 ΠΕΡΙΕΧΟΜΕΝΑ Ατιδράσεις Προσθήκης... 1. 1. Ατιδράσεις προσθήκης στο >= =...3 Παρασκευή ατιδραστηρίω Grignard:...3. 1. Αφυδραλογόωση

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συνδυασμός ν στοιχείων ανά κ είναι μια μη διατεταγμένη συλλογή κ στοιχείων από τα ν.

ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συνδυασμός ν στοιχείων ανά κ είναι μια μη διατεταγμένη συλλογή κ στοιχείων από τα ν. 13/10/2010 ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συδυασμός στοιχείω αά κ είαι μια μη διατεταγμέη συλλογή κ στοιχείω από τα. Παράδειγμα 1 Οι συδυασμοί τω τριώ γραμμάτω Α,Β,Γ αά έα είαι οι εξής τρεις: Α, Β, Γ. Οι συδυασμοί

Διαβάστε περισσότερα

1.5 Αλκένια - αιθένιο ή αιθυλένιο

1.5 Αλκένια - αιθένιο ή αιθυλένιο 19 1.5 Αλκένια - αιθένιο ή αιθυλένιο Γενικά Αλκένια ονομάζονται οι άκυκλοι ακόρεστοι υδρογονάνθρακες, οι οποίοι περιέχουν ένα διπλό δεσμό στο μόριο. O γενικός τύπος των αλκενίων είναι C ν Η 2ν (ν 2). Στον

Διαβάστε περισσότερα

στους μιγαδικούς αριθμούς

στους μιγαδικούς αριθμούς Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;

Διαβάστε περισσότερα

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Ρωτήσαμε 50 μαθητές μιας τάξης για το αριθμό τω αδελφώ τους Οι απατήσεις που πήραμε είαι: 0,,,,4,5 Α v, v, v, v4, v5, v 6 είαι οι ατίστοιχες συχότητες τους

Διαβάστε περισσότερα

Λυµένες Ασκήσεις * * *

Λυµένες Ασκήσεις * * * Αάλυση Πιάκω και Εφαρµογές Σελίδα 1 από 6 Μάθηµα 9 ο ΓΙΝΟΜΕΝΟ KRONECKER Θεωρία : Γραµµική Άλγεβρα : εδάφιο 6, σελ 15 Λυµέες Ασκήσεις Άσκηση 91 Α AB, είαι πίακες τύπου µ µ και ατίστοιχα, υπολογίσατε τη

Διαβάστε περισσότερα

Συσκευασίες από αλουμίνιο, π.χ. αναψυκτικά, μπίρες κ.ά. Συσκευασίες από λευκοσίδηρο, π.χ. από γάλα εβαπορέ, τόνο, ζωοτροφές, τοματοπολτό κ.ά.

Συσκευασίες από αλουμίνιο, π.χ. αναψυκτικά, μπίρες κ.ά. Συσκευασίες από λευκοσίδηρο, π.χ. από γάλα εβαπορέ, τόνο, ζωοτροφές, τοματοπολτό κ.ά. ΑΝΑΚΥΚΛΩΣΗ ΣΥΣΚΕΥΑΣΙΩΝ Η Αακύκλωση σήμερα αποτελεί σηματική προτεραιότητα για το περιβάλλο και το μέλλο μας. Δε είαι μια εφήμερη τάση της εποχής, αλλά ατίθετα, υποχρέωση κάθε πολιτισμέης κοιωίας που συμβάλει

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα Ιγάτιος Ιωαίδης Στατιστική Όριο - Συέχεια συάρτησης Παράγωγοι Ολοκληρώματα Περιέχει: Συοπτική Θεωρία Μεθοδολογία Λύσης τω Ασκήσεω Λυμέα Παραδείγματα Ασκήσεις με τις απατήσεις τους ΘΕΣΣΑΛΟΝΙΚΗ Το βιβλίο

Διαβάστε περισσότερα

1. [0,+ , >0, ) 2. , >0, x ( )

1.  [0,+   ,      >0,   ) 2. ,    >0,  x   ( ) Σελίδα 1 από 5 ΝΙΟΣΤΕΣ ΡΙΖΕΣ ΤΑ ΣΥΜΒΟΛΑ α, α ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ του Ατώη Κυριακόπουλου 1 ΡΙΖΕΣ ΣΤΟ ΣΥΝΟΛΟ R = [, ) Θεώρηµα και ορισµός οθέτος, εός πραγµατικού αριθµού α και εός φυσικού αριθµού >, υπάρχει έας

Διαβάστε περισσότερα

www.fr-anodos.gr (, )

www.fr-anodos.gr (, ) ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Το lim f ( ) έχει όηµα σε γειτοικά σηµεία µε το δηλαδή ότα ( a, ) (, β ) a. Δε µε εδιαφέρει α το ίδιο το αήκει η όχι στο πεδίο ορισµού της f αλλά µε εδιαφέρει α υπάρχου στο πεδίο ορισµού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ ο. Τι οοµάζεται συάρτηση ; Είαι µια διαδικασία µε τη οποία κάθε στοιχείο εός συόλου Α ατιστοιχίζεται σε έα ακριβώς στοιχείο κάποιου άλλου συόλου Β.. Ποιες είαι οι κυριότερες γραφικές παραστάσεις

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή

ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή Μέρος πέµπτο ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ Εισαγωγή Στα προηγούµεα κεφάλαια είδαµε τις διάφορες µεθόδους συλλογής και επεξεργασίας του βιοµετρικού υλικού. Κάθε βιοµετρική επεξεργασία όµως έχει

Διαβάστε περισσότερα

Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού

Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού Κι όµως, τα Ρολόγια «κτυπού» και Εξισώσεις: Η Άλγεβρα τω εικτώ του Ρολογιού Εισαγωγικά ηµήτρης Ι. Μπουάκης Σχ. Σύµβουλος Μαθηµατικώ Σε ορισµέα βιβλία Αριθµητικής, αλλά κυρίως Άλγεβρας Β Γυµασίου και Α

Διαβάστε περισσότερα

Διαγώνισμα στη Χημεία Γ Λυκείου Ιοντικής Ισορροπίας & Οργανικής

Διαγώνισμα στη Χημεία Γ Λυκείου Ιοντικής Ισορροπίας & Οργανικής Θέμα 1 ο.... Διαγώνισμα στη Χημεία Γ Λυκείου Ιοντικής Ισορροπίας & Οργανικής Στις ερωτήσεις 1.1 έως 1.8 επιλέξτε τη σωστή απάντηση. Μονάδες 2,5x8=20 1.1 Κατά τη διάλυση HCl στο νερό, σε σταθερή θερμοκρασία,

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση - 4 o Γεικό Λύκειο Χαίω Γ τάξη Μαθηματικά Γεικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράκης http://users.sch.gr/mpapagr 4 ο Γεικό Λύκειο Χαίω ΚΑΤΑΝΟΜΕΣ ΣΥΧΝΟΤΗΤΩΝ 95 ΝΑ ΣΥΜΠΛΗΡΩΘΟΥΝ ΟΙ

Διαβάστε περισσότερα

υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ,

υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ, Προβλήματα Πιθαοτήτω Προβλήματα Πιθαοτήτω Από εξετάσεις που έγια σε 5000 ζώα μιας κτηοτροφικής μοάδας, διαπιστώθηκε ότι 000 είχα προσβληθεί από μια ασθέεια Α, 800 είχα προσβληθεί από μια ασθέεια Β εώ 00

Διαβάστε περισσότερα

Λυμένες ασκήσεις. Λύση. α. Έστω C Η ο τύπος του αλκενίου. Η ποσότητα του Η που αντιδρά είναι n = 0,5 mol

Λυμένες ασκήσεις. Λύση. α. Έστω C Η ο τύπος του αλκενίου. Η ποσότητα του Η που αντιδρά είναι n = 0,5 mol Λυμένες ασκήσεις 1 21 g ενός αλκενίου απαιτούν για πλήρη αντίδραση 11,2 L Η, μετρημένα σε συνθήκες STP. α. ποιος είναι ο συντακτικός τύπος του αλκενίου; β. πως μπορεί να παρασκευαστεί το αλκένιο αυτό με

Διαβάστε περισσότερα

είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους v,. Συχνότητα (απόλυτη) νi

είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους v,. Συχνότητα (απόλυτη) νi ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός λέγεται έα σύολο που θέλουμε α εξετάσουμε τα στοιχεία του ως προς έα ή περισσότερα χαρακτηριστικά τους Μεταβλητές λέγοται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε

Διαβάστε περισσότερα

ονοµάζεται γεωµετρική πολλαπλότητα αυτής. Τα ιδιοδιανύσµατα αυτά είναι βάση του διανυσµατικού υποχώρου E ( λ 0 ), που ονοµάζεται ιδιόχωρος

ονοµάζεται γεωµετρική πολλαπλότητα αυτής. Τα ιδιοδιανύσµατα αυτά είναι βάση του διανυσµατικού υποχώρου E ( λ 0 ), που ονοµάζεται ιδιόχωρος Γραµµική Άγεβρα ΙΙ Σείδα από 5 Μάθηµα 5 ο Ι ΙΟΤΙΜΕΣ ΚΑΙ Ι ΙΟ ΙΑΝΥΣΜΑΤΑ ΠΙΝΑΚΑ Θεωρία : Γραµµική Άγεβρα : εδάφιο, σε 33 (όχι Πρόταση 63) εδάφιο, σε 4, Πρόταση 65, (χωρίς απόδειξη) και Πρόταση 66 εδάφιο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΧΗΜΕΙΑ. Ηµεροµηνία: Τετάρτη 4 Μαΐου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΧΗΜΕΙΑ. Ηµεροµηνία: Τετάρτη 4 Μαΐου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΜΑ Α Ηµεροµηνία: Τετάρτη 4 Μαΐου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από

Διαβάστε περισσότερα

Δυνάμεις πραγματικών αριθμών

Δυνάμεις πραγματικών αριθμών Κεφάλαιο 1 ο 45 Β. Δυάμεις πραγματικώ αριθμώ Α έχουμε έα γιόμεο της μορφής (-) (-) (-) (-) όπου κάθε παράγοτας είαι (δηλαδή ο ίδιος ο αριθμός) μπορούμε α το συμβολίσουμε με μια πιο απλή μορφή : (-) 4.

