TEORIJA LINIJSKIH KOD

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TEORIJA LINIJSKIH KOD"

Transcript

1 Fakulteta za elektrotehniko Tržaška Ljubljana Teoretični del iz seminaske naloge ANALIZATOR LASTNOSTI LINIJSKIH KOD TEORIJA LINIJSKIH KOD (2. poglavje seminarja) Asistent: Mag. Matevž Pustišek Študent: Grega Prešeren Zabreznica, 6. maj 2005

2 1 Analizator lastnosti linijskih kod TEORIJA LINIJSKIH KOD Sledijo opisi posameznih linijskih kod, ki jih največkrat lahko zasledimo v literaturi, vsekakor pa jih obstaja še več, in sem jih tudi zasledil še nekaj, npr.: Split Phase, Biphase, BnZS (n = 3, 6, 8,...) itd. Velja omeniti tudi naslednje, namreč v različnih virih pod istim imenom linijske kode lahko najdemo precej različne si kode. Predvsem se mi je to dogajalo pri internetnih virih. Kdorkoli bi torej želel to tematiko bolj obširno pregledati, mu priporočam naj bo pazljiv. K opisu nekaterih linijskih kod spada tudi izris spektra signala, ki predstavlja bit '1'. Vse te spektre sem analitično izračunal in jih izrisal s pomočjo MATLAB-a 6.5. Naj razložim še nekaj terminov, ki so uporabljeni v nadaljnem tekstu: - impulz: signal, ki se z napetosti 0 V dvigne/pade na neko napetost +/- U, nato pa se zopet vrne na 0 V; - simbol: signal, ki predstavlja enega ali več bitov, njegovo trajanje pa označujemo s T 0 ; - simbolna hitrost: število simbolov, ki jih prenesemo v eni sekundi (f 0 = 1/T 0 ); - bitna hitrost: število bitov, ki jih prenesemo v eni sekundi; - spekter: pod tem terminom imam v mislih gostoto amplitudnega spektra, to je absolutno vrednost Fourierovega transforma. OPOMBA: Do preklica velja, da pri vseh naslednjih linijskih kodah en simbol prenaša en bit. UNIPOLARNA NRZ Gre za najbolj preprosto obstoječo linijsko kodo, ki jo vsak že pozna. Ime unipolarna nam pove, da so njeni simboli sestavljeni iz signala ene (enake) polaritete (navadno pozitivne napetosti + U). Kratica NRZ (Non-return to zero) nam pove, da se signal, ki predstavlja en simbol, ne vrne na referenčni nivo 0 V v času trajanja T 0 (čas enega simbola). Razlaga je morda bolj abstrakna, več pove skica

3 Analizator lastnosti linijskih kod 2 Skica a) NRZ simbol in b) RZ simbol. Pri unipolarni NRZ kodi je bit '1' predstavljen s prisotnostjo impulza, ki traja T 0 - skica a), bit '0' pa je predstavljen z odsotnostjo signala, kar pomeni da je takrat na liniji napetost 0 V. Spekter simbola, ki prenaša bit '1', je prikazan na skici Skica Spekter pravokotnega NRZ simbola trajanja T 0. Kot vidimo, tak impulz vsebuje izrazito enosmerno komponento, kar pomeni, da bo pri takem linijskem kodiranju spekter signala nujno vseboval enosmerno komponento (komponenta spektra pri frekvenci 0 Hz). Kot že vemo, je funkcija ki predstavlja obliko takšnega spektra sinc(x) = sin(x)/x. Sinhronizacija pri sprejemu je zelo težka. To zelo preprosto lahko razložimo, če npr. prenašamo niz bitov ' '. Na sprejemni strani bomo na liniji detektirali signal sestavljen iz dveh pravokotnih impulzov dolžine 2T 0, in to bi lahko smatrali kot niz bitov '0101' ali pa ' ', saj ne moremo iz samega signala ugotoviti s kakšno frekvenco je oddajnik oddajal simbole.

4 3 Analizator lastnosti linijskih kod Če bi s to linijsko kodo kodirali nek daljši niz bitov, bi spekter signala vseboval prvo ničlo pri frekvenci f 0 = 1/T 0. UNIPOLARNA RZ Ta linijska koda se od prejšnje razlikuje v tem, da uporablja drugačen simbol za prenos bita '1'. Uporablja RZ (Return to zero), kar pomeni, da je simbol, ki predstavlja bit '1', tak signal, kot ga prikazuje skica b). Na tem mestu lahko definiramo še dolžino trajanja impulza znotraj takšnega simbola, kar označimo s τ. V literaturi zasledimo veličino Mark duty cycle, ki je definirana kot razmerje τ/t 0. V primeru na skici b) je τ/t 0 = 0,5 = 50%. Naj omenim, da ni nujno, da je Mark duty cycle enak 50%. Dejansko se porabljajo tudi drugačna razmerja τ/t 0. Spekter simbola, ki prenaša bit '1' (če je τ/t 0 = 50%) prikazuje skica Skica Spekter pravokotnega RZ simbola trajanja T 0. Spekter je zopet oblike funkcije sinc(x). Od prejšnjega (skica 2.1.2) se razlikuje v tem, da je njegova širina dvojna. Zopet bomo pri takšnem linijskem kodiranju imeli enosmerno komponento, ki pa bo enaka enosmerni komponenti pri kodiranju z unipolarno NRZ pomnoženi s τ/t 0, torej bo nižja. Sinhronizacija bo tukaj lažja, saj z vsakim sprejemom simbola za bit '1' točno vemo s kakšno frekvenco oddajnik oddaja simbole (če le na spremni strani O tem se lahko (za vse linijske kode) bralec prepriča z uporabo Analizatorja.. Vsi ti podatki veljajo za signal, ki uporablja pravokotne impulze. Pri kateri frekvenci se pojavi prva ničla v spektru je odvisno tudi od niza bitov, ki jih prenašamo. Navedeni podatki so najslabši možni primer, to je najvišja frekvenca, pri kateri se lahko šele pojavi prva ničla v spektru.

5 Analizator lastnosti linijskih kod 4 poznamo 'Mark duty cycle'). Težave bi nastopile le v primeru, da bi prenašali daljši niz bitov brez enice '1'. Ta problem rešujejo druge kode v nadaljevanju. Če bi s to linijsko kodo kodirali nek daljši niz, bi spekter signala vseboval prvo ničlo pri frekvenci 2f 0, kar je pri dvakratni frekvenci kot pri unipolarni NRZ. POLARNA NRZ Gre za rahlo predelavo unipolarne NRZ. Ime polarna pove, da uporabljamo dve polariteti napetosti. Za bit '1' uporabljamo, enako kot pri unipolarni NRZ, impulz dolžine T 0 in pozitivne napetosti +U, za bit '0' pa tokrat namesto 0 V uporabljamo impulz dolžine T 0 in negativne napetosti U. S tem "ukrepom" običajno znižamo enosmerno komponento v primerjavi z unipolarnim NRZ kodiranjem (je odvisno od bitov, ki jih prenašamo). Oba impulza imata enak spekter kot impulz za bit '1' pri unipolarni NRZ, torej kot ga prikazuje skica Sinhronizacija je prav tako enako zelo težavna kot pri unipolarni NRZ. Spekter signala za prenos daljšega niza bitov, enako kot pri unipolarni NRZ, vsebuje prvo ničlo pri frekvenci f 0. POLARNA RZ Ta linijska koda uporablja RZ impulze, za razliko od prejšnje (polarne NRZ). Spekter enega impulza je zato tak, kot ga prikazuje skica Posledica je, da imamo enake sinhronizacijske razmere kot pri unipolarni RZ, le da nimamo težav pri prenosu večjega števila ničel '0' na enkrat, saj je tudi bit '0' kodiran z RZ impulzom. Spekter signala za prenos daljšega niza bitov, enako kot pri unipolarni RZ, vsebuje prvo ničlo pri frekvenci 2f 0. Enosmerna komponeta takšnega signala je, jasno, običajno nižja kot pri unipolarni RZ linijski kodi (zavisi od bitov, ki jih prenašamo). DIPOLARNA To linijsko kodo imenujemo tudi On-Off Keying. Bit '0' je kodiran z odsotnostjo impulza, torej z ničelno napetostjo na liniji. Bit '1' pa je kodiran s simbolom, ki je sestavljen iz impulza pozitivne napetosti dolžine T 0 /2, ki mu takoj sledi še impulz negativne napetosti enake dolžine. Tak simbol prikazuje modri potek na skici Spekter takšnega impulza je prikazan na isti skici z rdečo barvo.

6 5 Analizator lastnosti linijskih kod Opazimo nekaj zelo pomembnega, namreč tak impulz nima enosmerne komponente. Ker simbol za bit '0' nima enosmerne komponente in simbol za bit '1' prav tako ne, nujno sledi, da signal za prenos poljubnega niza bitov ne bo nikoli vseboval enosmerne komponente. Skica Spekter pravokotnega impulza dolžine T 0 pri dipolarnem linijskem kodiranju. Razmere za sinhronizacijo pri sprejemu so identično enake kot pri unipolarni RZ linijski kodi. Spekter signala za prenos daljšega niza bitov, enako kot pri unipolarni RZ in polarni RZ, vsebuje prvo ničlo pri frekvenci 2f 0. MANCHESTER Manchester kodo imenujemo tudi dipolarna antipodalna linijska koda. Od prejšnje dipolarne se razlikuje le v tem, da bita '0' ne prenašamo z napetostjo 0 V na liniji, ampak s simbolom, ki je sestavljen iz impulza negativne napetosti dolžine T 0 /2, ki mu takoj sledi impulz pozitivne napetosti enake dolžine (ravno obratno kot za bit '1'). Spektra signalov tako za bit '0' kot za bit '1' sta takšna, kot na skici 2.5.1, torej brez enosmerne komponente. Jasno je torej vsak signal pri Manchester linijskem kodiranju brez enosmerne komponente. Sinhronizacija na sprejemni strani je vedno mogoča in enostavna, saj vsak simbol nosi informacijo o frekvenci oddajanja na oddajni strani (enako kot pri polarni RZ).

7 Analizator lastnosti linijskih kod 6 Spekter signala za prenos daljšega niza bitov vsebuje prvo ničlo pri frekvenci 2f 0. Manchester kodiranje se uporablja v 10 Mbit Ethernet LAN-ih in za prenos urinega signala v VLSI vezjih. BIPOLARNA NRZ Ta linijsko kodo imenujemo tudi AMI NRZ (Alternate mark inversion). Je rahlo izboljšana unipolarna NRZ linijska koda. Namesto da bi bit '1' vedno kodirali z impulzom pozitivne napetosti in dolžine T 0, je v tem primeru bit '1' kodiran enkrat z impulzom pozitivne napetosti, drugič pa z impulzom negativne napetosti, obakrat dolžine T 0. Alternirajoče torej prirejamo polariteto simbola za bit '1'. S tem rešimo problem enosmerne komponente signala pri unipolarni NRZ, ki je v tem primeru enaka 0. Spekter simbola za bit '1' je prikazan na skici Problem s sinhronizacijo ostaja enak kot pri unipolarni NRZ. Je izredno otežkočena. Spekter signala za prenos daljšega niza bitov vsebuje prvo ničlo pri frekvenci f 0 /2. OPOMBA: Ta podatek zasledimo v literaturi, vendar Analizator tega ne pokaže. Pri daljšem signalu je prva ničla navadno pri frekvenci f 0. BIPOLARNA RZ Imenujemo jo tudi AMI RZ. Je zelo podobna prejšnji linijski kodi, le da namesto NRZ simbolov uporablja RZ simbole. Zaradi tega ima sedaj simbol za bit '1' spekter, kot ga prikazuje skica Problem s sinhronizacijo ostaja enak kot pri unipolarni RZ, to je ko prenašamo daljši niz samih bitov '0'. Spekter signala za prenos daljšega niza bitov vsebuje prvo ničlo pri frekvenci f 0. HDB3 HDB3 (High density bipolar 3) je poseben primer bolj splošno definirane linijske kode HDBn (n je celo število). Gre v bistvu za izpeljanko iz bipolarne RZ, ki rešuje problem sinhronizacije pri prenosu daljšega niza samih bitov '0'. Problem rešuje tako, da ko zazna več kot n (v našem primeru je n enak 3) zaporednih enic, potem se (n+1)-vi (v našem primeru četrti) simbol za ničlo

8 7 Analizator lastnosti linijskih kod zamenja s tako imenovanim violation simbolom (to violate: kršiti). Violation simbol je impulz enake oblike kot simbol za bit '1' in vedno krši pravilo bipolarnega kodiranja, to je alternirajoče izmenjevanje polaritete simbolov za bit '1'. Če označimo z "0" simbol, ki pripada bitu '0', to je napetost 0 V, potem pri tej linijski kodi vsako zaporedje bitov '0000' kodiramo z "000V", kjer V predstavlja violation simbol. Pri tem pa nastanejo nove težave, to so težave z verjetnostjo enosmerne komponente. Naslednji primer lepo razloži težave. Če želimo prenesti na primer niz bitov ' ', bi se v linijski kodi pojavili trije violation simboli negativne polaritete, kar bi povzročilo negativno enosmerno komponento. Te težave rešimo na naslednji način. Namesto da niz '0000' vedno kodiramo z "000V", to storimo le takrat, ko je med zadnjim violation simbolom in ponovnim zaporedjem prevečih bitov '0' vsaj N število bitov '1'. N je neko določeno celo število. Če je število bitov '1' med dvema dolgima nizoma bitov '0' manjše od N, potem niz '0000' kodiramo z "100V", kjer "1" predstavlja povsem regularen simbol za bit '1' in ga v literaturi imenujejo tudi balancing simbol. Balancing simbol je vedno v skladu z bipolarnim RZ kodiranjem, medtem ko violation simbol vedno krši to pravilo. V Analizatorju sem pri tej kodi izbral N = 4. Osnovna ideja te linijske kode je enostavna, vendar jo je težko razložiti, bolje je prikazana v sami aplikaciji Analizatorja. Spekter te linijske kode in prva ničla v spektru ostajata enaka kot pri bipolarni RZ kodi, sinhronizacija v primeru daljšega niza bitov '0' pa je popravljena. CMI CMI (Coded mark inversion) se od bipolarne NRZ razlikuje v tem, da uporablja drug simbol za bit '0'. Signal za bit '0' je sestavljen iz impulza negativne polaritete in trajanja T 0 /2, ki mu takoj sledi impulz pozitivne polaritete enake dolžine. Torej je CMI neka mešanica bipolarne NRZ in dipolarne (ali tudi Manchester) linijske kode. Sinhronizacija na sprejemni strani je enostavna (tako kot pri dipolarni in Manchester linijki kodi). Spekter signala za prenos daljšega niza bitov vsebuje prvo ničlo pri frekvenci 2f 0.

9 Analizator lastnosti linijskih kod 8 MILLER Miller linijska koda, imenovana tudi Delay Modulation, je neka mešanica dipolarne in bipolarne NRZ kode. Simbol za bit '1' je sestavljen iz impulza negativne napetosti dolžine T 0 /2, ki mu sledi impulz pozitivne napetosti enake dolžine, in obratno (alternirajoče oz. odvisno od prejšnjega simbola za bit '0'). Bit '0' pa prenašamo z impulzom dolžine T 0, in obeh polaritet (alternirajoče oz. odvisno od prejšnjega simbola za bit '1'). Lepše, kot samo pravilo prikaže Analizator, ni mogoče opisati z besedami. Enosmerna komponenta ni prisotna, sinhronizacija je malo težja, kot pri dipolarni linijski kodi. Spekter signala za prenos daljšega niza bitov vsebuje prvo ničlo pri frekvenci 2f 0. OPOMBA: Vse naslednje linijske kode imajo bitno hitrost različno od simbolne hitrosti (en simbol ne prenaša več enega bita). 2B1Q 2B1Q (2 binary 1 quaternary) je večnivojska linijska koda. Koda priredi dvema bitoma en simbol, po pravilu prikazanem v tabeli Je torej 4 nivojska linijska koda. Velja opozoriti, da v različni literaturi zasledimo različne kodirne tabele, spodnja je le ena od možnih. Binarni vhodni niz Izhodni signal V V 01-1 V 00-3 V Tabela B1Q kodirna tabela. Bistvena prednost te linijske kode (oz. vseh večnivojskih kod) je, da pri enaki simbolni hitrosti prenese več bitov, kot enonivojske kode. Dosegli smo torej večjo bitno hitrost, ki je tudi edina, ki zanima uporabnike telekomunikacijskih sistemov. Seveda je število nivojev, ki jih lahko uporabimo, kot vemo, omejeno z SNR (razmerjem signal šum) na liniji. Pri tej linijski kodi so možne težave z enosmerno komponento.

10 9 Analizator lastnosti linijskih kod Sinhronizacija na sprejemni strani ni najboljša, saj so simboli dolgi T 0, obstaja pa tudi verjetnost, da se večkrat zaporedoma prenašajo enaki simboli in takrat lahko pri sprejemu izgubimo takt ure oddajnika. Spekter signala za prenos daljšega niza bitov, enako kot pri vseh NRZ kodah, vsebuje prvo ničlo pri frekvenci f 0. Kljub ne preveč lepim lastnostim, se 2B1Q, kot vemo, uporablja v ISDN in ADSL tehnologiji. Bistvena prednost te kode je jasno višja bitna hitrost pri nespremenjeni simbolni hitrosti v primerjavi z manj-nivojskimi kodami. 4B3T 4B3T (4 binary 3 ternary), bolj splošna linijska koda je nbmt (n in m sta celi števili), priredi štirim bitom tri trinivojske simbole. Pravilo prikazuje tabela , kjer oznaka "+" predstavlja impulz pozitivne polaritete, "0" predstavlja napetost 0 V in "-" predstavlja jasno impulz negativne polaritete. Vsi trije simboli so dolgi T 0, kot vedno do sedaj. Zopet je vmesna opomba, da je v različni literaturi mogoče zaslediti različne kodirne tabele. Binarni Izhodni signal vhodni niz Predhodna DC 0 Predhodna DC > Tabela B3T kodirna tabela. V tabeli opazimo, da lahko enako kombinacijo štirih bitov predstavimo z dvema različnima signaloma (razen za prvih 6 kombinacij, ki so uravnotežene proti enosmerni komponenti). Katero možnost bomo v nekem trenutku izbrali, je odvisno od predhodne enosmerne komponente (DC), ki lahko nastane. Če

11 Analizator lastnosti linijskih kod 10 imamo v nekem trenutku pozitivno enosmerno komponento, bomo izbrali možnost iz desnega stolpca, ki bo enosmerno komponento znižala in obratno. Enosmerna komponenta se sproti popravlja z naslednjimi simboli, kot je bilo prej opisano. Sinhronizacija je zahtevna, enako kot npr. pri polarni NRZ. Spekter signala pri prenosu daljšega niza bitov ima prvo ničlo pri f 0. 3B4B 3B4B (3 binary 4 binary) je edina tu opisana linijska koda, ki ima manjšo bitno hitrost od simbolne hitrosti. Koda trem bitom priredi štiri dvonivojske simbole. Pravilo kodiranja prikazuje tabela Oznaki "+" in "-" pomenita enako kot pri kodi 4B3T. Binarni Izhodni signal vhodni niz Predhodna DC 0 Predhodna DC > Tabela B4B kodirna tabela. Kateri signal bomo izbrali za zadnji dve kombinaciji bitov je zopet odvisno od predhodne enosmerne komponente (DC). Če imamo do nekega trenutka pri prenosu negativno enosmerno komponento in nadalje želimo prenesti niz '110', bomo izbrali signal iz srednjega stolpca, ki bo to enosmerno komponento zmanjšal. Prvih 6 kombinacij je zopet uravnoteženih proti enosmerni komponenti. Enosmerna komponenta se sproti popravlja z naslednjimi simboli, kot je bilo prej opisano. Sinhronizacija je zahtevno opravilo, kot pri 4B3T. Spekter signala pri prenosu daljšega niza bitov ima prvo ničlo pri f 0.

12 11 Analizator lastnosti linijskih kod PREGLED VSEH LINIJSKIH KOD V tabeli so zbrane ključne lastnosti vseh opisanih linijskih kod. Naziv linijske kode Sinhronizacija Enosmerna komponenta Prva ničla v spektru (pri frekvenci) unipolarna NRZ težka da f 0 unipolarna RZ enostavna da 2f 0 polarna NRZ težka da f 0 polarna RZ enostavna da 2f 0 dipolarna (OOK) enostavna ne 2f 0 Manchester enostavna ne 2f 0 bipolar NRZ težka ne f 0 bipolar RZ enostavna ne f 0 HDB3 enostavna ne f 0 CMI enostavna ne 2f 0 Miller enostavna ne 2f 0 2B1Q enostavna da f 0 4B3T težka ne f 0 3B4B težka ne f 0 Tabela Pregled ključnih lastnosti vseh opisanih linijskih kod. Skica prikazuje primer signalov za prenos nekega niza bitov za vse opisane linijske kode. Ta skica je dopolnitev k opisu posameznih linijskih kod. Skico sem pridobil z uporabo Analizatorja, ki bo opisan v naslednjem, 3. poglavju. Težave nastopijo le pri daljšem nizu samih ničelnih bitov '0'. Težave nastopijo, če prenašamo po liniji zaporedoma neprekinjeno enake simbole.

13 Analizator lastnosti linijskih kod 12 Skica Pravokotni signali za vse opisane linijske kode, ki prenašajo niz bitov ' '.

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Algebraične strukture

Algebraične strukture Poglavje V Algebraične strukture V tem poglavju bomo spoznali osnovne algebraične strukture na dani množici. Te so podane z eno ali dvema binarnima operacijama. Binarna operacija paru elementov iz množice

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

Gradniki TK sistemov

Gradniki TK sistemov Gradniki TK sistemov renos signalov v višji rekvenčni legi Vsebina Modulacija in demodulacija Vrste analognih modulacij AM M FM rimerjava spektrov analognih moduliranih signalov Mešalniki Kdaj uporabimo

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil.

Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil. Zaporedja števil V matematiki in fiziki pogosto operiramo s približnimi vrednostmi neke količine. Pri numeričnemu računanju lahko npr. število π aproksimiramo s števili, ki imajo samo končno mnogo neničelnih

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

II. LIMITA IN ZVEZNOST FUNKCIJ

II. LIMITA IN ZVEZNOST FUNKCIJ II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Διαβάστε περισσότερα

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Linearne blokovne kode

Linearne blokovne kode Fakulteta za elektrotehniko Univerza v Ljubljani Matevž Kunaver Linearne blokovne kode seminarska naloga Mentor: prof. dr. Sašo Tomažič Ljubljana, maj 005 Povzetek V tej seminarski nalogi so opisane linearne

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

Preklopna vezja 1. poglavje: Številski sistemi in kode

Preklopna vezja 1. poglavje: Številski sistemi in kode Preklopna vezja 1. poglavje: Številski sistemi in kode Številski sistemi Najpreprostejše štetje zareze (od 6000 pr.n.št.) Evropa Vzhodna Azija Južna Amerika Številski sistemi Egipčanski sistem (od 3000

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ι 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δρ ΒΑΣΙΛΕΙΟΣ ΜΠΟΖΑΝΤΖΗΣ ΨΗΦΙΑΚΗ ΔΙΑΜΟΡΦΩΣΗ ΒΑΣΙΚΗΣ ΖΩΝΗΣ Τα είδη ψηφιακής

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

8. Posplošeni problem lastnih vrednosti

8. Posplošeni problem lastnih vrednosti 8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti Poglavje VII Linearne preslikave V tem poglavju bomo vektorske prostore označevali z U,V,W,... Vsi vektorski prostori bodo končnorazsežni. Zaradi enostavnosti bomo privzeli, da je pripadajoči obseg realnih

Διαβάστε περισσότερα

ŠOLSKI CENTER ZA POŠTO, EKONOMIJO IN TELEKOMUNIKACIJE Celjska 16, 1000 Ljubljana SEMINARSKA NALOGA. ANTENE za začetnike. (kako se odločiti za anteno)

ŠOLSKI CENTER ZA POŠTO, EKONOMIJO IN TELEKOMUNIKACIJE Celjska 16, 1000 Ljubljana SEMINARSKA NALOGA. ANTENE za začetnike. (kako se odločiti za anteno) ŠOLSKI CENTER ZA POŠTO, EKONOMIJO IN TELEKOMUNIKACIJE Celjska 16, 1000 Ljubljana SEMINARSKA NALOGA ANTENE za začetnike (kako se odločiti za anteno) Mentor: univ. dipl. Inž. el. Stanko PERPAR Avtor: Peter

Διαβάστε περισσότερα

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a

Διαβάστε περισσότερα

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1 Poglavje II Matrike Matrika je pravokotna tabela realnih števil Na primer: [ ] 1 1 1, 2 3 1 1 0 1 3 2 1, 0 1 4 [ ] 2 7, Matrika je sestavljena iz vrstic in stolpcev Vrstici matrike [ ] 1 1 1 2 3 1 [ ]

Διαβάστε περισσότερα

1.3 Vsota diskretnih slučajnih spremenljivk

1.3 Vsota diskretnih slučajnih spremenljivk .3 Vsota diskretnih slučajnih spremenljivk Naj bosta X in Y neodvisni Bernoullijevo porazdeljeni spremenljivki, B(p). Kako je porazdeljena njuna vsota? Označimo Z = X + Y. Verjetnost, da je P (Z = z) za

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Lastne vrednosti in lastni vektorji

Lastne vrednosti in lastni vektorji Poglavje VIII Lastne vrednosti in lastni vektorji V tem poglavju bomo privzeli, da so skalarji v vektorskih prostorih, koeficienti v matrikah itd., kompleksna števila. Algebraične operacije seštevanja,

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Uporabna matematika za naravoslovce

Uporabna matematika za naravoslovce Uporabna matematika za naravoslovce Zapiski predavanj Študijski programi: Aplikativna kineziologija, Biodiverziteta Študijsko leto 203/4 doc.dr. Barbara Boldin Fakulteta za matematiko, naravoslovje in

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO LJUBLJANA, 2014 2 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA Študijska smer: Fizika in matematika SANDRA BOLTA

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika 1 Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 21. april 2008 102 Poglavje 4 Odvod 4.1 Definicija odvoda Naj bo funkcija f definirana na intervalu (a, b) in x 0 točka s tega intervala. Vzemimo

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

10. poglavje. Kode za overjanje

10. poglavje. Kode za overjanje 10. poglavje Kode za overjanje (angl. Authentication Codes) Uvod Računanje verjetnosti prevare Kombinatorične ocene pravokotne škatje (ang. orthogonal arrays, OA) konstrukcije in ocene za OA Karakterizaciji

Διαβάστε περισσότερα

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

ZBIRKA REŠENIH NALOG IZ MATEMATIKE I

ZBIRKA REŠENIH NALOG IZ MATEMATIKE I Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE I Skripta za vaje iz Matematike I (UNI + VSP) Ljubljana, množice Osnovne definicije: Množica A je podmnožica

Διαβάστε περισσότερα

MATEMATIKA ZA BIOLOGE

MATEMATIKA ZA BIOLOGE MATEMATIKA ZA BIOLOGE Zapiski predavanj Milan Hladnik Fakulteta za matematiko in fiziko Ljubljana 2006 KAZALO I. DISKRETNA MATEMATIKA 3 1. Množice, relacije, funkcije 3 2. Kombinatorika in verjetnost 9

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

TRANZITIVNI GRAFI. Katarina Jan ar. oktober 2008

TRANZITIVNI GRAFI. Katarina Jan ar. oktober 2008 TRANZITIVNI GRAFI Katarina Jan ar oktober 2008 Kazalo 1 Uvodne denicije........................ 3 2 Vozli² na tranzitivnost.................... 8 3 Povezavna tranzitivnost.................... 10 4 Lo na

Διαβάστε περισσότερα

INTEGRALI RACIONALNIH FUNKCIJ

INTEGRALI RACIONALNIH FUNKCIJ UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA NIKA HREN INTEGRALI RACIONALNIH FUNKCIJ DIPLOMSKO DELO LJUBLJANA, 203 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA MATEMATIKA - RAČUNALNIŠTVO NIKA HREN Mentor: izr.

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk ) VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]

Διαβάστε περισσότερα

Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013

Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013 Postavitev hipotez NUJNO! Milena Kova 10. januar 2013 Osnove biometrije 2012/13 1 Postavitev in preizku²anje hipotez Hipoteze zastavimo najprej ob na rtovanju preizkusa Ob obdelavi jih morda malo popravimo

Διαβάστε περισσότερα