Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ"

Transcript

1 Η ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ ΕΙΣΑΓΩΓΗ Όπως είαι γωσό, η Μουσική είαι Μαθημαικά και (σο βάθος) υπάρχει, μία «αδιόραη αρμοία» μεαξύ αυώ ω δύο. Έα μουσικό έργο, διέπεαι από μαθημαικούς όμους, σε ό,ι αφορά ις σχέσεις μεαξύ: α) Της διάαξης ω μουσικώ φθόγγω, και β) Της αίσοιχης συχόηας και χροικής αξίας ω φθόγγω αυώ. Σκοπός λοιπό ης μελέης μας αυής, είαι η δημιουργία μουσικώ συθέσεω (συμφωιώ, ραγουδιώ, κ.λπ.), χρησιμοποιώας α Μαθημαικά. Συγκεκριμέα, ση μελέη μας αυή (όπως θα ααλύσουμε αμέσως παρακάω) θα ααπύξουμε, διάφορες μαθημαικές μεθόδους με βάση ις οποίες, μπορούμε α δημιουργήσουμε μουσικές συθέσεις διάφορω μουσικώ έργω (συμφωιώ, ραγουδιώ, κ.λπ.), χρησιμοποιώας α Μαθημαικά. Τέλος, θα πρέπει α οίσουμε, όι: Η «Μαθημαική Μουσική» δε είαι έα «εγκεφαλικό καασκεύασμα» και σε καμία περίπωση δε μπορεί α υποκαασήσει ο «αθρώπιο παράγοα», δηλαδή η διαίσθηση, η φαασία και ο πηγαίο αλέο εός χαρισμαικού Μουσικοσυθέη. Αίθεα, η «Μαθημαική Μουσική» βοηθά και συμπληρώει σε μεγάλο βαθμό έα αλαούχο Μουσικοσυθέη και αποελεί, έα πολύ εδιαφέροα ομέα έρευας για έα Μαθημαικό μουσικό.. Η συγκεκραμέη μουσική κλίμακα Όπως γωρίζουμε από η Φυσική ση συγκεκραμέη μουσική κλίμακα οι συχόηες v ω μουσικώ φθόγγω, είαι οι εξής: η η κ.λπ.... Οκάβα... la 0,0 Hz si 6,9 Hz do 6,6 Hz re 9,7 Hz mi 9,6 Hz Οκάβαfa 9, Hz sol 0,0 Hz la 0,0 Hz si 9,9 Hz

2 η do 5, Hz re 587, Hz... Οκάβα... κ.λπ. Πίακας. Η Μαθημαική Μουσική Σύθεση (Γεικές αρχές) Ας υποθέσουμε σχ., όι έχουμε έα άξοα Ox. σχ. Ση περίπωση αυή, εργαζόμασε ως εξής: Βήμα ο : Επί ου άξοος Ox λαμβάουμε Ν ίσα ευθύγραμμα μήμαα, μήκους Τ, (Ν =,,, ). Το κάθε μήκος Τ αισοιχεί σο μουσικό μέρο ης μαθημαικής μουσικής σύθεσης ου μουσικού έργου (π.χ. συμφωία, ραγούδι, κ.λπ.) που θέλουμε α δημιουργήσουμε. Σο παράδειγμά μας ου σχ., επιλέγουμε ως μουσικό μέρο Τ π.χ. ο T. Προφαώς, σο σχ. μπορούμε για ο μήκος Τ α επιλέξουμε οποιοδήποε μουσικό μέρο π.χ. T, T 9, κ.λπ. Αυό είαι 8 καθαρά θέμα επιλογής μας.

3 Βήμα ο : Ση συέχεια, διαιρούμε ο κάθε μέρο Τ ( ο, ο, ο,, Ν ο, μέρο) με διάφορες υχαίες χροικές αξίες (,,,,,, ) αριθμημέες καά σειρά ( =,,, ), όπως φαίοαι σο σχ.. Σημείωση: Προφαώς ο άθροισμα ω χροικώ αξιώ, οι οποίες περιέχοαι μέσα σο κάθε μέρο Τ θα πρέπει α ισούαι με ο μέρο Τ, σχ.. Έσι λοιπό, σο σχ. ο μουσικός φθόγγος π.χ. = (ο οποίος βρίσκεαι σο ο μέρο) έχει χροική αξία. Επίσης, ο μουσικός φθόγγος = 5 (ο οποίος βρίσκεαι σο ο μέρο) έχει χροική αξία 5, κ.ο.κ. για ους διάφορους άλλους μουσικούς φθόγγους ου σχ.. Σημείωση: Η διάαξη ω χροικώ αξιώ (,,,,,, ) ω αισοίχω μουσικώ φθόγγω ( =,,, ) επάω σο άξοα Ox, μπορεί α είαι εελώς υχαία όπως, φαίεαι σο σχ. ή α ακολουθεί έα συγκεκριμέο «μαθημαικό όμο» ο οποίο εμείς προεπιλέγουμε ή α είαι, η διάαξη ω χροικώ αξιώ Τ η εός γωσού ραγουδιού κλπ, ο οποίο αυό ραγούδι ) θα ο οομάζουμε, μουσικό γεήορα. Σημείωση: Εφεξής ο άξοα Ox ου σχ. θα ο οομάζουμε, άξοα μαθημαικώ μουσικώ συθέσεω. Βήμα ο : Εξ ορισμού σο πρώο μουσικό φθόγγο ( = ), θέουμε αυθαίρεα μία (γωσή) ιμή ης συχόηας, π.χ. επιλέγουμε η συχόηα = 0 Hz (la ) () όπως φαίεαι σο παραπάω Πίακα ω συχοήω ης συγκεκραμέης μουσικής κλίμακας. Το πρόβλημα Το πρόβλημα λοιπό, ο οποίο προκύπει ώρα, είαι ο εξής: Σο σχ. με βάση:. Μία (εκ ω προέρω) δεδομέη διάαξη Α ω χροικώ αξιώ ω αίσοιχω μουσικώ φθόγγω ( =,,, ) επάω σο άξοα Ox, και. Με όσα ααφέροαι σο Βήμα ο, Το ερώημα που γειέαι είαι: Μπορούμε α υπολογίσουμε ις συχόηες ω αίσοιχω μουσικώ φθόγγω ( =,,,, ), προκειμέου α δημιουργήσουμε ελικά, μια μουσική σύθεση, χρησιμοποιώας αποκλεισικά και μόο α Μαθημαικά; Η απάηση σο παραπάω αυό ερώημα είαι κααφαική και έχει, ως εξής: Ορισμός: Ορίζουμε, ως προθύσερο (γωιακό) μουσικό λόγο k εός μουσικού φθόγγου ( =,,, ) ο αριθμό:

4 k () όπου, ση σχέση () ο είαι η συχόηα ου μουσικού φθόγγου, - είαι η αίσοιχη χροική αξία ου μουσικού αυού φθόγγου και είαι η χροική αξία ου μουσικού φθόγγου. Ο προθύσερος (γωιακός) μουσικός λόγος k ης σχέσης () είαι, θεμελιώδους σημασίας ση «Μαθημαική Μουσική» και παίζει βασικόαο ρόλο σε μία μαθημαική μουσική σύθεση, που θέλουμε α δημιουργήσουμε.. Οι βασικοί αλγόριθμοι μιας μαθημαικής μουσικής σύθεσης. Αλγόριθμος ακολουθίας Ορισμός: Ορίζουμε, ως αλγόριθμο ακολουθίας μιας μαθημαικής μουσικής σύθεσης η σχέση: Πk,f() () όπου, ση σχέση (), είαι: = η συχόηα ου μουσικού φθόγγου f() = μία οποιαδήποε ακολουθία (φυσικώ αριθμώ), και Π k,f() = μία αλγεβρική παράσαση ω k και f() όπου, =,,, και >0. Παράδειγμα: Η αλγεβρική παράσαση: () σύμφωα με ο παραπάω ορισμό, παρισάει έα αλγόριθμο ακολουθίας μιας μαθημαικής μουσικής σύθεσης που θέλουμε α δημιουργήσουμε, όπου ση σχέση (), (βλέπε παρεθέσεις), είαι: k (προθύσερος (γωιακός) μουσικός λόγος) και f() (ακολουθία). Αλγόριθμος συάρησης Ορισμός: Ορίζουμε ως αλγόριθμο συάρησης μιας μαθημαικής μουσικής σύθεσης η σχέση: Π k (5) όπου, ση σχέση (5), είαι: = η συχόηα ου μουσικού φθόγγου, και Π k = είαι μία αλγεβρική παράαση ου προθύσερου (γωιακού) μουσικού λόγου k, ήοι με βάση η σχέση ():

5 όπου, =,,, και 0. Παράδειγμα: Η αλγεβρική παράσαση: Π (6) 5 (7) σύμφωα με ο παραπάω ορισμό, παρισάει έα αλγόριθμο συάρησης. Με απλά λόγια, έας «πρακικός καόας» για α δημιουργήσουμε, έα αλγόριθμο συάρησης είαι, ο εξής: Όα ση πραγμαική συάρηση: y = f(x) αικαασήσουμε ο y με ο και ο x με ο προθύσερο (γωιακό) μουσικό λόγο k όε, προκύπει αμέσως έας αλγόριθμος συάρησης, όπως π.χ. είαι αυός ης σχέσης (7), ο οποίος προκύπει από η πραγμαική συάρηση: y x x 5 Επίσης, αξιοσημείωοι αλγόριθμοι είαι αυοί οι όποιοι, προκύπου από η συάρηση y fx, a όα η συάρηση a, είαι ο άθροισμα λ ω περιοδικώ συαρήσεω με αίσοιχες περιόδους Τ, Τ, Τ.λΤ όπου, Τ είαι η θεμελιώδης περίοδος και Τ είαι ο μουσικό μερό ης μαθημαικής μουσικής σύδεσης που θέλουμε α δημιουργήσουμε (όπου, Τ= Τ). οι παραπάω λ περιοδικές συαρήσεις, μπορεί α είαι ( όλες ή μερικές από αυές ) ομοφασικές ή α παρουσιάζου μεαξύ ους, διαφορά φάσης. Προφαώς, η απλούσερη μορφή ω παραπάω αυώ λ περιοδικώ συαρήσεω είαι αυή ης ημιοοειδούς κ.λ.π μορφής. ΣΗΜΕΙΩΣΗ Οι σχέσεις () και (5), αποελού ις βασικές σχέσεις ης «Αρχής ης Μουσικής Συέχειας» ης Μαθημαικής Μουσικής.. Παραδείγμαα αλγορίθμω ακολουθίας και αλγορίθμω συάρησης Μεά από αυά που ααφέραμε σα προηγούμεα, παρακάω θα ααφέρουμε (εδεικικά), μερικά παραδείγμαα αλγορίθμω ακολουθίας και αλγορίθμω συάρησης.. Αλγόριθμοι ακολουθίας a) : Παραδείγμαα

6 b) c) π cos d) e.... κ.λπ.. Αλγόριθμοι συάρησης a) 0 5 b) 8 c) si d) 5 cos cos.... κ.λπ. Σημείωση: Οι αλγόριθμοι ακολουθίας και οι αλγόριθμοι συάρησης που ααφέραμε σο παραπάω παράδειγμα έχου καθαρά εδεικικό χαρακήρα γεγοός που σημαίει, όι μπορεί α ΜΗΝ ΕΙΝΑΙ και οι καάλληλοι αλγόριθμοι για μια ποιοικά αποδεκή (από μουσικής άποψης), μαθημαική μουσική σύθεση που θέλουμε α δημιουργήσουμε. Συεπώς, εκείο ο οποίο έχει βασική σημασία είαι, όι: Ο Μαθημαικο-μουσικός θα πρέπει α βρει ο καάλληλο εκείο αλγόριθμο (αλγόριθμο ακολουθίας ή αλγόριθμο συάρησης), καθώς επίσης και η καάλληλη εκείη διάαξη ω χροικώ αξιώ, προκειμέου α δημιουργήσει (από μουσικής άποψης) μία ποιοικά αποδεκή, μαθημαική μουσική σύθεση. Αυός είαι, ο βασικός ρόλος ου Μαθημαικο-συθέη. 5. Υπολογισμός ω συχοήω ω μουσικώ φθόγγω ( =,,, ) μιας μαθημαικής μουσικής σύθεσης (χρησιμοποιώας έα αλγόριθμο ακολουθίας ή έα αλγόριθμο συάρησης). ΠΑΡΑΔΕΙΓΜΑ

7 Ας υποθέσουμε σχ., όι θέλουμε α δημιουργήσουμε μία μαθημαική μουσική σύθεση με βάση π.χ. ο αλγόριθμο ακολουθίας: (8) Ση συέχεια, επιλέγουμε επί ου άξοα Οx μία διάαξη Α ω χροικώ αξιώ (=,,, ) ω μουσικώ φθόγγω ης μαθημαικής μουσικής σύθεσης που θέλουμε α δημιουργήσουμε. Σημείωση: Η επιλογή ου αλγόριθμου (8) και ης διάαξης Α ω χροικώ αξιώ επάω σο άξοα Ox είαι καθαρά θέμα προσωπικής μας επιλογής. Ως γωσό και σύμφωα με ο ορισμό ση σχέση (8), είαι: k (προθύσερος (γωιακός) μουσικός λόγος) και f() (ακολουθία) όπου, ση σχέση (8) είαι =,,, και > 0. Σύμφωα λοιπό, με αυά που ααφέραμε σα προηγούμεα και με βάση ο σχ., έχουμε:. Ο πρώος μουσικός φθόγγος ( = ) εξ ορισμού (σύμφωα με η επιλογή μας) ου δίδουμε π.χ. συχόηα: συχόηα 0 Hz (la ), βλέπε Βήμα ο και χροική αξία (βλέπε, σχ. ). Άρα: Ο πρώος μουσικός φθόγγος ( = ) είαι: Ο la με χροική αξία (Α ). Ο δεύερος μουσικός φθόγγος ( = ) με βάση ο αλγόριθμο ακολουθίας (8), έχει συχόηα, η οποία είαι: 0 do, ήοι: 58 Hz 5, Hz, βλέπε Πίακας Άρα: Ο δεύερος μουσικός φθόγγος ( = ) είαι: Ο do με χροική αξία (Α )

8 . Ο ρίος μουσικός φθόγγος ( = ) με βάση ο αλγόριθμο ακολουθίας (8), έχει συχόηα, η οποία είαι: 58 la, ήοι:, Hz 0 Hz, βλέπε Πίακας Άρα: Ο ρίος μουσικός φθόγγος ( = ) είαι: Ο la με χροική αξία (Α ). Ο έαρος μουσικός φθόγγος ( = ) με βάση ο αλγόριθμο ακολουθίας (8), έχει συχόηα η οποία είαι:, re, ήοι: 559,05 Hz 587, Hz, βλέπε Πίακας Άρα: Ο έαρος μουσικός φθόγγος ( = ) είαι: Ο re με χροική αξία (Α ).. κ.ο.κ. Με ο ίδιο ακριβώς ρόπο που ααφέραμε παραπάω, υπολογίζουμε (ση συέχεια) ις συχόηες 5, 6, 7 αισοίχως, ου πέμπου, έκου, εβδόμου και οσού μουσικού φθόγγου, σχ.. Συεπώς, με βάση α παραπάω συμπεράσμαα Α, Α, Α, Α,. Α που προέκυψα η μαθημαική μας σύθεση είαι ολοκληρωμέη. Έσι λοιπό, εύκολα ώρα μπορούμε α αιγράψουμε η μαθημαική μουσική σύθεση που προέκυψε, σε μια μουσική παριούρα και α «παίξουμε» (η μουσική αυή σύθεση) σε έα μουσικό όργαο π.χ. πιάο, μπουζούκι, κ.λπ. Σημείωση: Το παραπάω παράδειγμα που ααφέραμε (από μουσικής άποψης) είαι, καθαρά εδεικικό και έχει ως σκοπό (κυρίως, παιδαγωγικό) α γωρίσουμε ο ρόπο με ο οποίο: Πώς μπορούμε α δημιουργήσουμε μία μουσική σύθεση εός μουσικού έργου (συμφωίας, ραγουδιού, κ.λπ.) χρησιμοποιώας, αποκλεισικά και μόο α μαθημαικά, με η μαθημαική μέθοδο ου αλγόριθμου ακολουθίας, που ααφέραμε παραπάω.

9 ΣΗΜΕΙΩΣΗ Με ο ίδιο ρόπο που εργασθήκαμε σο προηγούμεο παράδειγμα και δημιουργήσαμε μια μαθημαική μουσική σύθεση με βάση έα αλγόριθμο ακολουθίας, με ο ίδιο ακριβώς ρόπο εργαζόμασε και για η δημιουργία μιας μαθημαικής μουσικής σύθεσης με βάση έα αλγόριθμο συάρησης. Ο ρόπος εργασίας και σις δύο αυές παραπάω περιπώσεις είαι, ακριβώς ο ίδιος. ΑΞΙΟΣΗΜΕΙΩΤΗ ΠΑΡΑΤΗΡΗΣΗ Όπως παραηρούμε (και μεά από όλα αυά που ααφέραμε παραπάω ση μελέη μας αυή) ο αισθηικό αποέλεσμα (ευχάρισο ή όχι) μιας μαθημαικής μουσικής σύθεσης η οποία δημιουργήσαμε, εξαράαι: ) Από ο ρόπο διάαξης ω χροικώ αξιώ ( =,,, ) επάω σο άξοα Ox, και ) Από ο ύπο ου αλγόριθμου (αλγόριθμος ακολουθίας ή αλγόριθμος συάρησης) ο οποίο χρησιμοποιήσαμε. Σημείωση: Τα παραπάω ααφερόμεα σις παραγράφους () και () είαι (όπως ααφέραμε σα προηγούμεα), καθαρά θέμα προσωπικής μας επιλογής. Δοκιμάζοας λοιπό ώρα, διάφορες διαάξεις ω χροικώ αξιώ επί ου άξοος Ox σχ., με ους αίσοιχους ύπους αλγορίθμω, δημιουργούμε έα αριθμό Κ μαθημαικώ μουσικώ συθέσεω. Ση συέχεια, όλες αυές ις Κ μαθημαικές μουσικές συθέσεις που δημιουργήσαμε ις παίζουμε (δοκιμασικά) σε έα μουσικό όργαο π.χ. σε έα πιάο. Όα λοιπό, μεά ο «παίξιμο» ω Κ αυώ μαθημαικώ μουσικώ συθέσεω σο πιάο, κααλήξουμε ελικά σε μία μαθημαική μουσική σύθεση, η οποία (καά η γώμη μας) μας ικαοποιεί αισθηικώς από μουσικής άποψης, όε: Με η βοήθεια ου «αθρώπιου παράγοα» (μουσικό συθέη, εορχησρωή, κ.λπ.), ολοκληρώουμε η μαθημαική μουσική σύθεση η οποία επιλέξαμε, χρησιμοποιώας π.χ. περισσόερα μουσικά όργαα και βελιώοας ις διάφορες «μουσικές λεπομέρειες» ης παραπάω αυής μαθημαικής μουσικής σύθεσης που έχουμε επιλέξει. Έσι λοιπό, με ο ρόπο αυό που ααφέραμε παραπάω η μαθημαική μουσική σύθεση η οποία εμείς ελικά επιλέξαμε, παίρει μουσικώς η ελική και ολοκληρωμέη μορφή ης και ση συέχεια η αιγράφουμε σε μια μουσική παριούρα. Σημείωση: Τεχικώς υπάρχει ο ρόπος ώσε, κάθε μια από ις παραπάω Κ δοκιμές ω μαθημαικώ μουσικώ συθέσεω που δημιουργήσαμε, α μας δίδει αμέσως ο «άκουσμα» ης, σε έα μουσικό όργαο π.χ. σε έα πιάο. Αυό αποελεί συόμευση χρόου και πολύ μεγάλη διευκόλυση για έα Μαθημαικο-συθέη. Τέλος και σύμφωα με αυά που ααφέραμε ση μελέη μας αυή, κααλήγουμε σο παρακάω βασικό συμπέρασμα. Συμπέρασμα Με βάση ις αρχές ης «Μαθημαικής Μουσικής» ις οποίες ααπύξαμε ση μελέη μας αυή, προκύπει όι:

10 Έα άομο με βασικές γώσεις μαθημαικώ και μουσικής χρησιμοποιώας έα υπολογισή και κάποια απλά προγράμμαα (υπολογισή), μπορεί πολύ εύκολα α γίει έας αξιόλογος μουσικοσυθέης. ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΟΥΣΙΚΕΣ ΣΥΝΘΕΣΕΙΣ. «Ααλογικού ύπου», μαθημαικές μουσικές συθέσεις Ας υποθέσουμε σχ., όι μας δίδεαι μια διάαξη Α ω μουσικώ φθόγγω ( =,,,.), μιας μαθημαικής μουσικής σύθεσης που θέλουμε α δημιουργήσουμε. Με βάση λοιπό, ο προθύσερο (γωιακό) μουσικό λόγο k ης σχέσης (), θεωρούμε η σχέση: k k k... k ήοι, η σχέση:... (9) Επίσης, ση σχέση (9) για η συχόηα θέουμε μία αυθαίρεη ιμή (ης επιλογής μας) π.χ. = 0 Hz (la ). Συεπώς, σο πρώο όρο: (0) επειδή, α και είαι γωσά, καθώς και ο είαι γωσό (ήοι, = 0 Hz) όε, ο πρώος όρος (σχέση (0)) ση σχέση (9) έχει γωσή ιμή C, ήοι είαι: C () Έσι λοιπό, με βάση η σχέση (), η σχέση (9) μας δίδει: C... () Συεπώς, από η σχέση (), έχουμε:

11 C C C () Σις σχέσεις (), επειδή α δεύερα μέλη ους είαι γωσοί αριθμοί θα είαι γωσές και οι συχόηες:,,,., - () Συεπώς, επειδή ση μαθημαική μουσική σύθεση που θέλουμε α δημιουργήσουμε είαι γωσές οι συχόηες,,,, -, καθώς και οι αίσοιχες χροικές αξίες ους,,,, - (διόι η διάαξη Α ω μουσικώ φθόγγω σο σχ. είαι, εκ ω προέρω δεδομέη) αυό σημαίει, όι η μαθημαική μουσική σύθεσή μας είαι ολοκληρωμέη. Σημείωση: Σε ό,ι αφορά η συχόηα ου ελευαίου μουσικού φθόγγου ( =,,, ) εξ ορισμού, η συχόηα αυή η θεωρούμε, ίση με η συχόηα ου πρώου μουσικού φθόγγου ( = ), ήοι είαι =. Έσι λοιπό, όα ολοκληρωθεί η παραπάω αυή υπολογισική εργασία, όε μεαφέρουμε (αιγράφουμε) η μαθημαική αυή μουσική σύθεση που προέκυψε, σε μία μουσική παριούρα και η παίζουμε σε έα μουσικό όργαο π.χ. πιάο, βιολί, μπουζούκι, κ.λπ.. «Διοφαικού ύπου», μαθημαικές μουσικές συθέσεις Σις μαθημαικές μουσικές συθέσεις «Διοφαικού ύπου», εργαζόμασε, ως εξής: ΠΑΡΑΔΕΙΓΜΑ Ορισμός: Ορίζουμε, ως προθύσερο (εμβαδικό) μουσικό λόγο k εός μουσικού φθόγγου ( =,,, ) ο αριθμό: k (5) Ας υποθέσουμε σχ., όι θέλουμε α δημιουργήσουμε μια μαθημαική μουσική σύθεση Α («Διοφαικού ύπου») ης οποίας ο μουσικό μέρο ης α είαι π.χ. T. ) Ας υποθέσουμε επίσης, όι ο ο μέρο θέλουμε α έχει π.χ. () μουσικές όες ω οποίω οι συχόηες α είαι,,, και οι αίσοιχες χροικές αξίες ους α είαι,,,.

12 Ας πάρουμε ώρα, (με βάση ο προθύσερο (εμβαδικό) μουσικό λόγο ης σχέσης (5)) μία απλή περίπωση «Διοφαικού ύπου» μαθημαικώ μουσικώ συθέσεω, όπου για ο ο μουσικό μέρο α ισχύει η σχέση: k k C (6) k ήοι, με βάση η σχέση (5), έχουμε: όπου, C = θεικός αριθμός. C (7) Όπως παραηρούμε, η σχέση (7) είαι μία Διοφαική εξίσωση με (8) αγώσους, ήοι ους,,, και,,,. Καόπι, ορίζουμε η συθήκη, ήοι α είαι: Τ (8) και οι συχόηες,,, α περιέχοαι όλες, π.χ. εός ης ης Οκάβας (βλέπε, Πίακας ), ήοι α είαι: si,,, 6,6 Hz 9,9 Hz (9) do Λύοας ώρα η Διοφαική εξίσωση (7) ως προς ους αγώσους,,, και,,, και λαμβάοας υπόψη η συθήκη ω σχέσεω (8) και (9) βρίσκουμε ις ιμές ω αγώσω,,, και,,,. Άρα, ο ο μέρο ης μαθημαικής μουσικής σύθεσής μας έχει () μουσικές όες με γωσές ις συχόηες,,, και ις αίσοιχες χροικές αξίες ους,,,. ) Ας υποθέσουμε ώρα, όι ο ο μέρο ης μαθημαικής μουσικής σύθεσής μας, θέλουμε α έχει π.χ. () μουσικές όες ω οποίω οι συχόηες α είαι 5, 6, 7 οι αίσοιχες χροικές αξίες ους α είαι 5, 6, 7 και για ο ο μουσικό μέρο α ισχύει η σχέση: k k C (0) k5 6 7 ήοι: C () και η γωσή συθήκη: Τ 6 () 5 7

13 si,, 6,6 Hz 9,9 Hz () do Λύοας ώρα, η Διοφαική εξίσωση () ως προς ους αγώσους 5, 6, 7 και 5, 6, 7 και λαμβάοας υπόψη η συθήκη ω σχέσεω () και () βρίσκουμε ις ιμές ω αγώσω 5, 6, 7 και 5, 6, 7. Άρα, ο ο μέρο ης μαθημαικής μουσικής σύθεσής μας έχει () μουσικές όες με γωσές ις συχόηες 5, 6, 7 και ις αίσοιχες χροικές αξίες ους 5, 6, 7. ) Επίσης, εά θέλουμε ο ο μουσικό μέρο α έχει π.χ. (5) μουσικές όες με συχόηες 8, 9, 0,, και αίσοιχες χροικές αξίες 8, 9, 0,,, όε για ο ο μουσικό μέρο θα ισχύει η σχέση: k k k k C () k8 9 0 ήοι: με η γωσή συθήκη: Τ C si,,,, 6 Hz 9,9 Hz do Έσι λοιπό, με ο ίδιο ακριβώς ρόπο που εργασθήκαμε για ο ο και ο μέρο (όπως ααφέραμε παραπάω), εργαζόμασε και για ο ο, ο, 5 ο κ.λπ. μουσικό μέρο ης μαθημαικής μουσικής σύθεσής μας. Προφαώς, η επίλυση ω Διοφαικώ εξισώσεω (7), (), κ.λπ. με ις αίσοιχες γωσές συθήκες ους, απαιεί η χρήση Ηλεκροικού Υπολογισού. Επίσης, οι ιμές ω συχοήω,,, που θα προκύψου από η επίλυση ω Διοφαικώ εξισώσεω θα πρέπει α είαι, «σρογγυλοποιημέες» με ις αίσοιχες συχόηες ου Πίακα, καθώς και οι ιμές ω χροικώ αξιώ,,, που θα προκύψου θα πρέπει α είαι, «σρογγυλοποιημέες» με ις αίσοιχες χροικές αξίες (,,,,,, ) Όα λοιπό, ολοκληρωθεί η παραπάω διαδικασία για ο ο, ο, ο, ο, 5 ο, κ.λπ. μουσικό μέρο, όε μεαφέρουμε (αιγράφουμε) η μαθημαική αυή μουσική σύθεση που προέκυψε, σε μια μουσική παριούρα και η παίζουμε σε έα μουσικό όργαο π.χ. σε έα πιάο, κ.λπ. ΣΗΜΕΙΩΣΗ: Τις σχέσεις (6), (0), (), εφεξής θα ους οομάζουμε, Διοφαικούς μουσικούς ύπους ης μαθημαικής μουσικής σύθεσης που θέλουμε α δημιουργήσουμε. Καά καόα, οι Διοφαικοί μουσικοί ύποι, διαηρού ο ίδιο μαθημαικό φορμαισμό ους σε όλα α μουσικά μέρα ( ο, ο, ο, κ.λπ.) ης μαθημαικής μουσικής σύθεσης. Έσι π.χ. οι Διοφαικοί μουσικοί ύποι (6), (0), (), θα μπορούσα (σε μια άλλη μαθημαική μουσική σύθεση Β) α ήα αισοίχως:

14 k k k C, ( ο Μουσικό μέρο) k k k C, ( ο Μουσικό μέρο) k 8 k9 k0 k k C, ( ο Μουσικό μέρο).... κ.λπ. ή επίσης (σε μια άλλη μαθημαική μουσική σύθεση Γ) α ήα, αισοίχως: k a k a k C, ( ο Μουσικό μέρο) a a5k5 a k 6 6 a7k7 C a8k8 a k 9 9 a k 0 0 ak ak, ( ο Μουσικό μέρο) C, ( ο Μουσικό μέρο).... κ.λπ. όπου a, a, a, = πραγμαικοί αριθμοί. Τέλος θα πρέπει α οίσουμε, όι: Σις μαθημαικές μουσικές συθέσεις «Διοφαικού ύπου», όα είαι γωσά, α) Το μουσικό μέρο Τ, β) Ο Διοφαικός ύπος, γ) Ο αριθμός ω μουσικώ φθόγγω μέσα σε κάθε μουσικό μέρο και δ) Η (γωσή) συθήκη, όε: Επειδή, η επίλυση ω Διοφαικώ εξισώσεω ου ου, ου, ου, κ.λπ. μουσικού μέρου μας δίδου (καά καόα) η κάθε μία, περισσόερες από μία λύσεις αυό σημαίει, όι θα έχουμε και έα μεγάλο αριθμό μαθημαικώ μουσικώ συθέσεω με βάση α συγκεκριμέα δεδομέα (α), (β), (γ), (δ). Δηλαδή σο παράδειγμα μας σχ., εά η Διοφαική εξίσωση ου ου μουσικού μέρου έχει s (αποδεκές) λύσεις, η Διοφαική εξίσωση ου ο μουσικού μέρου έχει s (αποδεκές) λύσεις, η Διοφαική εξίσωση ου ου μουσικού μέρου έχει s (αποδεκές) λύσεις και η Διοφαική εξίσωση ου Νου μουσικού μέρου έχει s N (αποδεκές) λύσεις, όε: Ο συολικός αριθμός S ω μαθημαικώ μουσικώ συθέσεω που θα προκύψου θα είαι: S s (5) s s... sn ήοι (καά καόα) θα προκύψει, έας μεγάλος αριθμός S μαθημαικώ μουσικώ συθέσεω. ΑΝΑΚΕΦΑΛΑΙΩΣΗ Μεά από όλα αυά (που ααφέραμε ση μελέη μας αυή) κααλήγουμε, όι οι κυριόερες μαθημαικές μουσικές συθέσεις ης Μαθημαικής μουσικής είαι, οι παρακάω:

15 . Μαθημαικές μουσικές συθέσεις, αλγορίθμου ακολουθίας Σις μαθημαικές μουσικές συθέσεις, αλγορίθμου ακολουθίας και σο άξοα Ox ου σχ. είαι, εκ ω προέρω γωσά: α. Το μουσικό μέρο Τ. β. Η διάαξη ω χροικώ αξιώ ω μουσικώ φθόγγω ( =,,, ). γ. Ο αλγόριθμος ακολουθίας.. Μαθημαικές μουσικές συθέσεις, αλγορίθμου συάρησης Σις μαθημαικές μουσικές συθέσεις, αλγορίθμου συάρησης και σο άξοα Ox ου σχ. είαι, εκ ω προέρω γωσά: α. Το μουσικό μέρο Τ. β. Η διάαξη ω χροικώ αξιώ ω μουσικώ φθόγγω ( =,,, ). γ. Ο αλγόριθμος συάρησης.. Μαθημαικές μουσικές συθέσεις, «ααλογικού ύπου» Σις μαθημαικές μουσικές συθέσεις, «ααλογικού ύπου» και σο άξοα Ox ου σχ. είαι, εκ ω προέρω γωσά: α. Το μουσικό μέρο Τ. β. Η διάαξη ω χροικώ αξιώ ω μουσικώ φθόγγω ( =,,, ).. Μαθημαικές μουσικές συθέσεις, «Διοφαικού ύπου» Σις μαθημαικές μουσικές συθέσεις, «Διοφαικού ύπου» και σο άξοα Ox ου σχ. είαι, εκ ω προέρω γωσά: α. Το μουσικό μέρο Τ. β. Ο Διοφαικός μαθημαικός ύπος ης μαθημαικής μουσικής σύθεσης. γ. Ο αριθμός ω μουσικώ φθόγγω, μέσα σο κάθε μουσικό μέρο Τ. δ. Συθήκη: Το εύρος ω συχοήω (ση συγκεκραμέη μουσική κλίμακα) εός ου οποίου θα πρέπει α περιέχοαι όλες οι συχόηες ω μουσικώ φθόγγω (=,,, ) ης μαθημαικής μουσικής σύθεσης που θέλουμε α δημιουργήσουμε. Μια πρόαση Όποιος (Μαθημαικός, Φυσικός, Μηχαικός, Μουσικός, κ.λπ.) εδιαφέρεαι α ασχοληθεί με η Μαθημαική μουσική και ειδικόερα με η μαθημαική μουσική σύθεση θα πρέπει (καά η γώμη μου) α αρχίσει α ασχολείαι πρώα με ις μαθημαικές μουσικές συθέσεις «ααλογικού ύπου» (οι οποίες είαι, οι πιο απλούσερες), καόπι α προχωρήσει σις μαθημαικές μουσικές συθέσεις αλγορίθμου ακολουθίας ή συάρησης και ελικώς, α ασχοληθεί με ις μαθημαικές μουσικές συθέσεις «Διοφαικού ύπου». Αυός (ομίζω) όι, είαι έας πολύ καλός (παιδαγωγικός) ρόπος για η εκμάθηση και εμπέδωση ω βασικώ αρχώ ης Μαθημαικής μουσικής που ααπύξαμε ση εργασία μας αυή. ΕΠΙΛΟΓΟΣ Η «ΜΑΘΗΜΑΤΙΚΗ ΜΟΥΣΙΚΗ» είαι, έας έος κλάδος ω Μαθημαικώ, και είαι η «γέφυρα», η οποία συδέει η Επισήμη ω Μαθημαικώ με η Τέχη ης Μουσικής.

16 Όπως διαπισώουμε, ο πεδίο έρευας ης Μαθημαικής Μουσικής είαι αεξάληο και πολύ εδιαφέρο. Ααμφισβήηα, η Μαθημαική μουσική αοίγει «έους ορίζοες» έρευας σο χώρο ης Μουσικής (όπως η γωρίζουμε, μέχρι σήμερα). Έσι λοιπό (μεά από αυά που ααφέραμε ση μελέη μας αυή): Ο «ολοκληρωμέος» Μουσικοσυθέης ου μέλλοος θα πρέπει α έχει απαραιήως και βασικές γώσεις Μαθημαικώ. Διόι, οι Μαθημαικοί είαι «Μουσικοσυθέες», χωρίς α ο συειδηοποιού και α μπορού μουσικώς α ο εκφράσου αλλά και οι Μουσικοσυθέες είαι και αυοί «Μαθημαικοί», χωρίς α ο συειδηοποιού και α μπορού μαθημαικώς α ο εκφράσου. Καθόι, η Μουσική δε είαι ίποε άλλο, παρά α Μαθημαικά ου ήχου και ου χρόου, όπου (ο ήχος και ο χρόος) είαι, αρμοικά συδεδεμέα μεαξύ ους. Τέλος, είαι γωσό, όι: Ο πρώος βαθύς γώσης, ο οποίος επισήμαε η άρρηκη σχέση η οποία υπάρχει μεαξύ ω Μαθημαικώ και ης Μουσικής, ήα ο Έλληας Φιλόσοφος και Μύσης, ο Πυθαγόρας. Copyright 0: Christos A. Tsolkas Χρήσος Α. Τσόλκας 7 Μαρίου 0

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ V. ΜΙΚΡΟΠΛΑΣΤΙΚΟΤΗΤΑ ΤΩΝ ΚΡΥΣΤΑΛΛΩΝ 1. Εισαγωγή Ση µέχρι ώρα συζήησή µας για ην µηχανική συµπεριφορά ων µεαλλικών υλικών, όπου εξεάσαµε ην ελασική και ην πλασική ους συµπεριφορά

Διαβάστε περισσότερα

στους μιγαδικούς αριθμούς

στους μιγαδικούς αριθμούς Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;

Διαβάστε περισσότερα

Δυνάμεις πραγματικών αριθμών

Δυνάμεις πραγματικών αριθμών Κεφάλαιο 1 ο 45 Β. Δυάμεις πραγματικώ αριθμώ Α έχουμε έα γιόμεο της μορφής (-) (-) (-) (-) όπου κάθε παράγοτας είαι (δηλαδή ο ίδιος ο αριθμός) μπορούμε α το συμβολίσουμε με μια πιο απλή μορφή : (-) 4.

Διαβάστε περισσότερα

Όταν πραγματοποιείται το Α πραγματοποιείται και το Β.

Όταν πραγματοποιείται το Α πραγματοποιείται και το Β. Βασικές έοιες και τύποι πιθαοτήτω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός πειράματος τύχης (πεπερασμέος, απείρως αριθμήσιμος, συεχής) Εδεχόμεα Α, Β, (απλά, σύθετα) Βέβαιο εδεχόμεο Αδύατο

Διαβάστε περισσότερα

Επίπεδο εκπαίδευσης πατέρα 2

Επίπεδο εκπαίδευσης πατέρα 2 Περιγραφική Στατιστική Όπως, ήδη έχουμε ααφέρει, στόχος της Περιγραφικής Στατιστικής είαι, «η αάπτυξη μεθόδω για τη συοπτική και τη αποτελεσματική παρουσίαση τω δεδομέω» Για το σκοπό αυτό, έχου ααπτυχθεί,

Διαβάστε περισσότερα

Θεματική ενότητα : Βασικά εργαλεία και Μέθοδοι για τον έλεγχο της ποιότητας.

Θεματική ενότητα : Βασικά εργαλεία και Μέθοδοι για τον έλεγχο της ποιότητας. Εργασία 5 Θεμαική ενόηα : Βασικά εργαλεία και Μέθοδοι για ον έλεγχο ης ποιόηας. Άσκηση 1 (η άσκηση έχει λυθεί βάσει ων διευκρινίσεων που δόθηκαν από ον καθηγηή ) α) Το καάλληλο σαισικό εργαλείο που θα

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί φαίνονται οι παρατηρήσεις που πήραμε για το ύψος και το βάρος 16 εργατών μιας βιομηχανίας.

Στον πίνακα που ακολουθεί φαίνονται οι παρατηρήσεις που πήραμε για το ύψος και το βάρος 16 εργατών μιας βιομηχανίας. Συσέτιση δύο μεταβλητώ Συσέτιση δύο μεταβλητώ Θεωρούμε δύο τυαίες μεταβλητές X, Y και ζεύγη παρατηρήσεω,,,,...,, από τυαίο δείγμα μεγέθους. Ααφερόμαστε, δηλαδή, σε μη πειραματικά δεδομέα ο ερευητής δε

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επααληπτικό Διαγώισμα Μαθηματικώ Γεικής Παιδείας Γ Λυκείου Θέμα A Α.α) Τι οομάζουμε συάρτηση και τι οομάζουμε πραγματική συάρτηση πραγματικής μεταβλητής; β) Τι λέγεται τιμή μιας συάρτησης f στο χ ; γ)

Διαβάστε περισσότερα

υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ,

υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ, Προβλήματα Πιθαοτήτω Προβλήματα Πιθαοτήτω Από εξετάσεις που έγια σε 5000 ζώα μιας κτηοτροφικής μοάδας, διαπιστώθηκε ότι 000 είχα προσβληθεί από μια ασθέεια Α, 800 είχα προσβληθεί από μια ασθέεια Β εώ 00

Διαβάστε περισσότερα

4. Αντιδράσεις πολυμερισμού

4. Αντιδράσεις πολυμερισμού 4. Ατιδράσεις πολυμερισμού Ποια μόρια οομάζοται μακρομόρια Τα μακρομόρια είαι μόρια μεγάλου μοριακού βάρους που σχηματίζοται από τη συέωση (= πολυμερισμό) απλούστερω δομικά μορίω (= μοομερή) σύμφωα με

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή

ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή Μέρος πέµπτο ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ Εισαγωγή Στα προηγούµεα κεφάλαια είδαµε τις διάφορες µεθόδους συλλογής και επεξεργασίας του βιοµετρικού υλικού. Κάθε βιοµετρική επεξεργασία όµως έχει

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα Ιγάτιος Ιωαίδης Στατιστική Όριο - Συέχεια συάρτησης Παράγωγοι Ολοκληρώματα Περιέχει: Συοπτική Θεωρία Μεθοδολογία Λύσης τω Ασκήσεω Λυμέα Παραδείγματα Ασκήσεις με τις απατήσεις τους ΘΕΣΣΑΛΟΝΙΚΗ Το βιβλίο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΙΟΥΝΙΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β]

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β] ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Μαθηματιά Γειής Παιδείας Γ Λυείου Δημήτρης Αργυράης Γεράσιμος Κουτσαδρέας Μαθηματιά Γειής Παιδείας Στατιστιή Γ. Λυείου ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

Διαβάστε περισσότερα

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας Στα Μαθηματιά Γειής Παιδείας Tι οομάζουμε συάρτηση Tι οομάζουμε παραγματιή συάρτηση πραγματιής μεταβλητής Μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α πεδίο ορισμού ατιστοιχίζεται σε έα αριβώς στοιχείο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΧΗΜΕΙΑΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΧΗΜΕΙΑΣ ΤΕΙ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΧΗΜΕΙΑΣ ΦΟΥΝΤΟΥΚΙ ΗΣ Γ. ΕΥΑΓΓΕΛΟΣ Ρ. ΧΗΜΙΚΟΣ ΜΗΧΑΝΙΚΟΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΥΠΟ ΟΜΩΝ ΙΕΥΘΥΝΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΝΟΤΗΤΑΣ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΥΠΟ ΟΜΩΝ ΙΕΥΘΥΝΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΝΟΤΗΤΑΣ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΥΠΟ ΟΜΩΝ ΙΕΥΘΥΝΣΗ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΝΟΤΗΤΑΣ ΠΕΙΡΑΙΩΣ Ταχ. διεύθυση: Ακτή Ποσειδώος 14-16 Ταχ. κώδικας:

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση - 4 o Γεικό Λύκειο Χαίω Γ τάξη Μαθηματικά Γεικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράκης http://users.sch.gr/mpapagr 4 ο Γεικό Λύκειο Χαίω ΚΑΤΑΝΟΜΕΣ ΣΥΧΝΟΤΗΤΩΝ 95 ΝΑ ΣΥΜΠΛΗΡΩΘΟΥΝ ΟΙ

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη B

Γυμνάσιο Μαθηματικά Τάξη B 113 Θέματα εξετάσεω περιόδου Μαΐου-Ιουίου στα Μαθηματικά Τάξη B! 114 a. Να διατυπώσετε το ορισμό της δύαμης α με βάση το ρητό α και εκθέτη το φυσικό αριθμό > 1. b. Να συμπληρωθού οι παρακάτω τύποι, δυάμεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΠΕΡΙΛΗΨΗ ΣΥΜΒΟΛΙΣΜΩΝ NOTATION ΓΙΑ ΙΑΝΥΣΜΑΤΑ ΚΑΙ ΤΑΝΥΣΤΕΣ -Bd, Steat and Lghtfoot "Tanpot Phenomena" -Bd, Amtong and Haage

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Multi Post. Ενδοριζικοί άξονες ανασύστασης

Multi Post. Ενδοριζικοί άξονες ανασύστασης Multi Post Ενδορζοί άξς ανασύσασης MultiPost Σύσηµα νδορζών αξόνων α αποαάσαση µ ρηνώδη υλά Το σύσηµα Multi Post ης D+Z που πρλαµβάν άξς αασυασµένους από αθαρό άνο ίνα ένα ύολο σο χρσµό α δοµασµένο σύσηµα

Διαβάστε περισσότερα

11.1 11.3. Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο

11.1 11.3. Ορισµός ιδιότητες εγγραφή καν. πολυγώνων σε κύκλο 1 11.1 11. ρισµός ιδιότητες εγγραφή κα. πολυγώω σε κύκλο ΘΩΡΙ 1. Έα πολύγωο λέγεται καοικό, ότα έχει όλες τις πλευρές του ίσες και όλες τις γωίες του ίσες.. ύο καοικά πολύγωα µε το ίδιο αριθµό πλευρώ είαι

Διαβάστε περισσότερα

1. Κατά μήκος μιας χορδής μεγάλου μήκους, η οποία ταυτίζεται με τον άξονα x Ox, διαδίδονται ταυτόχρονα

1. Κατά μήκος μιας χορδής μεγάλου μήκους, η οποία ταυτίζεται με τον άξονα x Ox, διαδίδονται ταυτόχρονα ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ 1. Κατά μήκος μιας χορδής μεγάλου μήκους, η οποία ταυτίζεται με τον άξονα x Ox, διαδίδονται ταυτόχρονα δύο αρμονικά κύματα που έχουν εξισώσεις y 1 = 0,1ημπ(5t,5x) (S.I.) και y = 0,1ημπ(5t

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη Ο ΠΥΘΑΓΟΡΑΣ (572-500 ΠΧ) ΗΤΑΝ ΦΟΛΟΣΟΦΟΣ, ΜΑΘΗΜΑΤΙΚΟΣ ΚΑΙ ΘΕΩΡΗΤΙΚΟΣ ΤΗΣ ΜΟΥΙΣΚΗΣ. ΥΠΗΡΞΕ Ο ΠΡΩΤΟΣ ΠΟΥ ΕΘΕΣΕ ΤΙΣ ΒΑΣΕΙΣ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IV. ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ. Ειαγωγή Η θωρία πλαικόηας αχολίαι µ ην υµπριφορά ων µαλλικών υλικών, όαν οι παραµορφώις ίναι πλέον αρκά µγάλς και ο νόµος ου Hooke παύι να

Διαβάστε περισσότερα

Εξισώσεις 2 ου βαθμού

Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Η εξίσωση της μορφής αχ 2 + βχ + γ = 0, α 0 λύνεται σύμφωνα με τον παρακάτω πίνακα. Δ = β 2 4αγ Η εξίσωση αχ 2 + βχ + γ = 0, α 0 αν Δ>0 αν Δ=0 αν Δ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Τι οομάζεται συάρτηση Συάρτηση uncton είαι μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α ατιστοιχίζεται σε έα αριβώς στοιχείο άποιου

Διαβάστε περισσότερα

Κ Α Ν Ο Ν Ι Σ Μ Ο Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Α Σ Ε Π Ι Τ Ρ Ο Π Ω Ν

Κ Α Ν Ο Ν Ι Σ Μ Ο Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Α Σ Ε Π Ι Τ Ρ Ο Π Ω Ν Κ Α Ν Ο Ν Ι Σ Μ Ο Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Α Σ Ε Π Ι Τ Ρ Ο Π Ω Ν Ψ η φ ί σ τ η κ ε α π ό τ η Γ ε ν ι κ ή Σ υ ν έ λ ε υ σ η τ ω ν Μ ε λ ώ ν τ ο υ Σ Ε Π Ε τ η ν 24 η Μ α ΐ ο υ 2003 Δ ι ά τ α ξ η Ύ λ η ς 1. Π

Διαβάστε περισσότερα

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = =

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = = Παράδειγα Το γωστό παράδειγα ε τα βάρη 0 ατόω ταξιοηέα σε 5 οάδες. Η έση τιή για το δείγα έχει βρεθεί 77. Τάξη Απόλυτες συχότητες Κετρική τιή τάξης Απόκλιση από το έσο 65-69 67,5 9,5 70-7 6 7,5,5 75-79

Διαβάστε περισσότερα

ΚΗΠΟΣ & ΒΕΡΑ. τα «πώς ντας σε όλα μας ό πλούσιο φωτογρ. λίδα 3. όλης. Διαβάστε στη σελ. 7 για ένα βιβλίο που θα κάνει τις ιδέες σας...

ΚΗΠΟΣ & ΒΕΡΑ. τα «πώς ντας σε όλα μας ό πλούσιο φωτογρ. λίδα 3. όλης. Διαβάστε στη σελ. 7 για ένα βιβλίο που θα κάνει τις ιδέες σας... μ Κηπο ανία Π ΕΡ Ι Ο Δ Ι ΚΗ ΕΚ Δ ΟΣΗ ΓΙΑ ΤΗ ΦΥΣΗ ΚΑ Ι ΤΟ ΠΕ ΡΙ ΒΑ ΛΛΟ Ν Αγαπηοί φίλοι ου πράσινου, Όλοι μας διαπισώνουμε καθημερινά ο έλλειμμα που υπάρχει σε καθαρό νερό και αέρα, σο πράσινο, ση διαχείριση

Διαβάστε περισσότερα

Συσκευασίες από αλουμίνιο, π.χ. αναψυκτικά, μπίρες κ.ά. Συσκευασίες από λευκοσίδηρο, π.χ. από γάλα εβαπορέ, τόνο, ζωοτροφές, τοματοπολτό κ.ά.

Συσκευασίες από αλουμίνιο, π.χ. αναψυκτικά, μπίρες κ.ά. Συσκευασίες από λευκοσίδηρο, π.χ. από γάλα εβαπορέ, τόνο, ζωοτροφές, τοματοπολτό κ.ά. ΑΝΑΚΥΚΛΩΣΗ ΣΥΣΚΕΥΑΣΙΩΝ Η Αακύκλωση σήμερα αποτελεί σηματική προτεραιότητα για το περιβάλλο και το μέλλο μας. Δε είαι μια εφήμερη τάση της εποχής, αλλά ατίθετα, υποχρέωση κάθε πολιτισμέης κοιωίας που συμβάλει

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΣΥΝΑΓΩΓΗ Νυμφοδώρα Παπασιώπη Φαιόμεα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας

Διαβάστε περισσότερα

«Προσβλητική» και «απαξιωτική» ενέργεια

«Προσβλητική» και «απαξιωτική» ενέργεια Σκέψου ον πλανήη σου... ανακύκλωσε η ΦΩΝΗ σου Εβδομαδιαία πολιική εφημερίδα Πάρου - Ανιπάρου 67 ΧΡΟΝΙΑ αφιερωµένα σην ενηµέρωση Παρασκευή 1 Οκωβρίου 2010 Φύλλο 127 www.fonitisparou.gr Έος 65 ο Νέα Περίοδος

Διαβάστε περισσότερα

Η ΚΑΤΑΛΟΓΟΓΡΑΦΗΣΗ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΒΙΒΛΙΩΝ

Η ΚΑΤΑΛΟΓΟΓΡΑΦΗΣΗ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΒΙΒΛΙΩΝ Η ΚΑΤΑΛΟΟΑΦΗΣΗ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΒΙΒΛΙΩΝ ΣΤΙΣ ΒΙΒΛΙΟΘΗΚΕΣ ΤΟΥ Ε: ΞΩΤΕΙΚΟΥ Υπό κ. Evl Col, της Βιβλιοθήκης του K' Coll. Σηματικό μέρος του HELEN αφιερώεται ο ι η εξέταση της πολιτικής, που ακολουθού οι βιβλιοθήκες

Διαβάστε περισσότερα

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ;

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ; 45 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Χρυσ Σµύρνης 3 : Τηλ.: 107601470 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 006 ΘΕΜΑ 1 1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός

Διαβάστε περισσότερα

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x)

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x) 7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( ) ΒΑΣΙΚΑ ΟΡΙΑ + - - a v α άρτιος α περιττός 0 ar * ΠΑΡΑΤΗΡΗΣΗ : Εώ α f() < g() κοτά στο 0 τότε f() g() ότα + εώ f()

Διαβάστε περισσότερα

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΘΡΗΚΔΤΜΑΣΧΝ, ΠΟΛΙΣΙΜΟΤ ΚΑΙ ΑΘΛΗΣΙΜΟΤ Ι.Σ.Τ.Δ. «ΓΙΟΦΑΝΣΟ» Αή Δί Ηίο Γήο Μί Μά Ιί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 1ο (Α, Β,) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 1ο (Α, Β,) ΤΓΓΡΑΦΔΙ Αή Δί,

Διαβάστε περισσότερα

ές ά ς ές ά ς ί ύ ό ί ό ς ές ά ς ός ός ύ ή ς ός ό ς ό ς ή ί ό ς ό ς ύ ί ς ώ ώ ΐ ός ό ς ής ά ά ί ά ό ύ ί ά έ ί ς ύς ής ής ί ί ς ή ά ός ά ς ί ς έ ς ό ς

ές ά ς ές ά ς ί ύ ό ί ό ς ές ά ς ός ός ύ ή ς ός ό ς ό ς ή ί ό ς ό ς ύ ί ς ώ ώ ΐ ός ό ς ής ά ά ί ά ό ύ ί ά έ ί ς ύς ής ής ί ί ς ή ά ός ά ς ί ς έ ς ό ς ίςύςής ής ίίςή άός ά ς ί ς ί έςάς έςάς ί ύό ά έςάς ός όή ίί ς ός ά ς ί ςίώώί ός ά ς ί ςίώώί ί ίός έςάςέςάς ύί ςώ ώΐ ό ό ς ί ής ά έςάς άίό ήίός ός ά ς ί ςίώώί ός ός ύή ς ί ς ής έ ί ά ίάό ςί ς ύ όά ύύ ός

Διαβάστε περισσότερα

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΙΔΑ: «ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ, ΜΙΑ ΕΜΠΕΙΡΙΑ ΖΩΗΣ» ΣΤΡΑΤΗ ΣΤΑΜΑΤΙΑ Επιβλέπων Καθηγητής: ΚΑΡΑΧΑΛΙΟΣ ΝΙΚΟΛΑΟΣ Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΚΑΡΛΟΒΑΣΙ, ΜΑΪΟΣ 2012 ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

Παραδείγµατα δυνάµεων

Παραδείγµατα δυνάµεων ΥΝΑΜΕΙΣ Παραδείγµατα Ορισµός της δύναµης Χαρακτηριστικά της δύναµης Μάζα - Βάρος Μέτρηση δύναµης ράση - αντίδραση Μέτρηση δύναµης Σύνθεση - ανάλυση δυνάµεων Ισορροπία δυνάµεων 1 Ανύψωση βαρών Παραδείγµατα

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2002 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ

Διαβάστε περισσότερα

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj Qwφιertuiopasdfghjklzερυυξnmηq σwωψertuςiopasdρfghjklzcvbn mqwertuiopasdfghjklzcvbnφγιmλι qπςπζwωeτrtuτioρμpκaλsdfghςj ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnmqwertuiopasdfghjklz ΤΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΔΕΙΞΕΙΣ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ

ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ Κατασκευή: Το μονόχορδο του Πυθαγόρα 2005-2006 Τόλιας Γιάννης Α1 Λ Υπεύθυνη Καθηγήτρια: Α. Τσαγκογέωργα Περιεχόμενα: Τίτλος Εργασίας Σκοπός Υπόθεση (Περιγραφή Κατασκευής) Ορισμός Μεταβλητών

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας α και αντίστροφα.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ TRITH 7 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ TRITH 7 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ TRITH 7 ΙΟΥΝΙΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο α γ 3 δ 4 γ 5. α Σ, β Λ, γ Σ, δ Σ, ε Λ. ΘΕΜΑ

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ )

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η σύγκριση των πειραματικών

Διαβάστε περισσότερα

ΟΜΑΔΑ Λ. Αναστασίου Κωνσταντίνος Δεληγιάννη Ισαβέλλα Ζωγοπούλου Άννα Κουκάκης Γιώργος Σταθάκη Αρετιάννα

ΟΜΑΔΑ Λ. Αναστασίου Κωνσταντίνος Δεληγιάννη Ισαβέλλα Ζωγοπούλου Άννα Κουκάκης Γιώργος Σταθάκη Αρετιάννα ΟΜΑΔΑ Λ Αναστασίου Κωνσταντίνος Δεληγιάννη Ισαβέλλα Ζωγοπούλου Άννα Κουκάκης Γιώργος Σταθάκη Αρετιάννα ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ Τι είναι η βιοπληροφορική; Αποκαλείται ο επιστημονικός κλάδος ο οποίος προέκυψε από

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

2 Γ Ε Ν Ι Κ Η Σ Υ Ν Ε Λ Ε Υ Σ Η Τ Ω Ν Μ Ε Λ Ω Ν Τ Ο Υ Σ Ε Π Ε, 2 8 Μ Α Ϊ Ο Υ 2 0 1 5

2 Γ Ε Ν Ι Κ Η Σ Υ Ν Ε Λ Ε Υ Σ Η Τ Ω Ν Μ Ε Λ Ω Ν Τ Ο Υ Σ Ε Π Ε, 2 8 Μ Α Ϊ Ο Υ 2 0 1 5 3 Μ ή ν υ μ α Π ρ ό ε δ ρ ο υ Δ ι ο ι κ η τ ι κ ο ύ Σ υ μ β ο υ λ ί ο υ 4 Μ ή ν υ μ α Γ ε ν ι κ ο ύ Δ ι ε υ θ υ ν τ ή 5 Ό ρ α μ α κ α ι Σ τ ρ α τ η γ ι κ ή 6 Ε κ π ρ ο σ ώ π η σ η κ α ι Σ υ ν ε ρ γ α σ

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ Θα ακούσετε τον φθόγγο-αφετηρία και το μελωδικό

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Φυσική Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Φυσική Β Γυμνασίου Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 2 Εισαγωγή 1.1 Οι φυσικές επιστήμες και η μεθοδολογία τους Φαινόμενα: Μεταβολές όπως το λιώσιμο του πάγου, η

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ ANAΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΗΣ ΓΙΑ ΚΑΤΑΡΤΙΣΗ ΣΥΜΒΑΣΗΣ ΜΙΣΘΩΣΗΣ ΕΡΓΟΥ Αριθμ.

Διαβάστε περισσότερα

ά ς ά ς ώ ς ί ς ά ς ί ς ής ύ ή ς ί ί

ά ς ά ς ώ ς ί ς ά ς ί ς ής ύ ή ς ί ί ίςέςέςές άςάςώς ίς άςίς ήςύής ί ί άήύέςίί ύίίςόά ίά ίό έ ί ύίςίήό ύ ώήύ ήάί ί ήί ός ώςάώί όώύύςώςή άςύς ί όόόάί έό έώςίςάς έςάςέςίςές όςάί ςάςίςίςώ ός ς ής ίς ά ί όςάά Άς ίς ήάέ άςύήί ί ί ύ ή ίάς όήός

Διαβάστε περισσότερα

Key Action 2 Σ α ηγι ές Σ ά εις Σχο ι ής σης η ή ης Μα α ός Υ ύθ ος ι οι ω ίας Erasmus+ Π ι αιάς, / /

Key Action 2 Σ α ηγι ές Σ ά εις Σχο ι ής σης η ή ης Μα α ός Υ ύθ ος ι οι ω ίας Erasmus+ Π ι αιάς, / / Key Action 2: αι ο ο ία αι ασία ια α α α ή α ώ α ι ώ Σ α ηγι ές Σ ο έας Σχο ι ής η ή ης Μα α ός Υ ύθ ος ι οι ω ίας Erasmus+ Π ι αιάς, / / 5 ά εις σης KA2: Strategic Partnerships ο έας ο ι ής Τι ί αι: Α

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

... λέγονται στοιχεία του πίνακα Α και οι δείκτες i και j δηλώνουν τη γραμμή και τη στήλη, αντίστοιχα, που ανήκει το στοιχείο α

... λέγονται στοιχεία του πίνακα Α και οι δείκτες i και j δηλώνουν τη γραμμή και τη στήλη, αντίστοιχα, που ανήκει το στοιχείο α ΚΕΦΑΛΑΙΟ 2 ΠΙΝΑΚΕΣ Στο Κεφάλαιο αυτό θα ασχοληθούε ε το ορισό και τις στοιχειώδεις ιδιότητες τω πιάκω, που είαι ορθογώιες παρατάξεις αριθώ ή άλλω στοιχείω Οι πίακες εφαίζοται στη θεωρία τω γραικώ συστηάτω,

Διαβάστε περισσότερα

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ 1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ) ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τ σύολ τω ριθµώ είι τ εξής : ) Οι φυσικοί ριθµοί : Ν {0,,,,... } ) Οι κέριοι ριθµοί : Ζ {...,,,, 0,,,,... } ) Οι ρητοί ριθµοί : Q ρ / κ ρ, κ Z, Z 0 4) Οι άρρητοι

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Φυσική Α Λυκείου Στο παρών παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 2 ο, 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ Υποθέστε ότι έχουμε μερικά ακίνητα φορτισμένα σώματα (σχ.). Τα σώματα αυτά δημιουργούν γύρω τους ηλεκτρικό πεδίο. Αν σε κάποιο σημείο Α του ηλεκτρικού πεδίου τοποθετήσουμε ένα

Διαβάστε περισσότερα

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ ο ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ου ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ ΔΕΥΤΕΡΑ 3 ΜΑΪΟΥ 200 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ () Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑ ΑΕΡΑ ΚΑΙ ΜΕΤΑΦΟΡΑ ΑΙΣΘΗΤΗΣ ΘΕΡΜΟΤΗΤΑΣ

1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑ ΑΕΡΑ ΚΑΙ ΜΕΤΑΦΟΡΑ ΑΙΣΘΗΤΗΣ ΘΕΡΜΟΤΗΤΑΣ 1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΘΕΡΜΟΚΡΑΣΙΑ ΑΕΡΑ ΚΑΙ ΜΕΤΑΦΟΡΑ ΑΙΣΘΗΤΗΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΘΟΔΟΙ ΜΕΤΡΗΣΗΣ ΘΕΡΜΟΚΡΑΣΙΑΣ Δισολή (θερμική δισολή σερεών-υγρών-ερίων) Ηλεκρική νίσση (εξάρησή ης πό θερμοκρσί) Θερμοηλεκρικό

Διαβάστε περισσότερα

ΑΠΟΣΠΑΣΜΑ ΠΡΑΚΤΙΚΟΥ ΑΔΑ: Β4ΩΦ4691ΟΙ-7Ν8 ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ. Aρ. Συμβουλίου: 6 o Άρτα, 04/04/2012

ΑΠΟΣΠΑΣΜΑ ΠΡΑΚΤΙΚΟΥ ΑΔΑ: Β4ΩΦ4691ΟΙ-7Ν8 ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ. Aρ. Συμβουλίου: 6 o Άρτα, 04/04/2012 ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΕΙΔΙΚΟΥ ΛΟΓΑΡΙΑΣΜΟΥ Aρ. Συμβουλίου: 6 o Άρτα, 04/04/2012 ΑΠΟΣΠΑΣΜΑ ΠΡΑΚΤΙΚΟΥ Σήμερα 04 Απριλίου 2012 ημέρα Τετάρτη και ώρα 11:00 π.μ. το επταμελές όργαο της

Διαβάστε περισσότερα

Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυµα Θεσσαλονίκης

Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυµα Θεσσαλονίκης 1 of 9 26/2/2015 12:51 µµ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυµα Θεσσαλονίκης Βαθµολογίες ΑΡΗΣ ΑΝΑΣΤΑΣΙΟΣ (052753) όνοµα χρήστη:it052753 Αρχική Βαθµολογίες µαθηµάτων. Η λίστα αναφέρεται στους βαθµούς

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι:

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι: 7o Γενικό Λύκειο Αθηνών Σχολικό Έτος 04-5 Τάξη: A' Λυκείου Αθήνα -6-05 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Θέμα ο Α. Να αποδείξετε ότι: Το ευθύγραμμο τμήμα που ενώνει

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 3 ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ Βγγέλης Α Νικολκάκης Μθημτικός ΛΙΓΑ ΛΟΓΙΑ Η προύσ εργσί μµου δε στοχεύει πλά στο κυήγι του 5,δηλδή τω μµοάδω του

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ETY-445 ΡΕΥΣΤΟ ΥΝΑΜΙΚΗ. Μέρος Α (2007-08)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ETY-445 ΡΕΥΣΤΟ ΥΝΑΜΙΚΗ. Μέρος Α (2007-08) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ETY-445 ΡΕΥΣΤΟ ΥΝΑΜΙΚΗ ΣΗΜΕΙΩΣΕΙΣ Μέρος Α (2007-08) ΕΙΣΑΓΩΓΗ I-1 Ρευσοµηχανική (Fluid Mechanics) είναι ο κλάδος ης εφαρµοσµένης µηχανικής (applied

Διαβάστε περισσότερα