Διαβάστε περισσότερα

Διαγώνισμα στην Οργανική.

Διαγώνισμα στην Οργανική. Χημεία Γ Λυκείου. Διαγώνισμα στην Οργανική. Θέμα 1 ο.... 1.1. Δεν είναι αλκαλικό το υδατικό διάλυμα της ουσίας: α) CH 3 CH 2 COONa, β)c 6 H 5 OH, γ) CH 3C CNa, δ) CH 3CH 2ONa. Μονάδες 2 1.2. Κατά την αναγωγή

Διαβάστε περισσότερα

Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ

Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ ΕΙΣΑΓΩΓΗ Όπως είαι γωσό, η Μουσική είαι Μαθημαικά και (σο βάθος) υπάρχει, μία «αδιόραη αρμοία» μεαξύ αυώ ω δύο. Έα μουσικό έργο, διέπεαι από μαθημαικούς όμους, σε ό,ι αφορά ις σχέσεις

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ .Να συμπληρώσετε το παρακάτω πίακα. f N F f 0 0 F 0 0 8 0,4 0 5 4 0,9 5 0 Σύολο. Οι μαθητές του Γ για το μήα Νοέμβρη απουσίασα από το σχολείο τους έως τέσσερις μέρες σύμφωα με το παρακάτω πίακα. ) Να συμπληρωθεί

Διαβάστε περισσότερα

1. Το σύνολο των μιγαδικών αριθμών

1. Το σύνολο των μιγαδικών αριθμών Το σύολο τω μιγαδικώ αριθμώ Γωρίζουμε ότι η εξίσωση δε έχει λύση στο σύολο τω πραγματικώ αριθμώ Για α ξεπεράσουμε αυτή τη αδυαμία «μεγαλώσαμε» το σύολο και δημιουργήσαμε το σύολο, έτσι, ώστε α έχει τις

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Α.. Α.. Α.. A.4. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία:

Διαβάστε περισσότερα

3o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

3o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 3o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: XΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Θέμα Α Στις

Διαβάστε περισσότερα

Α. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ

Α. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΜΑΘΗΜΑ Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποεότητα.: Πράξεις µε πραγµατικούς αριθµούς (Επααλήψεις- Συµπληρώσεις) Θεµατικές Εότητες:. Οι πραγµατικοί αριθµοί και οι πράξεις τους.. υάµεις πραγµατικώ αριθµώ..

Διαβάστε περισσότερα

Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4

Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4 (http://edu.klmaka.gr) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

1 730 vs ν m ν 4 + ν w 2ν 4 + ν m ν 2 + ν vs ν 3

1 730 vs ν m ν 4 + ν w 2ν 4 + ν m ν 2 + ν vs ν 3 η Σειρά Ασκήσε Μοριακής Φασµατοσκοπίας. Οι φασµατοσκοπικές σταθερές περιστροφής του CH I είαι 5.79 cm - και.5565 cm -, εώ οι σταθερές φυγοκετρικής διορθώσες είαι D.98 6 cm -, D K.955 6 cm - και D K 87.

Διαβάστε περισσότερα

1. Αφυδραλογόνωση αλκυλαλογονιδίων προς σχηματισμό αλκενίων. αλκοόλη R1 CH CH R 2 + NαX + H 2 O

1. Αφυδραλογόνωση αλκυλαλογονιδίων προς σχηματισμό αλκενίων. αλκοόλη R1 CH CH R 2 + NαX + H 2 O 2. Αντιδράσεις απόσπασης Αντιδράσεις απόσπασης είναι αυτές κατά τις οποίες αποσπάται ένα ή περισσότερα μόρια ανόργανης ουσίας (π.χ. Η 2, ΗCl, -O) από μία ένωση, οπότε προκύπτει ακόρεστη ένωση με διπλό

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Θεωρία Άλυτες Ασκήσεις Θέματα εξετάσεων

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Θεωρία Άλυτες Ασκήσεις Θέματα εξετάσεων ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Θεωρία Άλυτες Ασκήσεις Θέματα εξετάσεω 1 Α. ΜΕΡΟΣ :ΘΕΩΡΙΑ ΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑΔΙΚΩΝ Γωρίζουμε ότι η δευτεροβάθμια εξίσωση με αρητική διακρίουσα δε έχει λύση στο σύολο R τω πραγματικώ

Διαβάστε περισσότερα

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x)

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x) 7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( ) ΒΑΣΙΚΑ ΟΡΙΑ + - - a v α άρτιος α περιττός 0 ar * ΠΑΡΑΤΗΡΗΣΗ : Εώ α f() < g() κοτά στο 0 τότε f() g() ότα + εώ f()

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1 ΘΕΜΑ 1 Ο ΕΚΦΩΝΗΣΕΙΣ A ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1) Το άτοµο του καλίου (Κ) έχει µαζικό

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να γωρίζει τη έοια της ακολουθίας, τους τρόπους που ορίζεται, τις διαφορές της από μία συάρτηση. Να γωρίζει τους ορισμούς της αριθμητικής και γεωμετρικής

Διαβάστε περισσότερα

6.21 Αντιδράσεις των αλκενίων µε αλκένια: Πολυµερισµός

6.21 Αντιδράσεις των αλκενίων µε αλκένια: Πολυµερισµός 6.21 Αντιδράσεις των αλκενίων µε αλκένια: Πολυµερισµός Πολυµερισµός των αλκενίων Κατιονικός πολυµερισµός Πολυµερισµός ελευθέρων ριζών Πολυµερισµός συναρµογής Κατιονικός πολυµερισµός ιµερισµός του 2-µεθυλοπροπένιου

Διαβάστε περισσότερα

Όταν πραγματοποιείται το Α πραγματοποιείται και το Β.

Όταν πραγματοποιείται το Α πραγματοποιείται και το Β. Βασικές έοιες και τύποι πιθαοτήτω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός πειράματος τύχης (πεπερασμέος, απείρως αριθμήσιμος, συεχής) Εδεχόμεα Α, Β, (απλά, σύθετα) Βέβαιο εδεχόμεο Αδύατο

Διαβάστε περισσότερα

lim f (x) = +. ΣΗΜΕΙΩΣΕΙΣ Μη πεπερασμένο όριο στο x 0 R

lim f (x) = +. ΣΗΜΕΙΩΣΕΙΣ Μη πεπερασμένο όριο στο x 0 R ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμέο Όριο στο R - Κεφ..7: Όρια Συάρτησης

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 21/04/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 21/04/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 21/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης

Διαβάστε περισσότερα

c f(x) = c f (x), για κάθε x R

c f(x) = c f (x), για κάθε x R (http://edu.klmaka.gr) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επααληπτικό Διαγώισμα Μαθηματικώ Γεικής Παιδείας Γ Λυκείου Θέμα A Α.α) Τι οομάζουμε συάρτηση και τι οομάζουμε πραγματική συάρτηση πραγματικής μεταβλητής; β) Τι λέγεται τιμή μιας συάρτησης f στο χ ; γ)

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΕΡΟΣ 2ο Γυμνάσιο

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΕΡΟΣ 2ο Γυμνάσιο ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΕΡΟΣ 2ο υμάσιο 164 1 α. Τι λέμε -οστή δύαμη εός αριθμού α; β. Ορισμοί και ιδιότητες τω δυάμεω. Κατασκευάστε ορθογώιο τρίγωο ΑΒ α. ράψτε το πυθαγόρειο θεώρημα και τη σχέση που το εκφράζει

Διαβάστε περισσότερα

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: ΔΙΑΓΩΝΙΣΜΑ : Γ ΛΥΚΕΙΟΥ 2013

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: ΔΙΑΓΩΝΙΣΜΑ : Γ ΛΥΚΕΙΟΥ 2013 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : Γ ΛΥΚΕΙΟΥ 2013 Θέμα Α Α1. Ο μέγιστος αριθμός ηλεκτρονίων που χαρακτηρίζονται

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 9 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 9 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 08/04/2015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (9) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως Α.5 να γράψετε

Διαβάστε περισσότερα

Μοριακή Φασµατοσκοπία

Μοριακή Φασµατοσκοπία Μοριακή Φασµατοσκοπία Ασκήσεις του χειµεριού εξαµήου 5-6. α) Για τη τρίτη "γραµµή" της σειράς Pasch του υδρογοοειδούς ιότος C VI (ή C 5+ ) α υπολογίσετε το κυµαταριθµό της µεταπτώσεως, τη συχότητα του

Διαβάστε περισσότερα

β± β 4αγ 2 x1,2 x 0.

β± β 4αγ 2 x1,2 x 0. Ορισµοί, ισότητα, µέτρο, άθροισµα µιγαδικώ αριθµώ Μιγαδικό επίπεδο Γεωµετρική παράσταση του αθροίσµατος µιγαδικώ αριθµώ ax 3 + β x + γ x+ δ = 0 Η προσπάθεια επιλύσεως εξισώσεω 3 ου βαθµού ( ) και δευτεροβαθµίω

Διαβάστε περισσότερα

Μάθηµα 5 ο NΟΡΜΑ ΠΙΝΑΚΑ

Μάθηµα 5 ο NΟΡΜΑ ΠΙΝΑΚΑ Αάλυση Πιάκω και Εφαρµογές Σελίδα από 3 Μάθηµα 5 ο NΟΡΜΑ ΠΙΝΑΚΑ Για κάθε αριθµό, η -όρµα του διαύσµατος [ ] = συµβολίζεται και ισούται µε το θετικό αριθµό = = (5) Αποδεικύοται για τη -όρµα οι παρακάτω

Διαβάστε περισσότερα

Μάθηµα 6 ο ΥΪΚΕΣ ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ A =. Σύµφωνα µε την Πρόταση 5.7 (σελ. 119), η συµπληρωµατική (δυϊκή)

Μάθηµα 6 ο ΥΪΚΕΣ ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ A =. Σύµφωνα µε την Πρόταση 5.7 (σελ. 119), η συµπληρωµατική (δυϊκή) Αάλυση Πιάκω και Εφαρµογές Σελίδα από 7 Μάθηµα 6 ο ΥΪΚΕΣ ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ Θεωρία : Γραµµική Άλγεβρα : σελ. 8 (από τη 4 η γραµµή) και σελ. 9, εδάφιο 5, σελ. 7, Πρόταση 6.8, σελ. 4 Παράδειγµα : Στη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ. 1. Τι ονομάζουμε σύνολο Μιγαδικών Αριθμών; Τι ονομάζουμε πραγματικό μέρος - φανταστικό μέρος ενός μιγαδικού αριθμού z = α + βi.

ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ. 1. Τι ονομάζουμε σύνολο Μιγαδικών Αριθμών; Τι ονομάζουμε πραγματικό μέρος - φανταστικό μέρος ενός μιγαδικού αριθμού z = α + βi. ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Τι οομάζουμε σύολο Μιγαδικώ Αριθμώ; Τι οομάζουμε πραγματικό μέρος - φαταστικό μέρος εός μιγαδικού αριθμού α + βi. Σύολο τω μιγαδικώ αριθμώ οομάζουμε έα υπερσύολο τω

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 47) Εισαγωγικό σημείωμα. Λυμένες Ασκήσεις. 2συν x 2συν x 1 συνx συνx 1 x 2κπ, κ οι ζητούμενοι α-

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 47) Εισαγωγικό σημείωμα. Λυμένες Ασκήσεις. 2συν x 2συν x 1 συνx συνx 1 x 2κπ, κ οι ζητούμενοι α- Μαθηματικά για τη Β τάξη του Λυκείου ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ τω Κώστα Βακαλόπουλου Bασίλη Καρκάη Εισαγωγικό σημείωμα Παραθέτουμε στα δύο άρθρα που ακολουθού μια σειρά από λυμέες ασκήσεις στα κεφάλαια

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Αντιδράσεις Πολυμερών

Αντιδράσεις Πολυμερών Αντιδράσεις Πολυμερών Αντιδράσεις Μετατροπής Πολυμερών Αντιδράσεις που αφορούν την κυρία αλυσίδα Αντιδράσεις που αφορούν πλευρικές ομάδες R Αντιδράσεις τελικής ομάδας X R X Y Αντιδράσεις Κύριας Αλυσίδας

Διαβάστε περισσότερα

Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας

Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας ΘΕΜΑ Α. Παελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γεικης Παιδειας Θέµατα-Εδεικτικές Λύσεις Νικόλαος. Κατσίπης 17 Μαϊου 2010 Α1. Εστω t 1, t 2,..., t οι παρατηρήσεις µιας ποσοτικής µεταβλητής X εός δείγµατος

Διαβάστε περισσότερα

c f(x) = c f (x), για κάθε x R

c f(x) = c f (x), για κάθε x R ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

Πολυμερή: Σύνθεση του Nylon 6,10

Πολυμερή: Σύνθεση του Nylon 6,10 10 Πολυμερή: Σύνθεση του Nylon 6,10 Στόχος της άσκησης: Η κατανόηση της δομής των πολυμερών. Η εξοικείωση με την βασική ιδέα του πολυμερισμού συμπύκνωσης. Ο χειρισμός των αντιδραστηρίων στον πολυμερισμό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ 13 ΣΕΠΤΕΜΒΡΙΟΥ 2015

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ 13 ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ 1 ΣΕΠΤΕΜΒΡΙΟΥ 015 ΟΝΟΜΑΤΕΠΩΝΥΜΟ. ΘΕΜΑ Α (μονάδες 5x5) Στις παρακάτω προτάσεις να επιλέξετε την σωστή απάντηση Α.1 Πρωτοταγή αλκοόλη παίρνουμε α. κατά την προσθήκη αντιδραστηρίου

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

Μέθοδοι Πολυμερισμού

Μέθοδοι Πολυμερισμού Μέθοδοι Πολυμερισμού 1 Μέθοδοι Πολυμερισμού Προσθήκης Συμπύκνωσης Μέθοδοι Πολυμερισμού Αλυσιδωτός Προσθήκης Σταδιακός Συμπύκνωσης Αλυσιδωτοί Πολυμερισμοί Πολυμερισμός Ελευθέρων ριζών: Ενεργό Κέντρο ελεύθερη

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη B

Γυμνάσιο Μαθηματικά Τάξη B 113 Θέματα εξετάσεω περιόδου Μαΐου-Ιουίου στα Μαθηματικά Τάξη B! taexeiola.blogspot.com 6 ο ΥΜΝΑΣΙΟ ΡΟΔΟΥ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ, ΤΑΞΗ Β' ΥΜΝΑΣΙΟΥ, ΡΟΔΟΣ

Διαβάστε περισσότερα

x [ ] T ( ) Μάθηµα 6 ο ΙΑΓΩΝΟΠΟΙΗΣΗ ΠΙΝΑΚΑ Λυµένες Ασκήσεις * * * * * * Θεωρία : Γραµµική Άλγεβρα : εδάφιο 5, σελ

x [ ] T ( ) Μάθηµα 6 ο ΙΑΓΩΝΟΠΟΙΗΣΗ ΠΙΝΑΚΑ Λυµένες Ασκήσεις * * * * * * Θεωρία : Γραµµική Άλγεβρα : εδάφιο 5, σελ Γραµµική Άλγεβρα ΙΙ Σελίδα από 4 Μάθηµα 6 ο ΙΑΓΩΝΟΠΟΙΗΣΗ ΠΙΝΑΚΑ Θεωρία : Γραµµική Άλγεβρα : εδάφιο 5, σελ 5-5 Ασκήσεις :, 4, 6, 8, 9,, σελ 59 Λυµέες Ασκήσεις Άσκηση 6 ο πίακας είαι η µοαδική ιδιοτιµή του,

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 24 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ 1ο Α. Aς υποθέσουµε ότι x 1,x,,x k είαι οι τιµές µιας µεταβλητής Χ, που αφορά τα άτοµα εός δείγµατος µεγέθους, όπου

Διαβάστε περισσότερα

Γραπτές ανακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις

Γραπτές ανακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις Γραπτές αακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις Δρ. Πααγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Για το υπολογισμό του βαθμού της ετήσιας επίδοσης τω

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΙΟΥΝΙΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

4. Δεσμευμένη Πιθανότητα - Ανεξαρτησία Ενδεχομένων

4. Δεσμευμένη Πιθανότητα - Ανεξαρτησία Ενδεχομένων Δεσμευμέη Πιθαότητα Αεξαρτησία Εδεχομέω 4 Δεσμευμέη Πιθαότητα - Αεξαρτησία Εδεχομέω 4 Γιατί δεσμευμέη πιθαότητα Το όημα της δεσμευμέης πιθαότητας Η πιθαότητα, ως έα μέτρο του βαθμού βεβαιότητας που έχουμε

Διαβάστε περισσότερα

1. Ανιοντικός Πολυμερισμός

1. Ανιοντικός Πολυμερισμός . Ανιοντικός Πολυμερισμός.. Γενικά Ο έλεγχος της μακρομοριακής δομής έχει αποκτήσει εξαιρετικό ακαδημαϊκό και βιομηχανικό ενδιαφέρον τα τελευταία χρόνια. Το ενδιαφέρον αυτό προέρχεται αφενός μεν από τη

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ 1434 ΛΕΥΚΩΣΙΑ. 31 Οκτωβρίου 2005. Θέμα: Υποστηρικτικό υλικό στο μάθημα της Χημείας.

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ 1434 ΛΕΥΚΩΣΙΑ. 31 Οκτωβρίου 2005. Θέμα: Υποστηρικτικό υλικό στο μάθημα της Χημείας. 1 ΚΥΠΡΙΑΚΗ ΔΗΜΟΚΡΑΤΙΑ Αρ. Φακ. 7.12.12.32.1 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ 1434 ΛΕΥΚΩΣΙΑ 31 Οκτωβρίου 2005 Διευθυντές/ντριες Λυκείων Θέμα: Υποστηρικτικό υλικό στο μάθημα της Χημείας. Σας αποστέλλουμε

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΘΟΔΟΛΟΓΙΑ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΘΟΔΟΛΟΓΙΑ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΟΡΙΣΜΟΙ ΠΡΑΞΕΙΣ ΣΥΖΥΓΕΙΣ ΜΕΤΡΟ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΘΟΔΟΣ Για α υπολογίσουμε δυάμεις με ακέραιο εκθέτη σε παράσταση με i χρησιμοποιούμε γωστές ταυτότητες και έχουμε υπόψη ότι: i. v v- = με ακέραιο

Διαβάστε περισσότερα

Στατιστική. μονάδα και ισχύει: i. ν ν. = ή ως ποσοστό % οπότε % = i fi

Στατιστική. μονάδα και ισχύει: i. ν ν. = ή ως ποσοστό % οπότε % = i fi Στατιστική "Υπάρχου τα μικρά ψέματα, τα μεγάλα ψέματα και οι στατιστικές" Μαρκ Τουαί Σε κάθε πρόβλημα της Στατιστικής υπάρχει έας «πληθυσμός» Ω τα στοιχεία του οποίου (άτομα) εξετάζοται ως προς έα χαρακτηριστικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. Aς υποθέσουµε ότι 1,,, k είαι οι τιµές µιας µεταβλητής Χ, που αφορά Β.1. τα άτοµα εός δείγµατος µεγέθους,

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑΤΑ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή επιλογή. Α1. Δίνεται

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Για τις ερωτήσεις 1.1 1.4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί την σωστή απάντηση. 1.1. Στο μόριο του BeF 2 οι δεσμοί

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη B

Γυμνάσιο Μαθηματικά Τάξη B 113 Θέματα εξετάσεω περιόδου Μαΐου-Ιουίου στα Μαθηματικά Τάξη B! 114 a. Να διατυπώσετε το ορισμό της δύαμης α με βάση το ρητό α και εκθέτη το φυσικό αριθμό > 1. b. Να συμπληρωθού οι παρακάτω τύποι, δυάμεις

Διαβάστε περισσότερα

Β / ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Β / ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΟΛΙΧΝΗΣ Β / ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΛΚΑΝΙΑ ΑΛΚΕΝΙΑ ΑΛΚΙΝΙΑ ΑΛΚΟΟΛΕΣ ΚΑΡΒΟΞΥΛΙΚΑ ΟΞΕΑ eclass.sch.gr users.sch.gr/dtouloupas/moodle Γενικός Τύπος: C ν H ν+, ν 1 Χημικές Ιδιότητες

Διαβάστε περισσότερα

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2 Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ ΕΙΔΗ ΕΞΙΣΩΣΗΣ ( ΔΙΕΡΕΥΝΗΣΗ ΕΞΙΣΩΣΗΣ): i. αχ=β µε α 0 έχει µία λύση ii. 0χ=β µε β 0 αδύατη εξίσωση ( καµία λύση ) iii. 0χ=0 αόριστη εξίσωση ( άπειρες λύσεις ) ΕΙΔΗ ΣΥΣΤΗΜΑΤΟΣ (ΔΙΕΡΕΥΝΗΣΗ

Διαβάστε περισσότερα

Μάθημα 16 ο. Γραφή Χημικών Τύπων κατά Lewis. Ο Χημικός Δεσμός Τυπικό φορτίο

Μάθημα 16 ο. Γραφή Χημικών Τύπων κατά Lewis. Ο Χημικός Δεσμός Τυπικό φορτίο Μάθημα 16 ο Γραφή Χημικών Τύπων κατά Lewis. Ο Χημικός Δεσμός Τυπικό φορτίο Δεσμός στο μοριακό υδρογόνο ( 2 ) Το υδρογόνο σχηματίζει έναν ομοιοπολικό δεσμό. Όταν δύο άτομα υδρογόνου συνδέονται μεταξύ τους,

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΟΡΓΑΝΙΚΗΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΟΡΓΑΝΙΚΗΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΟΡΓΑΝΙΚΗΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΒΙΟΛΟΓΙΚΕΣ ΠΡΩΤΕΣ ΥΛΕΣ ΟΡΓΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΩΝ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΠΑΡΑΓΩΓΗ ΒΙΟΝΤΗΖΕΛ ΟΔΗΓΙΕΣ ΑΣΚΗΣΗΣ Γ. Αναστόπουλος

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1. Οι παρακάτω

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρία Ηλιοπούλου, Βαγγέλης Στεφαδούρος, Μαρίνος Ιωάννου

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρία Ηλιοπούλου, Βαγγέλης Στεφαδούρος, Μαρίνος Ιωάννου ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 14-2-2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαρία Ηλιοπούλου, Βαγγέλης Στεφαδούρος, Μαρίνος Ιωάννου ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α4 να γράψετε

Διαβάστε περισσότερα

ΑΝΤΙΔΡΆΣΕΙΣ ΠΡΟΣΘΉΚΗΣ: (1) Προσθήκη στο διπλό δεσμό (> C = C <): i. Προσθήκη υδρογόνου (Η 2 ): C v. H 2v H 2. H 2v 2.

ΑΝΤΙΔΡΆΣΕΙΣ ΠΡΟΣΘΉΚΗΣ: (1) Προσθήκη στο διπλό δεσμό (> C = C <): i. Προσθήκη υδρογόνου (Η 2 ): C v. H 2v H 2. H 2v 2. Νίκος Γαλάνης Καθηγητής Χημείας 2 ο Λύκειο Ηρακλείου ΠΡΣΉΚΗΣ: (1) Προσθήκη στο διπλό δεσμό (> C = C

Διαβάστε περισσότερα

β. [Η 3 Ο + ] > 10-7 Μ γ. [ΟΗ _ ] < [Η 3 Ο + ]

β. [Η 3 Ο + ] > 10-7 Μ γ. [ΟΗ _ ] < [Η 3 Ο + ] ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 6 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 27 ΜΑΪΟΥ 2009 ΕΚΦΩΝΗΣΕΙΣ

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 27 ΜΑΪΟΥ 2009 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7 ΜΑΪΟΥ 009 ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις 1.1 1. να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

2. Πιθανότητα και Δεσμευμένη Πιθανότητα

2. Πιθανότητα και Δεσμευμένη Πιθανότητα Μάθημα: Στατιστική (Κωδ 105) Διδάσκω: Γιώργος Κ Παπαδόπουλος 2 Πιθαότητα και Δεσμευμέη Πιθαότητα Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός

Διαβάστε περισσότερα

Χηµεία Α Γενικού Λυκείου

Χηµεία Α Γενικού Λυκείου Χηµεία Α Γενικού Λυκείου Απαντήσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή απαντήσεων: 'Αρης Ασλανίδης Χρησιμοποιήστε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την πλοήγηση μέσα

Διαβάστε περισσότερα

ΑΚΟΡΕΣΤΟΙ Υ ΡΟΓΟΝΑΝΘΡΑΚΕΣ ΜΕ ΤΡΙΠΛΟ ΕΣΜΟ (ΑΛΚΙΝΙΑ)

ΑΚΟΡΕΣΤΟΙ Υ ΡΟΓΟΝΑΝΘΡΑΚΕΣ ΜΕ ΤΡΙΠΛΟ ΕΣΜΟ (ΑΛΚΙΝΙΑ) ΑΚΟΡΕΣΤΟΙ Υ ΡΟΓΟΝΑΝΘΡΑΚΕΣ ΜΕ ΤΡΙΠΛΟ ΕΣΜΟ (ΑΛΚΙΝΙΑ) Πρόκειται για υδρογονάνθρακες που έχουν ένα τριπλό δεσµό ανάµεσα σε άνθρακες. Ο γενικός τους τύπος είναι C ν 2ν-2 µε το ν να παίρνει τιµές από 2 και πάνω.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 30 ΜΑΪΟΥ 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ (Ν Ε Ο Σ Υ Σ Τ Η Μ

Διαβάστε περισσότερα

Η παραπάνω ιδιότητα γενικεύεται και για περισσότερους από δύο πραγµατικούς αριθµούς. Έτσι έχουµε: αβγ α β γ = β β. d a β = α

Η παραπάνω ιδιότητα γενικεύεται και για περισσότερους από δύο πραγµατικούς αριθµούς. Έτσι έχουµε: αβγ α β γ = β β. d a β = α ΑΜΥΡΑ ΑΚΗ 0, ΝΙΚΑΙΑ ΤΗΛ:0-903576 e-mail : tetrakti@ otenet.gr γρήγορα&εύκολα www.tetraktis.gr ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΜΑΘ Α0 ΑΠΟΛΥΤΗ ΤΙΜΗ Τυπολόγιο - Μεθοδολογία. Ορισµός: Έστω α έας πραγµατικός

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 08/04/2015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως Α.5 να γράψετε στην κόλλα σας το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Επίπεδο εκπαίδευσης πατέρα 2

Επίπεδο εκπαίδευσης πατέρα 2 Περιγραφική Στατιστική Όπως, ήδη έχουμε ααφέρει, στόχος της Περιγραφικής Στατιστικής είαι, «η αάπτυξη μεθόδω για τη συοπτική και τη αποτελεσματική παρουσίαση τω δεδομέω» Για το σκοπό αυτό, έχου ααπτυχθεί,

Διαβάστε περισσότερα

ΝΟΕΜΒΡΙΟΣ πρωτονίων. ηλεκτρονίω Γ

ΝΟΕΜΒΡΙΟΣ πρωτονίων. ηλεκτρονίω Γ Αµυραδάκη 20, Νίκαια (210-4903576) ΘΕΜΑ 1 Ο : 1. Ποια είναι η δοµή του ατόµου; ΝΟΕΜΒΡΙΟΣ 2012 2. Ποιος αριθµός ονοµάζεται ατοµικός και ποιος µαζικός; Ποιος από τους δύο αποτελεί την ταυτότητα του χηµικού

Διαβάστε περισσότερα

5.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C

5.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C 5 55 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C Εισαγωγή Η επίλυση τω εξισώσεω ου και 4ου βαθμού, η ααγκαστική επαφή με τους μιγαδικούς αριθμούς για τη έκφραση τω πραγματικώ ριζώ και η εξέλιξη του αλγεβρικού λογισμού

Διαβάστε περισσότερα

Βιολογία Γενικής Παιδείας Β Λυκείου

Βιολογία Γενικής Παιδείας Β Λυκείου Απρίλιος Μάιος 12 Βιολογία Γενικής Παιδείας Β Λυκείου Βιολογία Γενικής Παιδείας Β Λυκείου (Ερωτήσεις που παρουσιάζουν ενδιαφέρον) 1. Τι είναι τα βιομόρια και ποια είναι τα βασικά χαρακτηριστικά τους; Βιομόρια

Διαβάστε περισσότερα

+ + = + + α ( β γ) ( )

+ + = + + α ( β γ) ( ) ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ Αριθµητική παράσταση Αριθµητική παράσταση λέγεται µια σειρά αριθµώ που συδέοται µεταξύ τους µε πράξεις. Η σειρά τω πράξεω σε µια αριθµητική παράσταση είαι η εξής: 1. Υπολογίζουµε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 30 ΜΑΪΟΥ 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικώ της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Τετάρτη, 3 Μα ου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α. Α οι συαρτήσεις f, g είαι παραγωγίσιμες στο

Διαβάστε περισσότερα

Γωνία και κεντρική γωνία κανονικού πολυγώνου

Γωνία και κεντρική γωνία κανονικού πολυγώνου ΜΕΡΟΣ Β 3.2 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 327 3.2 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ Κατασκευή καοικώ πολυγώω Η διαδικασία κατασκευής εός καοικού πολυγώου µε πλευρές (καοικό -γωο) ακολουθεί τα εξής βήματα: 1ο Βήμα: 3 Υπολογίζουμε

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙ ΕΣ. Α1. H ένωση HC C C(CΗ 3 ) CΗ 2 έχει α. 8σ και 3π δεσμούς. β. 9σ και 4π δεσμούς. γ. 10σ και 3π δεσμούς. δ. 11σ και 2π δεσμούς.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙ ΕΣ. Α1. H ένωση HC C C(CΗ 3 ) CΗ 2 έχει α. 8σ και 3π δεσμούς. β. 9σ και 4π δεσμούς. γ. 10σ και 3π δεσμούς. δ. 11σ και 2π δεσμούς. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΑΡΑΣΚΕΥΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα