PROGRAMA ZA PREDMETOT BIOHEMIJA I

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PROGRAMA ZA PREDMETOT BIOHEMIJA I"

Transcript

1 BIOHEMIJA I nasoka analiti~ka biohemija Zadol`itelen predmet Ime na predmetot: Biohemija I Kod: HA512 Krediti: 9 Vremetraewe: (150 ~asa,v semestar, 4+4 nedelno) Broj na korisnici: minimum 5 Realizatori: Prof. d-r Kiro Stojanoski. Asistent: Olgica Tren~evska Preduslovi: Organska hemija za biohemi~ari Na~in na realizacija: interaktivni predavawa so aktivno u~estvo na studentite; konsultacii; samostojno u~ewe; laboratoriski ve`bi (individualno eksperimentirawe i eksperimentalna rabota vo mali grupi);. Celi: Preku nastavata i ve`bite studentite treba da gi sovladaat osnovite na biohemijata, da se zdobijat so teoriski znaewa i so prakti~no iskustvo, kako preduslov za uspe{no sledewe na nastavata od povisokite kursevi po biohermija II i drugite biohemiski disciplini, na pat kon nivno stru~no osposobuvawe kako biohemi~ari. Sodr`ini koi se obrabotuvaat: prilog programa za predmetot PROGRAMA ZA PREDMETOT BIOHEMIJA I nasoka analiti~ka biohemija I. Voved vo biohemijata 1. Definicija istoriski razvitok i zna~ewe na biohemijata 2. Hemija na osnovnite gradbeni supstanci na organizmite (molekulski komponenti na kletkata, nivoi na strukturna organizacija na molekulskite komponenti-od molekula do organizam) 3. Hemiski karakteristiki na biolo{kite pojavi 4. Osnovni karakteristiki na biolo{kite fluidi (ph i jonski ramnote`i vo biolo{kite sistemi, amfoliti, poliamfoliti i polielektroliti, makrojoni i drugi fizi~ko-hemiski karakteristiki na biolo{kite fluidi, matriks efekti vo vodni rastvori, slabi nekovalentni interakcii, uloga na vodata vo biolo{kite procesi, hidrofobni molekuli vo vodni r-ri. II. Jaglehidrati 1. Definicija 2. Fizi~ki osobini 3. Podelba na jaglehidratite 4. Monosaharidi (kalsifikacija, stereohemija, cikli~ni strukturi i anomerni formi, pretstavuvawe na jaglehidratite, 5. Derivati na jaglehidratite (glikozidi, amino {e}eri, uronski kiselini esteri na jaglehidratite)

2 6. Ologosaharidi (disaharidi i povisoki ~lenovi na oligosaharidite) 7. Polisaharidi (struktura i nomenklatura, homopolisaharidi i heterosaharidi, uloga na polisaharidite, strukturni polisaharidi, bakteriski polisaharidi, polisaharidi na kleto~nata povr{ina) 8. Pova`ni pretstavnici na jaglehidratite III. Lipidi i membrani 1. Definicija i klasifikacija na lipidite 2. Vi{i masni kiselini 3. Acilgliceroli, 4. Glicerofosfolipidi, 5. Sfingolipidi 6. Steroidi i karetonoidi, holesterol, `ol~ni kiselini steroidni glikozidi 7. Nomenklatura i struktura na steroidite 8. Osobini na lipidnite agregati (miceli, dvosloevi i lipozomi) 9. Biolo{ki membrani (izgradba na membranite, modeli za membranite) 10. Transport niz membranite IV Aminokiselini, peptidi i proteini 1. Pova`ni aminokiselini (struktura i podelba na aminokiselinite, opti~ka aktivnost i stereohemija, R, S-nomenklatura, spektroskopski osobini) 2. Hemiski osobini na aminokiselinite 3. Metodi za analiza na aminokiselinite (spektroskopski i hromatografski metodi) Peptidi 1. Peptidi i peptidna vrska 2. Prirodni peptidi Proteini 1. Definicija, fizi~ki i hemiski osobini na proteinite 2. Biolo{ka funkcija na proteinite 3. Gradivni elementi na proteinite (aminokiselini) 4. Metodi za opredeluvawe na strukturata na proteinite (metodi za opredeluvawe na primarnata i sekundaranata struktura-metoda na Edman i Zanger i drugi hemiski metodi) 5. Sinteti~ki metodi za dobivawe na polipetidi 6. Struktura na proteinite (primarna, sekundarna, tercijarna i kvaterna) 7. Tipovi vrski vo strukturata na proteinite (vodorodni, hidrofobni interakcii, elektrostati~ki interakcii, Van der Valsovi interakcii) 8. Aminokiselinska sekvenca i strukturata na proteinite, Rama~ahdran dijagram, karakteristiki na α-spiralata i β-nabranata struktura i dr.) 9. Primena na proteinska baza na podatoci (Protein Data Bank)

3 10. Podelba na proteinite 11. Pova`ni pretstavnici na razli~ni proteini: fibrilarni, globularni, proteini, nukleoproteidi, hromoproteidi glikoproteidi fosfoproteidi liporoteidi i dr. V. Vitamini i koenzimi 1. Uloga na vitaminite i koenzimite 2. Podelba na vitaminite 3. Vitamini rastvorlivi vo voda 4. Vitamini rastvorlivi vo masla 5. Vitamini A,D,E,F,K 6. Liponska kiselina 1. Vitamini BB1,B 2, B 6, B 12, 2. Pantotenska kiselina 3. p-aminobenzoeva kiselina 4. Folna kiselina 5. Vitamin C 6. Vitamin P VI. Enzimi i enzimsko dejstvo 1. Hemiska priroda na enzimite 2. Specifi~nost na enzimite 3. Tipovi enzimska kataliza (kiselo-bazna kataliza; kovalentna kataliza; kataliza so metalni joni i kompleksi i drugi tipovi kataliza) 4. Drugi karakteristiki na enzimski kataliziranite reakcii (sterospecifi~nost i geometriska specifi~nost) 5. Mehanizam na enzimska kataliza 6. Hemiska kinetika na enzimskite reakcii. Mihaelis - Mentenova kinetika (Mihaelis-Mentenova ravenka; analiza na kineti~ki podatoci, Mihaelsova konstanta, broj na pretvorba i drugi karakteristiki na enzimite) 7. Drugi tipovi enzimska kinetika 8. Promena na slobodnata energija, energija na aktivacija i dejstvo na enzinite. Preodni sostojbi kaj enzimski kataliziranite reakcii 9. Faktori na enzimskoto dejstvo (temperatura, koncetracija na enzimot i suspstratot, vlijanie na rn i dr.) 10. Inhibitori aktivatori na enzimite 11. Tipovi na inhibicija i aktivacija (kompetetivna inhibicija, nekompetetivna inhibicija, me{ana inhibicija i dr.) Ravenki za kompetetivna inhibicija. 12. Kinetika na enzimski reakcii so pove}e supstrati 13. Nomenklatura na enzimite 14. Internacionalna klasifikacija na enzimite (Oksidoreduktazi, transferazi, hidrolazi, lipazi, izomerazi i ligazi)

4 15. Pova`ni grupi enzimski reakcii. Mehanizmi na enzimski reakcii (Tipi~ni enzimski mehanizmi kaj nekoi klasi enzimi: serin proteazi, himotripsin. Struktura na preodni sostojbi. 16. RNA i antitelata kako enzimi (ribozimi i abzimi) 17. Enzimska specifi~nosti alosteri~ka regulacija (Hipotezi i modeli za enzimskoto dejstvo-hipoteza klu~-katanec; hipoteza na inucirano fituvawe; specifi~nost i reaktivnost 18. Enzimska regulacija i kontrola (kovalentna modifikacija, alosteri~ka regulacija, regulacija so supstrat i dr.). Cimogeni. Izoenzimi. Modularni proteini. 19. Internet bazi podatoci za strukturata na enzimite i mehanizmite na enzimskoto dejstvo VII. Nukleinski kiselini Deoksiribonukleinska kiselina 1. Izgradba na nukleinskite kiselini (organski bazi, {e}erna komponenta, nukleotidi i nukleozidi, oligo i polinukleotidi) 2. Pravila na ^argaf 3. Strukturni svojstva na DNA (primarna struktura na nukleinskite kiselini, sekvencionirawe na kiselinite, hemiski metodi za sekvencionirawe, avtomatski sekvencionirawe 4. Sekundarna struktura na DNA ( A- DNA B- DNA Z- DNA) 5. Krakteristiki na modelot na Vatson i Krik (strukturna ekvivalentnost na parovite bazi, konformacioni varijacii na α- heliksot, osnovni strukturni karakteristiki na razli~ni levi i desni formi na kiselinite, A-DNA B-DNA i Z-DNA. 6. Drugi nivoi na strukturna organizacija na nukleinskite kiselini 7. Obrazuvawe na superspirali 8. Nao awe i uloga na DNA 9. Hemiski osobini na nukleinskite kiselini (hidroliza na nukleinskite kiselini (kisela i bazna hidroliza, enzimska hidroliza, hidroliza so nukleazi, restrikcioni enzimi) 10. Hemiska sinteza na DNA 11. Vzaemodejstvo so interkalira~ki reagensi 12. Termodinami~ki i kineti~ki karakteristiki na denaturacijata (termi~ka denaturacija i UV hipohromno pomestuvawe, vlijanie na ph, brzina na renaturacija i c 0 t krivi) 13. Hibridizacija na DNA Ribonukleinski kiselini 1. Izgradba na nukleinskite kiselii (organski bazi, {e}erna komponenta, nukletidi i nuklozidi, olgi i polinukleotidi)

5 2. Strukturni svojstva na RNA (sekundarna i tercijarana struktua na RNA 3. Nao awe i uloga na RNA 4. Internet bazi na podatoci za strukturata na nukleinskite kiselini Krediti i na~in na ocenuvawe So cel na usoglasuvawe na kredit transfer (sistem na kontinuirano u~ewe), po predemetot biohemija I definirani se aktivnostite koi koninuirano }e se sledata vo tekot na semestarot. Aktivnostite koi }e se ocenuvaat i nivniot udel vo zavr{nata ocenka se dadeni vo slednava tabela Nastavna aktivnost Udel % Aktivnost Laboratoriska rabota (ve`bi) 15 Kolokviumi za ve`bi 15 Vkupno 30 Teoriska nastava Redovnost na predavawa 5 Seminarska rabota 5 Parcijalen ispit I 20 Parcijalen ispit II 20 Zavr{en ispit 20 Vkupno 70 Prisustvoto na predavawa i ve`bi e zadol`itelno. Pove}e od tri neopravdani otsustva povelkuvaat nedobivawe na potpis. Za parcijalnite ispite datumite se objavuvaat na po ~etokot na semestarot Kolokviumite za ve`bi se polagaat vo dogovor so asistentot Ocenkata se obraqzuva spored slednava skala: Bodovna skala

6 Zavr{nata ocenka na studentot e soglasno bodovnata tabela. Studentot koj ne e zadovolen od zavr{nata ocenka mo`e da go polaga celosniot ispit vo prvata ispitna sesija. Celosniot ispit se smeta za polo`en ako studentot osvoi najmalku 60% od predvidenite bodovi za ispitniot test. O~ekuvani rezultati: Vo ovoj kurs studentite treba da se steknat so neophodnite teoretski i prakti~ni znaewa od oblasta na biohemijata so {to }e bidat podgotveni da gi sledat povisokite kursevi od drugite biohemiski disciplini. Literatura 1. Kratok pregled od materijalot (nerecenziran materijal od predavawa) 2. Nerecenziran praktikum za ve`bi 3. P. Karlson, Biokemija 4. S. Xekova i sorabotnici, Biohemija 5. CD-materijali (Metjus i Van Holden) 6. CD-materijali (Leninxer) 7. P. Karlson, Tabeli so pregled na metabolizmot

a) diamminsrebro hlorid b) srebrodimmin hlorid v) monohlorodiammin srebrid g) diamminohloro argentit

a) diamminsrebro hlorid b) srebrodimmin hlorid v) monohlorodiammin srebrid g) diamminohloro argentit PRIRDN-MATEMATI^KI FAKULTET PRIEMEN ISPIT P HEMIJA studii po biologija-hemija juli 2000 godina I grupa 1. Formulata na amonium hidrogenfosfat e: a) NH 4 H 2 P 3 b) (NH 4 ) 2 HP 4 v) (NH 4 ) 2 HP 3 g) NH

Διαβάστε περισσότερα

Univerzitet Sv. Kiril i Metodij - Skopje F A R M A C E V T S K I F A K U L T E T

Univerzitet Sv. Kiril i Metodij - Skopje F A R M A C E V T S K I F A K U L T E T Univerzitet Sv. Kiril i Metodij - Skopje F A R M A C E V T S K I F A K U L T E T PAKET INFORMACII ZA STUDISKATA PROGRAMA NA PRV I VTOR CIKLUS INTEGRIRANI STUDII ZA MAGISTER PO FARMACIJA VOVEDENA VO U^EBNATA

Διαβάστε περισσότερα

МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)

МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини

Διαβάστε περισσότερα

PI, TML, TI, AFI, MZKI, IIM, MV, EE, MHT

PI, TML, TI, AFI, MZKI, IIM, MV, EE, MHT РЕПУБЛИКА МAКЕДОНИЈА UNIVERZITET SV. KIRIL I METODIJ ВО СКОПЈЕ МАШИНСКИ ФАКУЛТЕТ - СКОПЈЕ MFS KREDIT TRANSFER SISTEM ZA AKADEMSKITE STUDII NA STUDISKITE PROGRAMI PI, TML, TI, AFI, MZKI, IIM, MV, EE, MHT

Διαβάστε περισσότερα

PRIRODNO-MATEMATI^KI FAKULTET PRIEMEN ISPIT PO HEMIJA studii po biologija I grupa

PRIRODNO-MATEMATI^KI FAKULTET PRIEMEN ISPIT PO HEMIJA studii po biologija I grupa juli 2000 godina PRIRDN-MATEMATI^KI FAKULTET PRIEMEN ISPIT P EMIJA studii po biologija I grupa 1. Formulata na amonium hidrogenfosfat e: a) N 4 2 P 4 b) (N 4 ) 2 P 4 v) (N 4 ) 2 P 3 g) N 4 P 4 2. Soedinenieto

Διαβάστε περισσότερα

MINISTERSTVO ZA OBRAZOVANIE I NAUKA BIRO ZA RAZVOJ NA OBRAZOVANIETO PROGRAMA ZA REFORMIRANO GIMNAZISKO OBRAZOVANIE NASTAVNA PROGRAMA PO F I Z I K A

MINISTERSTVO ZA OBRAZOVANIE I NAUKA BIRO ZA RAZVOJ NA OBRAZOVANIETO PROGRAMA ZA REFORMIRANO GIMNAZISKO OBRAZOVANIE NASTAVNA PROGRAMA PO F I Z I K A MINISTERSTVO ZA OBRAZOVANIE I NAUKA BIRO ZA RAZVOJ NA OBRAZOVANIETO PROGRAMA ZA REFORMIRANO GIMNAZISKO OBRAZOVANIE NASTAVNA PROGRAMA PO F I Z I K A ZA III GODINA Skopje, 2003 godina 1 1. IDENTIFIKACIONI

Διαβάστε περισσότερα

Решенија на задачите за основно училиште. REGIONALEN NATPREVAR PO FIZIKA ZA U^ENICITE OD OSNOVNITE U^ILI[TA VO REPUBLIKA MAKEDONIJA 25 april 2009

Решенија на задачите за основно училиште. REGIONALEN NATPREVAR PO FIZIKA ZA U^ENICITE OD OSNOVNITE U^ILI[TA VO REPUBLIKA MAKEDONIJA 25 april 2009 EGIONALEN NATPEVA PO FIZIKA ZA U^ENICITE OD OSNOVNITE U^ILI[TA VO EPUBLIKA MAKEDONIJA 5 april 9 Zada~a Na slikata e prika`an grafikot na proena na brzinata na dvi`eweto na eden avtoobil so tekot na vreeto

Διαβάστε περισσότερα

Doma{na rabota broj 1 po Sistemi i upravuvawe

Doma{na rabota broj 1 po Sistemi i upravuvawe Doma{na rabota broj po Sistemi i upravuvawe. Da se nacrta blok dijagram na sistem za avtomatska regulacija na temperaturata vo zatvorena prostorija i pritoa da se identifikuvaat elementite na sistemot,

Διαβάστε περισσότερα

VODA ELEKTROLITI I ACIDO-BAZNA RAVNOTEŽA...

VODA ELEKTROLITI I ACIDO-BAZNA RAVNOTEŽA... SADRŽAJ UVOD 1 1. BIOHEMIJA ĆELIJE... 1-1 1.1 UVOD... 1-2 1.2 ĆELIJA KAO OSNOVNA ŽIVA JEDINICA TELA... 1-2 1.3 VANĆELIJSKA TEČNOST UNUTRAŠNJA OKOLINA... 1-2 1.4 BIOELEMENTI I BIOMOLEKULI... 1-3 1.5 ĆELIJA

Διαβάστε περισσότερα

TEST PRA[AWA PO HEMIJA ZA KVALIFIKACIONIOT ISPIT ZA U^EBNATA 2002/2003 GODINA (MEDICINSKI I STOMATOLO[KI FAKULTET)

TEST PRA[AWA PO HEMIJA ZA KVALIFIKACIONIOT ISPIT ZA U^EBNATA 2002/2003 GODINA (MEDICINSKI I STOMATOLO[KI FAKULTET) TEST PRA[AWA PO EMIJA ZA KVALIFIKACIONIOT ISPIT ZA U^EBNATA 2002/2003 GODINA (MEDICINSKI I STOMATOLO[KI FAKULTET) 1. Vitaminite rastvorlivi vo masla spa aat vo grupa na : A) jaglenihidrati; B) proteini;

Διαβάστε περισσότερα

3/25/2016. Hemijske komponente ćelije

3/25/2016. Hemijske komponente ćelije Hemijske komponente ćelije Molekuli u ćeliji Najbitniji molekuli u ćeliji su poznati. Putevi sinteze i razgradnje su poznati za većinu ćelijskih konstituenata. Hemijska energija pokreće biosintezu. Organizacija

Διαβάστε περισσότερα

CILJNA MESTA DEJSTVA LEKOVA

CILJNA MESTA DEJSTVA LEKOVA FARMACEUTSKA HEMIJA 1 CILJNA MESTA DEJSTVA LEKVA Predavač: Prof. dr Slavica Erić Ciljna mesta dejstva leka CILJNA MESTA NA MLEKULARNM NIVU: lipidi (lipidi ćelijske membrane) ugljeni hidrati (obeleživači

Διαβάστε περισσότερα

NASTAVNI PLANOVI I PROGRAMI NA POSLEDIPLOMSKITE STUDII PO HEMIJA

NASTAVNI PLANOVI I PROGRAMI NA POSLEDIPLOMSKITE STUDII PO HEMIJA UNIVERZITET "SV. KIRIL I METODIJ" - SKOPJE PRIRODNO-MATEMATI^KI FAKULTET INSTITUT ZA HEMIJA NASTAVNI PLANOVI I PROGRAMI NA POSLEDIPLOMSKITE STUDII PO HEMIJA Skopje, 2003 NASTAVEN PLAN I. Poslediplomski

Διαβάστε περισσότερα

KRISTALOGRAFIJATA OD ERATA NA LAUE I BREG DO DENE[NI DENOVI. Gligor Jovanovski

KRISTALOGRAFIJATA OD ERATA NA LAUE I BREG DO DENE[NI DENOVI. Gligor Jovanovski a 2014 -Интернационалнагодинанa кристалографијата KRISTALOGRAFIJATA OD ERATA NA LAUE I BREG DO DENE[NI DENOVI Gligor Jovanovski Kristalografija? Multidisciplinarna nauka (hemija, fizika, biologija, fiziologija,

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Osnovi na ma{inskata obrabotka

Osnovi na ma{inskata obrabotka Osnovi na ma{inska obrabotka Poim za proizvodni i Osnovi na ma{inskata obrabotka Metodi na obrabotka: Obrabotka so simuvawe na materijal (obrabotka so re`ewe) Obrabotka so plasti~na deformacija Nekonvencionalni

Διαβάστε περισσότερα

MA[INSKI FAKULTET E L A B O R A T ZA STUDISKA PROGRAMA NA VTOR CIKLUS NA STUDII PO UPRAVUVAWE SO SISTEMI ZA BEZBEDNOST I ZDRAVJE PRI RABOTA

MA[INSKI FAKULTET E L A B O R A T ZA STUDISKA PROGRAMA NA VTOR CIKLUS NA STUDII PO UPRAVUVAWE SO SISTEMI ZA BEZBEDNOST I ZDRAVJE PRI RABOTA Univerzitet Sv.Kiril i Metodij vo Skopje MA[INSKI FAKULTET E L A B O R A T ZA STUDISKA PROGRAMA NA VTOR CIKLUS NA STUDII PO UPRAVUVAWE SO SISTEMI ZA BEZBEDNOST I ZDRAVJE PRI RABOTA INSTITUCIJA PREDLAGA^

Διαβάστε περισσότερα

Vrz osnova na ~len 55 stav 1 od Zakonot za organizacija i rabota na organite na dr`avnata uprava ( Sl. vesnik na RM br. 58/00 i 44/02) i ~len 24 i 26

Vrz osnova na ~len 55 stav 1 od Zakonot za organizacija i rabota na organite na dr`avnata uprava ( Sl. vesnik na RM br. 58/00 i 44/02) i ~len 24 i 26 Vrz osnova na ~len 55 stav 1 od Zakonot za organizacija i rabota na organite na dr`avnata uprava ( Sl. vesnik na RM br. 58/00 i 44/02) i ~len 24 i 26 od Zakonot za osnovno obrazovanie ( Sl. vesnik na RM

Διαβάστε περισσότερα

INTERFERENCA NA LEKOVI SO LABORATORISKI ANALIZI

INTERFERENCA NA LEKOVI SO LABORATORISKI ANALIZI 1 INTERFERENCA NA LEKOVI SO LABORATORISKI ANALIZI Poradi sè poprogresivniot razvoj na medicisnkite nauki voop{to, otkrivaweto na sè ponovi i ponovi tipovi na lekovi, no i razvojot na laboratoriskata medicina,

Διαβάστε περισσότερα

Proteini. Naziv PROTEINI potiče od Grčke reči proteios, što znači PRVI

Proteini. Naziv PROTEINI potiče od Grčke reči proteios, što znači PRVI Proteini Uvod aziv PRTEII potiče od Grčke reči proteios, što znači PRVI čine osnovu života, ulaze u sastav svih živih bića emijski, proteini ili belančevine, su prirodni makromolekuli To su poliamidi izgrañeni

Διαβάστε περισσότερα

Sekundarne struktura proteina Fibrilni proteini

Sekundarne struktura proteina Fibrilni proteini Sekundarne struktura proteina Fibrilni proteini Nivoi strukture proteina (strukturna hijerarhija) proteina Nivoi strukture proteina Primarna struktura Sekundarna struktura Super-sekundarna struktura Tercijarnastruktura

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

EGZISTENCIJA I KONSTRUKCIJA NA POLINOMNO RE[ENIE NA EDNA PODKLASA LINEARNI HOMOGENI DIFERENCIJALNI RAVENKI OD VTOR RED

EGZISTENCIJA I KONSTRUKCIJA NA POLINOMNO RE[ENIE NA EDNA PODKLASA LINEARNI HOMOGENI DIFERENCIJALNI RAVENKI OD VTOR RED 8 MSDR 004, (33-38) Zbonik na tudovi ISBN 9989 630 49 6 30.09.- 03.0.004 god. COBISS.MK ID 6903 Ohid, Makedonija EGZISTENCIJA I KONSTRUKCIJA NA POLINOMNO RE[ENIE NA EDNA PODKLASA LINEARNI HOMOGENI DIFERENCIJALNI

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Mehanizmidejstvaenzima. Himotripsin

Mehanizmidejstvaenzima. Himotripsin Mehanizmidejstvaenzima Himotripsin Principi katalize Specifična kiselo-bazna kataliza Elektrostatska kataliza Elektrofilna kataliza Nukleofilna kataliza (kovalentna kataliza) Nukleofilna kataliza Opšta

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

KATALOG NA EDUKATIVNI IZDANIJA I DIDAKTI»KI POMAGALA

KATALOG NA EDUKATIVNI IZDANIJA I DIDAKTI»KI POMAGALA KATALOG NA EDUKATIVNI IZDANIJA I DIDAKTI»KI POMAGALA MATEMATIKA Rabotna tetratka: Matematika 1 (prv del) Rabotna tetratka: Matematika 1 (vtor del) Rabotna tetratka: Matematika 1 (tret del) Rabotna tetratka:

Διαβάστε περισσότερα

TEST PRA[AWA PO HEMIJA ZA KVALIFIKACIONIOT ISPIT ZA U^EBNATA 2000/2001 GODINA septemvri 2000

TEST PRA[AWA PO HEMIJA ZA KVALIFIKACIONIOT ISPIT ZA U^EBNATA 2000/2001 GODINA septemvri 2000 MEDICINSKI I STMATL[KI FAKULTET TEST PRA[AWA P HEMIJA ZA KVALIFIKACINIT ISPIT ZA U^EBNATA 2000/2001 GDINA septemvri 2000 1. Pri obi~nite hemiski reakcii, vkupnata masa na u~esnicite vo reakcijata: A) se

Διαβάστε περισσότερα

ISPITNA PITANJA ZA USMENI DIO ISPITA

ISPITNA PITANJA ZA USMENI DIO ISPITA UNIVERZITET CRNE GORE MEDICINSKI FAKULTET MEDICINSKA BIOHEMIJA ISPITNA PITANJA ZA USMENI DIO ISPITA STUDIJSKI PROGRAM MEDICINA I ENZIMOLOGIJA 1. Opšte osobine enzima i struktura molekula enzima 2. Izoenzimi.

Διαβάστε περισσότερα

STRUJNOTEHNI^KI MEREWA I INSTRUMENTI

STRUJNOTEHNI^KI MEREWA I INSTRUMENTI UNIVERZITET "Sv. KIRIL I METODIJ" MA[INSKI FAKULTET Prof. D-r Aleksandar Tode No{pal STRUJNOTEHNI^KI MEREWA I INSTRUMENTI dopolneto izdanie na knigata od 1995 SKOPJE 004 Recenzenti: Prof d-r Tomislav Bundalevski

Διαβάστε περισσότερα

Ispitna pitanja za teorijski deo ispita. Pitanja iz neorganske hemije

Ispitna pitanja za teorijski deo ispita. Pitanja iz neorganske hemije Ispitna pitanja za teorijski deo ispita Pitanja iz neorganske hemije 1. Struktura atoma. Protoni, neutroni i elektroni. Atomske i molekulske mase.izotopi. 2. Elektronska konfiguracija. Atomske s, p i d

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

evina) - retko se nalaze u slobodnom stanju - međusobno povezane čineći i peptide i proteine

evina) - retko se nalaze u slobodnom stanju - međusobno povezane čineći i peptide i proteine prof.goran Poš AMINOKISELINE elementarne jedinke proteina (belančevina) evina) - retko se nalaze u slobodnom stanju - međusobno povezane čineći i peptide i proteine AMINO-(karboksilne) (karboksilne)-kiseline

Διαβάστε περισσότερα

Teoretski osnovi i matemati~ka metodologija za globalna analiza na prostorni liniski sistemi

Teoretski osnovi i matemati~ka metodologija za globalna analiza na prostorni liniski sistemi Teoretski osnovi i matemati~ka metodologija za globalna analiza na... UDK 6.879 Elizabeta HRISTOVSKA Teoretski osnovi i matemati~ka metodologija za globalna analiza na prostorni liniski sistemi APSTRAKT

Διαβάστε περισσότερα

Vrz osnova na ~len 55 stav 1 od Zakonot za organizacija i rabota na organite na dr`avnata uprava ( Sl. vesnik na RM br. 58/00, 44/02 i 82/08) i ~len

Vrz osnova na ~len 55 stav 1 od Zakonot za organizacija i rabota na organite na dr`avnata uprava ( Sl. vesnik na RM br. 58/00, 44/02 i 82/08) i ~len Vrz osnova na ~len 55 stav 1 od Zakonot za organizacija i rabota na organite na dr`avnata uprava ( Sl. vesnik na RM br. 58/00, 44/02 i 82/08) i ~len 25 od Zakonot za osnovno obrazovanie ( Sl. vesnik na

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Vrz osnova na ~len 55 stav 1 od Zakonot za organizacija i rabota na organite na dr`avnata uprava (,,Slu`ben vesnik na Republika Makedonija br.

Vrz osnova na ~len 55 stav 1 od Zakonot za organizacija i rabota na organite na dr`avnata uprava (,,Slu`ben vesnik na Republika Makedonija br. Vrz osnova na ~len 55 stav 1 od Zakonot za organizacija i rabota na organite na dr`avnata uprava (,,Slu`ben vesnik na Republika Makedonija br. 58/00, 44/02 i 82/08) i ~len 25 stav 2 od Zakonot za osnovno

Διαβάστε περισσότερα

Biohemijski i mikrobiološki principi I DEO

Biohemijski i mikrobiološki principi I DEO Biohemijski i mikrobiološki principi I DEO Prof.dr Danijela Kojić uvod biomolekuli ugljeni hidrati aminokiseline i proteini lipidi nukleinske kiseline enzimi i regulacija enzimske aktivnosti bioenergetika

Διαβάστε περισσότερα

Biohemija proteina i nukleinskih kiselina

Biohemija proteina i nukleinskih kiselina Biohemija proteina i nukleinskih kiselina Biohemija proteina i nukleinskih kiselina Predavanja: Profesor Vesna Niketić vniketic@chem.bg.ac.rs Docent Natalija Polović polovicn@chem.bg.ac.rs Vežbe: Dr Natalija

Διαβάστε περισσότερα

Organizacija i prika`uvawe imunoglobulinski geni Edna od najizvonrednite osobini na imuniot sistem kaj r betnicite pretstavuva sposobnosta da

Organizacija i prika`uvawe imunoglobulinski geni Edna od najizvonrednite osobini na imuniot sistem kaj r betnicite pretstavuva sposobnosta da Organizacija i prika`uvawe imunoglobulinski geni Edna od najizvonrednite osobini na imuniot sistem kaj r betnicite pretstavuva sposobnosta da odgovori na bezgrani~na grupa tu i protivgeni. Kako {to se

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

PITANJA ZA USMENI ISPIT IZ BIOHEMIJE

PITANJA ZA USMENI ISPIT IZ BIOHEMIJE PITANJA ZA USMENI ISPIT IZ BIOHEMIJE PROTEINI STRUKTURA I FUNKCIJE 1. Struktura proteina nivoi organizacije molekula 2. Proteini koji transportuju kiseonik hemoglobin i mioglobin ENZIMI 1. Opšte osobine

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

UPATSTVO ZA PI[UVAWE NA SEMINARSKATA RABOTA I EDEN PRIMER

UPATSTVO ZA PI[UVAWE NA SEMINARSKATA RABOTA I EDEN PRIMER UPATSTVO ZA PI[UVAWE NA SEMINARSKATA RABOTA I EDEN PRIMER 1. Format Seminarskata da se pi{uva so fontovite MAC C Times i Times New Roman na A4 format strani vo Mikrosoft vord kako *.doc dokument. Goleminata

Διαβάστε περισσότερα

CENTRALNI LABORATORIJ

CENTRALNI LABORATORIJ CENTRALNI LABORATORIJ I.ODVZEM IN POŠILJANJE VZORCEV 1 KAPILARNI ODVZEM KRVI DA DA 30min/15min 2 ODVZEM FECESA DA NE 30min/15min 3 ODVZEM URINA DA DA 30min/15min 4 POŠILJANJE BIOLOŠKIH VZORCEV ( EKSPEDIT)

Διαβάστε περισσότερα

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1 (1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..

Διαβάστε περισσότερα

Tercijarna struktura globuralnih proteina. Rendgenska strukturna analiza proteina Konformaciona stabilnost proteina Supersekundarne strukture/domeni

Tercijarna struktura globuralnih proteina. Rendgenska strukturna analiza proteina Konformaciona stabilnost proteina Supersekundarne strukture/domeni Tercijarna struktura globuralnih proteina Rendgenska strukturna analiza proteina Konformaciona stabilnost proteina Supersekundarne strukture/domeni Nivoi strukture proteina (strukturna hijerarhija) Tercijarna

Διαβάστε περισσότερα

ZNAČAJ I ULOGA HRANE U ORGANIZMU

ZNAČAJ I ULOGA HRANE U ORGANIZMU ZNAČAJ I ULOGA HRANE U ORGANIZMU Hranom se nazivaju sve materije biljnog, životinjskog i mineralnog porekla, koje služe za odvijanje odredjenih funkcija u čovečijem organizmu (fizički i umni rad, rast,

Διαβάστε περισσότερα

Osnovne karakteristike 3-D strukture molekula DNK i RNK

Osnovne karakteristike 3-D strukture molekula DNK i RNK Osnovne karakteristike 3-D strukture molekula DNK i RNK Rendgenska strukturna analiza (vlakana) DNK Watson-Crickov model (B) DNK Zašto dvostruki heliks? Polimorfizam DNK: kanonske (standardne/prosečne)

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Zašto se baviti BOTANIKOM i

Zašto se baviti BOTANIKOM i BOTANIKA Zašto se baviti BOTANIKOM i biljkama? BOTANIKA Temelj za razumijevanje ostalih kolegija na studijima Šumarskoga fakulteta Kada završim fakultet cijeli radni vijek ću se baviti biljkama Ljubav

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

UNIVERZITET "SV. KIRIL I METODIJ" FAKULTET - SKOPJE P R O E K T ZA ORGANIZIRAWE POSLEDIPLOMSKI STUDII PO GEODEZIJA NA FAKULTET

UNIVERZITET SV. KIRIL I METODIJ FAKULTET - SKOPJE P R O E K T ZA ORGANIZIRAWE POSLEDIPLOMSKI STUDII PO GEODEZIJA NA FAKULTET UNIVERZITET "SV. KIRIL I METODIJ" GRADE@EN FAKULTET SKOPJE P R O E K T ZA ORGANIZIRAWE POSLEDIPLOMSKI STUDII PO GEODEZIJA NA GRADE@NIOT FAKULTET SKOPJE, 2007 S O D R @ I N A ODLUKA... 2 POTREBA ZA ORGANIZIRAWE

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

5. Vrski so navoj navojni parovi

5. Vrski so navoj navojni parovi 65 5. Vrski so navoj navojni parovi 5.1 Vrski kaj ma{inskite delovi op{to Za da mo`e edna ma{ina pravilno da funkcionira i uspe{no da ja izvr{uva rabotata i funkcijata {to ja zamislil nejziniot konstruktor,

Διαβάστε περισσότερα

MATEMATIKA PROEKTNA ZADAЧA IZVE[TAJ OD EMPIRISKO

MATEMATIKA PROEKTNA ZADAЧA IZVE[TAJ OD EMPIRISKO MATEMATIKA PROEKTNA ZADAЧA IZVE[TAJ OD EMPIRISKO ISTRA@UVAWE Mentorot prof. Nata{a Popovski ja slede{e rabotata na kandidatot Ana Pepequgoska vo tekot na nejzinata podgotovka vodej}i smetka za: - samostojnosta

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

Dinamika na konstrukciite 1

Dinamika na konstrukciite 1 Dinamika na konstrukciite 1 2 TEORIJA NA BRANOVI 2.1 OSNOVNI POIMI Bran e periodi~na deformacija koja se [iri vo prostorot i vremeto. Branovite niz prostorot prenesuvaat energija bez protok na ~esti~ki

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Dinamika strukture DNK helix coil (razvijeni niz) prelazi. Reakcije baza: mutacije/oštećenja DNK

Dinamika strukture DNK helix coil (razvijeni niz) prelazi. Reakcije baza: mutacije/oštećenja DNK Dinamika strukture DNK helix coil (razvijeni niz) prelazi (reversibilna denaturacija-renaturacija) Reakcije baza: mutacije/oštećenja DNK Interakcije molekula DNK sa vodom ligandima Reversibilna denaturacija

Διαβάστε περισσότερα

Aminokiseline. Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina 22.12.2014

Aminokiseline. Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina 22.12.2014 Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina Predavanja iz opšte biohemije Školska 2014/2015. godina Aminokiseline 1 Metabolizam aminokiselina Proteini iz

Διαβάστε περισσότερα

PRIMENA NA HIERARHISKATA KLASTER-ANALIZA ZA TERMI^KA KLASIFIKACIJA I REGIONALIZACIJA VO REPUBLIKA MAKEDONIJA

PRIMENA NA HIERARHISKATA KLASTER-ANALIZA ZA TERMI^KA KLASIFIKACIJA I REGIONALIZACIJA VO REPUBLIKA MAKEDONIJA Bilten na Zavodot za fizi~ka geografija (02) 67-77 (2005) Skopje 67 UDK 551.524 (497.7) PRIMENA NA HIERARHISKATA KLASTER-ANALIZA ZA TERMI^KA KLASIFIKACIJA I REGIONALIZACIJA VO REPUBLIKA MAKEDONIJA Mihailo

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

EFIKASNOST NA PRENAPONSKATA ZA[TITA VO OD 400 V

EFIKASNOST NA PRENAPONSKATA ZA[TITA VO OD 400 V ЧЕТВРТО СОВЕТУВАЊЕ Охрид, 26 29 септември 2004 d-r Petar Vukelja, Jovan Mrvi}, Dejan Hrvi} Elektrotehni~ki institut Nikola Tesla, Beograd d-r Risto Minovski, Elektrotehni~ki fakultet, Skopje EFIKASNOST

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤHN. Δρ. Α. ΤΖΑΝΗ

ΕΙΣΑΓΩΓΗ ΣΤHN. Δρ. Α. ΤΖΑΝΗ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΗΠΙΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΛΕΞΗ ΙΙ ΕΙΣΑΓΩΓΗ ΣΤHN ΕΡΕΥΝΑ ΓΕΩΘΕΡΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟ Δρ. Α. ΤΖΑΝΗ ΕΠΙΚΟΥΡΟ ΚΑΘΗΓΗΤΗ ΓΕΩΦΥΣΙΚΗΣ 1 ΔΙΕΡΕΥΝΗΣΗ ΓΕΩΘΕΡΜΙΚΩΝ

Διαβάστε περισσότερα

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΡΟΦΙΜΩΝ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΚΟΙΝΟΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΥΠΟΔΟΜΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΕΦΑΡΜΟΓΗΣ ΠΑΑ ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΪΚΟ ΓΕΩΡΓΙΚΟ ΤΑΜΕΙΟ

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Kiselo bazni indikatori

Kiselo bazni indikatori Kiselo bazni indikatori Slabe kiseline ili baze koje imaju različite boje nejonizovanog i jonizovanog oblika u rastvoru Primer: slaba kiselina HIn(aq) H + (aq) + In (aq) nejonizovani oblik jonizovani oblik

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

RESOURCE JUNIOR ČOKOLADA NestleHealthScience. RESOURCE JUNIOR Okus čokolade: ACBL Prehrambeno cjelovita hrana 300 kcal* (1,5 kcal/ml)

RESOURCE JUNIOR ČOKOLADA NestleHealthScience. RESOURCE JUNIOR Okus čokolade: ACBL Prehrambeno cjelovita hrana 300 kcal* (1,5 kcal/ml) RESOURCE JUNIOR ČOKOLADA NestleHealthScience RESOURCE JUNIOR Okus čokolade: ACBL 198-1 Prehrambeno cjelovita hrana 300 kcal* (1,5 kcal/ml) */200 ml Hrana za posebne medicinske potrebe Prehrambeno cjelovita

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

T E R M O D I N A M I K A

T E R M O D I N A M I K A Univerzitet Sv. Kiril i Metodij - Skopje Ma{inski fakultet Filip A. Mojsovski T E R M O D I N A M I K A 05 Docent d-r Filip A. Mojsovski Univerzitet Sv. Kiril i Metodij vo Skopje Ma{inski fakultet - Skopje

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

OSNOVI NA TEHNIKA 2

OSNOVI NA TEHNIKA 2 Univerzitet,,Sv. Kiril i Metodij Tehnolo{ko-metalur{ki fakultet OSNOVI NA IN@ENERSKA TEHNIKA 2 D-r Irena Mickova Izdava~: Univerzitet,,Sv. Kiril i Metodij Avtor: Doc. D-r Irena Mickova Tehnolo{ko-metalur{ki

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

IMPULSNI LASERI I PFH

IMPULSNI LASERI I PFH PRIMENA LASERA u FiZIČKOJ HEMIJI IMPULSNI LASERI I PFH Milan S. Trtica, (e-mail: etrtica@vinca.rs) Institut za nuklearne nauke Vinča Š.S. Miljanić, M. Kuzmanović Fakultet za fizičku hemiju - PLAN IZLAGANJA:

Διαβάστε περισσότερα

( ) 1995.» 3 ( ). 10 ( ). 1975 1980 ( ) 1986, ( ) (1) 3,, ( ),,,,».,,,

( ) 1995.» 3 ( ). 10 ( ). 1975 1980 ( ) 1986, ( ) (1) 3,, ( ),,,,».,,, 1983 1995 23/83 51/83 39/84 79/86 94/86 135/88 51/89 138/91 67( ) / 92 100( ) / 92 2( ) / 93 70(1)/99 109(1)/99 119(1)/99 16(1)/01 20(1)/01 150(1)/02 102 ( ) /95 33/64 35/75 72/77 59/81.. 79/86... 2/86

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

FARMACEUTSKO-BIOKEMIJSKI FAKULTET SVEUČILIŠTA U ZAGREBU. IZVEDBENI PLAN NASTAVE akademska godina 2008./2009.

FARMACEUTSKO-BIOKEMIJSKI FAKULTET SVEUČILIŠTA U ZAGREBU. IZVEDBENI PLAN NASTAVE akademska godina 2008./2009. FARMACEUTSKO-BIOKEMIJSKI FAKULTET SVEUČILIŠTA U ZAGREBU IZVEDBENI LAN NASTAVE akademska godina 2008./2009. Naziv kolegija: BIOLOŠKA KEMIJA Naziv studija: Farmacija / Medicinska biokemija Godina studija:

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα