Svetlo encyklopedické heslo

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Svetlo encyklopedické heslo"

Transcript

1 Svetlo encyklopedické heslo Svetlo je elektromagnetické žiarenie, na ktoré je citlivé ľudské oko. Preto ho nazývame aj viditeľným, prípadne optickým žiarením. Rozsah vlnových dĺžok svetla je v rozmedzí od 380 nm do 780 nm. V tejto oblasti vyžaruje Slnko maximum energie. Heslo vypracoval: RNDr. Drahomír Chochol, DrSc. Astronomický ústav Slovenskej akadémie vied chochol@ta3.sk Dátum aktualizácie: september 2009

2 Svetlo čo si má zapamätať žiak Svetlo je elektromagnetické žiarenie, na ktoré je citlivé ľudské oko. Preto ho nazývame aj viditeľným, prípadne optickým žiarením. Základné vlastnosti svetla sú: intenzita, vlnová dĺžka (alebo frekvencia) a polarizácia. Intenzita je svetelná energia vyžiarená na určitej vlnovej dĺžke. Rozsah vlnových dĺžok svetla je v rozmedzí od 380 nm (3800 Å) do 780 nm (7800 Å), čomu zodpovedá rozsah frekvencií 7, Hz až 3, Hz. Rýchlosť svetla (c), jeho frekvencia (f ) a vlnová dĺžka (λ) sú viazané vzťahom: c = f λ. Rýchlosť šírenia svetla vo vákuu je konštantná a má hodnotu: m/s. Svetlo je polarizované, ak kmity svetelnej vlny majú určitú preferovanú orientáciu. Svetlo má nielen vlnové, ale aj časticové vlastnosti. Hovoríme o vlnovo-časticovej dualite. Častice svetla nazývame fotóny. Základným zdrojom svetla vo Vesmíre sú hviezdy. Štúdiom svetla a jeho prechodu prostrediami a ich rozhraniami v rôznych fyzikálnych a geometrických podmienkach sa zaoberá optika. Obr. 1 Biele svetlo je zložené zo svetla rôznych vlnových dĺžok s charakteristickou farbou.

3 Svetlo čo má k dispozícii učiteľ Svetlo je elektromagnetické žiarenie, na ktoré je citlivé ľudské oko. Preto ho nazývame aj viditeľným, prípadne optickým žiarením. Základné vlastnosti svetla sú: intenzita, vlnová dĺžka (alebo frekvencia) a polarizácia. Intenzita je svetelná energia vyžiarená na určitej vlnovej dĺžke. Rozsah vlnových dĺžok svetla je v rozmedzí od 380 nm (3800 Å) do 780 nm (7800 Å), čomu zodpovedá rozsah frekvencií 7, Hz až 3, Hz. Rýchlosť svetla (c), jeho frekvencia (f ) a vlnová dĺžka (λ) sú viazané vzťahom: c = f λ. Rýchlosť šírenia svetla vo vákuu je konštantná a má hodnotu: m/s. Táto hodnota je jednou zo základných fyzikálnych konštánt. Bola schválená na 17. zasadnutí Generálnej konferencie o váhach a mierach (CGPM) v r a je od nej odvodená jednotka meter ako dĺžka dráhy, ktorú preletí svetlo vo vákuu za 1/ sekundy. Merania uskutočnené od roku 1983 teda už nespresňujú hodnotu rýchlosti svetla, ale spresňujú hodnotu vzdialenosti jedného metra. Svetlo je polarizované, ak kmity svetelnej vlny majú určitú preferovanú orientáciu. Svetlo má nielen vlnové, ale aj časticové vlastnosti. Hovoríme o vlnovo-časticovej dualite. Častice svetla nazývame fotóny. Štúdiom svetla a jeho prechodu prostrediami a ich rozhraniami v rôznych fyzikálnych a geometrických podmienkach sa zaoberá optika. Štyri základné zákony geometrickej optiky sú: 1) Zákon priamočiareho šírenia svetla. V homogénnom a izotropnom prostredí (t.j. prostredí, kde optické vlastnosti nie sú závislé ani na polohe bodu, ani na orientácii lúča) sa svetlo šíri priamočiare v tvare svetelných lúčov. 2) Zákon vzájomnej nezávislosti šírenia svetelných lúčov. Svetelné lúče sa šíria tak, ako keby ostatné lúče nejestvovali. 3) Zákon odrazu. Pri dopade na rozhranie dvoch prostredí sa svetelný lúč (čiastočne alebo úplne) odráža tak, že uhol dopadu sa rovná uhlu odrazu a lúč zostáva v rovine dopadu (v rovine tvorenej lúčom a kolmicou dopadu, t.j. kolmicou na rovinné rozhranie). 4) Zákon lomu (Snellov zákon). Na rozhraní dvoch prostredí sa svetelný lúč láme tak, že podiel sínusov uhla dopadu a uhla lomu sa rovná konštante, nazývanej relatívny index lomu n. Pri prechode svetla z vákua do daného prostredia sa svetlo v ňom spomalí v závislosti na jeho indexe lomu n. Ak označíme c 0 rýchlosť svetla vo vákuu a c rýchlosť svetla v danom prostredí, potom n = c 0 /c. Index lomu vákua je n = 1 a iného prostredia n > 1. Keď svetlo prechádza z vákua/materiálu do iného materiálu/vákua, frekvencia zostáva rovnaká, ale mení sa vlnová dĺžka. V priehľadnom prostredí (vzduch, voda, sklo) sa svetlo zo zdroja šíri priamo. V priesvitnom (prípadne kalnom) prostredí (dym, mlieko, med, ľad) sa časť svetla rozptýli. Nepriehľadným prostredím (betón, porcelán, drevo) svetlo neprechádza. Optické žiarenie z objektov vo vesmíre prináša 4 základné typy informácií, ktoré sú predmetom štúdia jednotlivých oblastí astronómie. Polohu objektu na nebeskej sfére, čiže smer, odkiaľ svetlo prichádza, študuje astrometria. Množstvom dopadajúceho svetla zo zdroja žiarenia sa zaoberá fotometria a jeho spektrálnym rozložením spektroskopia. Smer elektromagnetických kmitov optického žiarenia študuje polarimetria. Základným zdrojom svetla vo Vesmíre sú hviezdy. Svetelný lúč nesie informáciu o mieste svojho zrodu, ale aj medzihviezdnom prostredí, cez ktoré prechádza. Základným

4 zdrojom svetla pre Zem je najbližšia hviezda - Slnko. Zemská atmosféra je pre svetlo priepustná. Svetlo môžeme rozložiť na farebné spektrum pomocou hranola, ktorý láme svetelné lúče v závislosti na ich vlnovej dĺžke. Obr. 2 Rozklad bieleho svetla hranolom na jednotlivé farby. Tab. 1. Vlnové dĺžky svetla rozličných farieb. vlnová dĺžka λ [nm] farba fialová modrofialová modrá modrozelená zelená žltozelená žltá oranžová oranžovočervená červená tmavočervená Citlivosť ľudského oka na rôzne farby, čiže na svetlo rôznych vlnových dĺžok, je rôzna. Vyjadruje ju krivka citlivosti oka. Najväčšiu citlivosť má oko na žlté svetlo, kde je maximum energie slnečného žiarenia. Vlnová dĺžka svetla je rozhodujúcou charakteristikou pre výsledný vnem farby svetla. Krátkovlnné svetlo vníma oko ako fialové, dlhovlnné ako červené. Svetlo prináša do nášho oka prevažnú väčšinu informácií o okolitom svete a o vesmíre. Videnie vecí vo dne je možné vďaka slnečnému svetlu, odrazenému a rozptýlenému od okolitých predmetov. Planéty Slnečnej sústavy a ich mesiace svietia odrazeným svetlom od Slnka. Až do polovice 20. storočia bolo svetlo jediným zdrojom znalostí o vesmíre. Základnými fotometrickými veličinami, ktorými popisujeme svetlo sú: svetelný tok, svietivosť, jas a osvetlenosť.

5 Svetelný tok Φ je svetelná energia, ktorú zdroj vyžiari za jednotku času. Jednotkou je lumen (lm). Svietivosť I je množstvo svetelného toku vyslaného zdrojom do jednotkového priestorového uhla. Jednotkou je kandela (cd). Jas L je mernou veličinou svietivosti. Jednotkou je nit (nt = cd/m 2 ). Osvetlenosť (intenzita osvetlenia) E je svetelný tok dopadajúci na určitú plochu. Jednotkou je lux (lx = lm/m 2 ). Bežná hodnota osvetlenosti v budovách sa pohybuje v rozmedzí lx, počas slnečného dňa možno vonku namerať hodnoty do lx, za jasnej noci počas splnu mesiaca 0,5 lx. Svetelné znečistenie je svetlo pozemských zdrojov rozptýlené v ovzduší. Zdrojom svetelného znečistenia je najmä pouličné osvetlenie, osvetlenie štadiónov, parkovísk a budov. Nežiadúce svetlo, mieriace k oblohe, sa odráža od častíc v atmosfére (prach, vodná para) a šíri sa ďaleko za miesto vzniku. Prejavuje sa viditeľne jasnejšou oblohou nad zdrojom svetelného znečistenia. Rušivé svetlo pôsobí negatívne na životné prostredie nielen ľudí, ale aj živočíchov a rastlín. Vo veľkomestách vedie k strate prirodzeného hviezdneho neba. Obr. 3 Svetelné znečistenie Zeme. Astronomické merania rýchlosti svetla. Prvé určenie rýchlosti svetla zo zákrytov Jupiterových mesiacov. Jedno z prvých zdokumentovaných meraní, vedúcich k určeniu rýchlosti svetla uskutočnil dánsky astronóm Ole Römer, ktorý v r pozoroval ďalekohľadom zatmenia Jupiterovho mesiaca Io. Mesiac Io obehne Jupiter raz za 42,5 hodiny. Keďže rovina dráhy mesiaca Io okolo Jupitera je veľmi blízka rovine dráhy Jupitera okolo Slnka, značnú časť svojej dráhy sa pohybuje v tieni Jupitera v zatmení. Zo Zeme možno pozorovať len vstupy Io do tieňa Jupitera alebo jeho výstupy z tieňa. Ak pozorujeme vstup do tieňa, jeho výstup je zakrytý Jupiterom a opačne. Štyri mesiace pred opozíciou Jupitera (poloha H na Obr. 4) možno zo Zeme pozorovať iba vstupy Io do tieňa Jupitera a 4 mesiace po opozícii Jupitera je možné pozorovať iba jeho výstupy z tieňa. V opozícii sú vstupy a výstupy Io zakryté Jupiterom.

6 Obr. 4 Ilustrácia z Römerovej práce z roku Römer porovnal zdanlivú dobu obehu mesiaca Io okolo Jupitera, keď sa Zem pohybovala smerom k Jupiteru (F G) a keď sa od neho vzďaľovala (L K). Römer si všimol, že čas medzi dvoma nasledujúcimi zatmeniami Jupiterových mesiacov sa pravidelne mení oproti teoreticky vypočítaným hodnotám. V období, keď sa vzdialenosť medzi Zemou a Jupiterom zmenšovala, časové intervaly medzi zatmeniami sa skracovali a naopak, keď sa Zem od Jupitera vzďaľovala, časové intervaly medzi zatmeniami sa zväčšovali. Romer na základe toho urobil záver, že tieto časové rozdiely spôsobuje konečná rýchlosť svetla: pri zväčšenej vzdialenosti medzi Zemou a Jupiterom trvá svetlu dlhšie, kým sa na Zem dostane, preto aj časový interval musí vzrásť. Römer zistil, že svetelný lúč potrebuje na prekonanie vzdialenosti rovnej priemeru obežnej dráhy Zeme 22 minút. Z tejto hodnoty potom holandský matematik, fyzik a astronóm Christian Huygens vypočítal rýchlosť svetla km /s, čo je o 25% nižšia hodnota, než je skutočná rýchlosť svetla. Bradleyho metóda. Anglický astronóm James Bradley v r objavil aberáciu svetla: uhlový odklon hviezdneho lúča od pôvodného smeru spôsobený pohybom pozorovateľa. Svetlo hviezd dopadajúce na Zem musí dopadať z mierneho uhla, ktorý sa dá vypočítať porovnaním rýchlosti Zeme na jej obežnej dráhe k rýchlosti svetla. Z pozorovanej aberácie hviezdy γ Draconis, Bradley vypočítal rýchlosť svetla: km/s. Laboratórne merania rýchlosti svetla. Prvé laboratórne meranie rýchlosti svetla uskutočnil francúzsky fyzik Hippolyte Fizeau v roku Schému aparatúry vidíte na Obr. 5.

7 Obr. 5. Schéma aparatúry na meranie rýchlosti svetla. Lúč svetla bol namierený na zrkadlo umiestnené vo vzdialenosti niekoľkých kilometrov. Na ceste od zdroja svetla ku zrkadlu prechádza lúč ozubeným kolesom (rotujúcim diskom). Pri určitej rýchlosti rotácie kolesa prechádza lúč smerom od zdroja jedným otvorom v ozubenom kolese a pri návrate nasledujúcim otvorom. V prípade čo i len malého zrýchlenia resp. spomalenia rotácie kolesa, zasiahne lúč zub kolesa a nedostane sa naspäť. Rýchlosť svetla sa dá vypočítať zo známej vzdialenosti zdroja a zrkadla, počtu zubov kolesa a rýchlosti rotácie. Ak α je uhol medzi dvomi otvormi ozubeného kolesa, ktorými svetlo prejde, L je vzdialenosť k zrkadlu a f je frekvencia otáčania, tak pre rýchlosť svetla c platí: c = 4πfL/α. Rýchlosť svetla publikovaná Fizeauom bola km/s. Leon Foucault vylepšil Fizeauovu metódu nahradením ozubeného kolesa rotujúcim zrkadlom. Ním určená rýchlosť svetla v r bola km/s. Foucaultova metóda bola použitá na meranie rýchlosti svetla aj Simonom Newcombom a Albertom A. Michelsonom, ktorý použil v roku 1926 rotujúce zrkadlá na zmeranie času potrebného pre svetlo na prejdenie vzdialenosti od hory Mount Wilson k hore Mount San Antonio a späť. Výsledkom týchto meraní bolo určenie rýchlosť svetla: km/s. Dnešné metódy merania rýchlosti svetla. Príkladom môže byť meranie pomocou LED diód, ktoré emitujú pravidelné série pulzov červeného svetla v trvaní 20 nanosekúnd. Svetelný lúč je rozdelený na dva, z ktorých jeden putuje k zrkadlu vzdialenému 10m a po odraze dopadá na detektor a druhý sa odráža od zrkadla vzdialeného iba niekoľko cm. Časový rozdiel príchodu týchto lúčov na detektor: 67 nanosekúnd môže byť zobrazený osciloskopom. Keďže svetlu trvá 67 nanosekúnd, aby urazilo dráhu 20 m, jeho rýchlosť je km/s. Pri interferometrickej metóde sa monochromatický lúč svetla známej frekvencie f vyslaný laserom rozdelí na dva lúče s rozdielnou dráhou a potom sa znovu spojí. Reguláciou dĺžky dráhy pri pozorovaní interferenčných obrazcov a presným zmeraním dĺžky dráhy je možné určiť vlnovú dĺžku svetla λ. Rýchlosť svetla sa dá určiť zo vzťahu c = λf.

Vlnová optika. Doplnkové materiály k prednáškam z Fyziky III pre EF Dušan PUDIŠ (2010)

Vlnová optika. Doplnkové materiály k prednáškam z Fyziky III pre EF Dušan PUDIŠ (2010) Vlnová optika Fyzikálna podstata svetla. Svetlo ako elektromagnetické vlnenie. Základné zákony geometrickej optiky. Inde lomu. Fermatov princíp. Snellov zákon. Ohyb svetla na jednoduchej štrbine a na mriežke.

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Geometrická a fyzikálna optika

Geometrická a fyzikálna optika Geometrická a fyzikála optika Fyzikála podstata svetla. Svetlo ako elektromagetické vleie. Základé zákoy geometrickej optiky. Idex lomu. Fermatov pricíp. Sellov záko. Ohyb svetla a jedoduchej štrbie a

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Svetelnotechnické veličiny

Svetelnotechnické veličiny ELEKTRICKÉ SVETLO Svetlo Osvetlenie vnútorných i vonkajších priestorov má významný vplyv na bezpečnosť osôb, ich zrakovú pohodu a s tým súvisiaci pracovný výkon, únavu, orientáciu v priestore a celkový

Διαβάστε περισσότερα

17 Optika. 1 princípom: Každý bod vlnoplochy predstavuje nový zdroj. 1 CHRISTIAN HUYGENS ( ) holandský matematik a fyzik, zakladateľ vlnovej

17 Optika. 1 princípom: Každý bod vlnoplochy predstavuje nový zdroj. 1 CHRISTIAN HUYGENS ( ) holandský matematik a fyzik, zakladateľ vlnovej 259 17 Optika V tejto časti sa budeme zaoberať šírením svetla v optických sústavách. Svetlo je elektromagnetické žiarenie, ktorého spektrum zahrňuje veľmi širokú oblasť vlnových dĺžok od γ-žiarenia až

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

Vzorce a definície z fyziky 3. ročník

Vzorce a definície z fyziky 3. ročník 1 VZORCE 1.1 Postupné mechanické vlnenie Rovnica postupného mechanického vlnenia,=2 (1) Fáza postupného mechanického vlnenia 2 (2) Vlnová dĺžka postupného mechanického vlnenia λ =.= (3) 1.2 Stojaté vlnenie

Διαβάστε περισσότερα

ABSORPCIA SVETLA I. SKÚMANIE VLASTNOSTÍ SVETLA. Dátum:

ABSORPCIA SVETLA I. SKÚMANIE VLASTNOSTÍ SVETLA. Dátum: ABSORPCIA SVETLA I. SKÚMANIE VLASTNOSTÍ SVETLA 1. Priraď k optickým prostrediam správnu charakteristiku tak, že ich spojíš čiarami. Ku každému druhu doplň konkrétny príklad. PRIEHĽADNÉ... PRIESVITNÉ...

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

8 Elektromagnetické vlny a základy vlnovej optiky

8 Elektromagnetické vlny a základy vlnovej optiky 8 Elektromagnetické vlny a základy vlnovej optiky 8. Úvod Zo vzájomnej väzby a vzťahov medzi vektormi elektrickej intenzity a intenzity magnetického poľa vyjadrených Mawellovými rovnicami vyplývajú vlnové

Διαβάστε περισσότερα

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru

Διαβάστε περισσότερα

Obr. 28 Pohľad na ceruzku ponorenú vo vode. Urob pokus s pozorovaním predmetu v akváriu a pokús sa o vysvetlenie pozorovaného javu.

Obr. 28 Pohľad na ceruzku ponorenú vo vode. Urob pokus s pozorovaním predmetu v akváriu a pokús sa o vysvetlenie pozorovaného javu. 1.6 Lom svetla Urob jednoduché pozorovanie: do skleného pohára s vodou vlož lyžicu alebo ceruzku. Ak sa pozeráme zboku alebo zhora, javí sa predmet vo vode ako zlomený (obr. 28). Obr. 28 Pohľad na ceruzku

Διαβάστε περισσότερα

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

Elektromagnetické pole

Elektromagnetické pole Elektromagnetické pole Elektromagnetická vlna. Maxwellove rovnice v integrálnom tvare a diferenciálnom tvare. Vlnové rovnice pre E a. Vjadrenie rýchlosti elektromagnetickej vln. Vlastnosti a znázornenie

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Kontrolné otázky z jednotiek fyzikálnych veličín

Kontrolné otázky z jednotiek fyzikálnych veličín Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

Poznámky Svetlo Osvetlenie ZRAKOVÁ POHODA

Poznámky Svetlo Osvetlenie ZRAKOVÁ POHODA Poznámky Svetlo Osvetlenie ZRAKOVÁ POHODA Zraková pohoda je príjemný psychofyziologický stav potrebný pre prácu a oddych. Závisí od: o intenzity a kvality osvetlenia o stavu zraku o vlastností prostredia.

Διαβάστε περισσότερα

Elektromagnetické žiarenie a jeho spektrum

Elektromagnetické žiarenie a jeho spektrum Elektromagnetické žiarenie a jeho spektrum Elektromagnetické žiarenie je prenos energie v podobe elektromagnetického vlnenia. Elektromagnetické vlnenie alebo elektromagnetická vlna je lokálne vzniknutá

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Bezpečnosť práce v laboratóriu biológie

Bezpečnosť práce v laboratóriu biológie Bezpečnosť práce v laboratóriu biológie Riziká: chemické (slabé roztoky kyselín a lúhov) biologické rastlinné pletivá/ infikované umyť si ruky el. prúd len obsluha zariadení, nie ich oprava Ochrana: 1.

Διαβάστε περισσότερα

Základné poznatky molekulovej fyziky a termodynamiky

Základné poznatky molekulovej fyziky a termodynamiky Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky

Διαβάστε περισσότερα

Matematický model robota s diferenciálnym kolesovým podvozkom

Matematický model robota s diferenciálnym kolesovým podvozkom Matematický model robota s diferenciálnym kolesovým podvozkom Demonštračný modul Úlohy. Zostavte matematický model robota s diferenciálnym kolesovým podvozkom 2. Vytvorte simulačný model robota v simulačnom

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

UFOčebnica: Svetlo a optika

UFOčebnica: Svetlo a optika Fyzikálny korešpondenčný seminár 8. ročník, 2014/2015 UFO, KTFDF FMFI UK, Mlynská dolina, 842 48 Bratislava e-mail: otazky@fks.sk web: http://ufo.fks.sk UFOčebnica: Svetlo a optika Milí riešitelia! V nasledujúcom

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

2.5 Vlnové vlastnosti svetla

2.5 Vlnové vlastnosti svetla Námety na samostatnú prácu študentov 1. Nájdite si v literatúre, alebo na webe podrobnejšie vysvetlenie vzniku dúhy, pripravte o tom ilustrovaný výklad pre celú triedu. 2. Nájdite si v literatúre z histórie

Διαβάστε περισσότερα

Uhol, pod ktorým sa lúč láme závisí len od relatívnych indexov lomu dvojice prostredí a od uhla dopadu podľa Snellovho zákona. n =

Uhol, pod ktorým sa lúč láme závisí len od relatívnych indexov lomu dvojice prostredí a od uhla dopadu podľa Snellovho zákona. n = Lom svetla. Lom svetla hraolom, optickým kliom a plaparalelou doštičkou Záko lomu Na rozhraí dvoch prostredí sa svetelý lúč láme tak, aby prešiel dráhu z bodu A do bodu B za ajkratší možý čas. Teda v opticky

Διαβάστε περισσότερα

Integrovaná optika a. Zimný semester 2017

Integrovaná optika a. Zimný semester 2017 Inegrovaná opka a opoelekronka Zmný semeser 07 Inegrovaná opka a opoelekronka Skladba predmeu Prednášky Výpočové cvčena ( písomky, max. 40b) Skúška (max. 60b) Leraúra Marnček I., Káčk D., Tarjány N., Foonka

Διαβάστε περισσότερα

Meranie šírky drážky na CD laserovým ukazovátkom Soňa Gažáková a Ján Pišút FMFI UK

Meranie šírky drážky na CD laserovým ukazovátkom Soňa Gažáková a Ján Pišút FMFI UK Názov projektu: CIV Centrum Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 2005/1-046 ITMS: 11230100112 Meranie šírky drážky na CD laserovým ukazovátkom Soňa Gažáková a Ján Pišút FMFI UK Meranie

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

16. Základne rovinné útvary kružnica a kruh

16. Základne rovinné útvary kružnica a kruh 16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)

Διαβάστε περισσότερα

Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach. Vysokoškolské učebné texty. Fotonika. Gregor Bánó. Košice, 2017

Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach. Vysokoškolské učebné texty. Fotonika. Gregor Bánó. Košice, 2017 Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach Vysokoškolské učebné texty Fotonika Gregor Bánó Košice, 2017 FOTONIKA Učebné texty predmetu Fotonika pre poslucháčov 1. ročníka magisterského

Διαβάστε περισσότερα

Orientácia na Zemi a vo vesmíre

Orientácia na Zemi a vo vesmíre Orientácia na Zemi a vo vesmíre Orientácia na Zemi Podmienky: a) rovina b) smer podľazačiatku: 1) súradnice topocentrické 2) súradnice geocentrické 3) súradnice heliocentrické pravouhlá sústava súradníc

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Východ a západ Slnka

Východ a západ Slnka Východ a západ Slnka Daniel Reitzner februára 27 Je všeobecne známe, že v našich zemepisných šírkach dĺžka dňa závisí od ročného obdobia Treba však o čosi viac pozornosti na to, aby si človek všimol, že

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

Optoelektronika a laserová technika

Optoelektronika a laserová technika Optoelektronika a laserová technika Úvodná prednáška do OEaLT: Úvod do optoelektroniky, spektrum optického žiarenia, fyzikálna podstata žiarenia, šírenie optickej vlny v rôznych prostrediach Obsah Sylaby

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

VYŠETROVANIE VONKAJŠIEHO FOTOELEKTRICKÉHO JAVU A URČENIE PLANCKOVEJ KONŠTANTY

VYŠETROVANIE VONKAJŠIEHO FOTOELEKTRICKÉHO JAVU A URČENIE PLANCKOVEJ KONŠTANTY 45 VYŠETROVANE VONKAJŠEHO FOTOELEKTRCKÉHO JAV A RČENE PLANCKOVEJ KONŠTANTY doc. RNDr. Drahoslav Vajda, CSc. Teoretický úvod: Vonkajší fotoelektrický jav je veľmi presvedčivým dôkazom kvantovej povahy elektromagnetického

Διαβάστε περισσότερα

Geometrická optika. Konštruovanie a dizajn svietidiel, prednášky Ing. Róbert Fric, PhD., Katedra mechaniky FEI STU Bratislava, 2008

Geometrická optika. Konštruovanie a dizajn svietidiel, prednášky Ing. Róbert Fric, PhD., Katedra mechaniky FEI STU Bratislava, 2008 Geometrická optika 2 Základné hypotézy geometrickej optiky Vhomogénnom prostredí sa svetlo šíri priamočiaro Daným bodom priestoru môže súčasne prechádzať ľubovoľné množstvo svetelných lúčov bez toho, aby

Διαβάστε περισσότερα

PRÍRUČKA K ĎALEKOHĽADOM

PRÍRUČKA K ĎALEKOHĽADOM PRÍRUČKA K ĎALEKOHĽADOM Vlastník, alebo budúci majiteľ ďalekohľadu sa častokrát dostáva do situácie, v ktorej je obklopený záplavou nových pojmov, s ktorými sa bežne nestretáva, a preto im ani poriadne

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický

Διαβάστε περισσότερα

ZÁKLADNÉ POJMY. Svetlo. Svetlo ako vlnenie, vlnová dĺžka

ZÁKLADNÉ POJMY. Svetlo. Svetlo ako vlnenie, vlnová dĺžka ÚVOD Laser sa v dnešnej dobe využíva v rôznych oblastiach ľudskej činnosti, vo vede, technike, strojárenstve, biológii, geodézii, holografii, medicíne atď. Za štvrťstoročie sa stal z laboratórneho systému

Διαβάστε περισσότερα

Odrušenie motorových vozidiel. Rušenie a jeho príčiny

Odrušenie motorových vozidiel. Rušenie a jeho príčiny Odrušenie motorových vozidiel Každé elektrické zariadenie je prijímačom rušivých vplyvov a taktiež sa môže stať zdrojom rušenia. Stupne odrušenia: Základné odrušenie I. stupňa Základné odrušenie II. stupňa

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore. Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

2. Dva hmotné body sa navzájom priťahujú zo vzdialenosti r silou 12 N. Akou silou sa budú priťahovať zo vzdialenosti r/2? [48 N]

2. Dva hmotné body sa navzájom priťahujú zo vzdialenosti r silou 12 N. Akou silou sa budú priťahovať zo vzdialenosti r/2? [48 N] Gravitačné pole 1. Akou veľkou silou sa navzájom priťahujú dve homogénne olovené gule s priemerom 1 m, ktoré sa navzájom dotýkajú? Hustota olova je 11,3 g cm 3. [2,33 mn] 2. Dva hmotné body sa navzájom

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

KATALÓG KRUHOVÉ POTRUBIE

KATALÓG KRUHOVÉ POTRUBIE H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom

Διαβάστε περισσότερα

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom

Διαβάστε περισσότερα

10 Základy kvantovej fyziky

10 Základy kvantovej fyziky 1 Základy kvantovej fyziky 1.1 Úvod Žiarenie absolútne čierneo telesa Látky všetkýc skupenstiev zoriate na istú teplotu vyžarujú elektromagnetické vlnenie, ktoré má pôvod v tepelnýc poyboc (kmitoc) ic

Διαβάστε περισσότερα

Základné pojmy v svetelnej technike

Základné pojmy v svetelnej technike Základné pojmy v svetelnej technike prof. Ing. Alfonz Smola, PhD. Slovalux 2015 Obsah Čo je svetlo? Ako súvisí svetlo s okom? Aké sú základné svetelnotechnické veličiny a jednotky? Aká je terminológia

Διαβάστε περισσότερα

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003 Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium

Διαβάστε περισσότερα

Zložky elektromagnetického vlnenia

Zložky elektromagnetického vlnenia Prednáška 02: ŠÍRENIE ELEKTROMAGNETICKÝCH VĹN doc. Ing. Ľuboš Ovseník, PhD. (lubos.ovsenik lubos.ovsenik@tuke.sk tuke.sk, tel. 421 55 602 4336) http://kemt-old.fei.tuke.sk/predmety/evaa/_materialy/ p y

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

3 Kinematika hmotného bodu

3 Kinematika hmotného bodu 29 3 Kinematika hmotného bodu Pohyb vo všeobecnosti zahŕňa všetky zmeny a procesy, ktoré prebiehajú vo vesmíre. Je neoddeliteľnou vlastnosťou hmoty. Časť fyziky, ktorá sa zaoberá popisom pohybu telies,

Διαβάστε περισσότερα

SVETLO a FARBY. doc. Ing. Branislav Sobota, PhD. Katedra počítačov a informatiky FEI TU Košice. Systémy Virtuálnej Reality

SVETLO a FARBY. doc. Ing. Branislav Sobota, PhD. Katedra počítačov a informatiky FEI TU Košice. Systémy Virtuálnej Reality 2016 SVETLO a FARBY doc. Ing. Branislav Sobota, PhD. Katedra počítačov a informatiky FEI TU Košice Systémy Virtuálnej Reality KPI FEI TU Košice SVR - Svetlo a farby 2 Svetlo Dve reprezentácie svetla vlnová

Διαβάστε περισσότερα

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies. ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,

Διαβάστε περισσότερα

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Úloha č.:...viii... Název: Meranie momentu zotrvačnosti kolesa Vypracoval:... Viktor Babjak... stud. sk... F 11.. dne...

Διαβάστε περισσότερα

SÚHVEZDIA A ORIENTÁCIA NA HVIEZDNEJ OBLOHE

SÚHVEZDIA A ORIENTÁCIA NA HVIEZDNEJ OBLOHE SÚHVEZDIA A ORIENTÁCIA NA HVIEZDNEJ OBLOHE 1. Čo pozorujeme: a) hviezdy a súhvezdia b) galaxie c) planéty d) obežnice planét mesiace e) meteory f) kométy g) umelé vesmírne telesá družice, rakety alebo

Διαβάστε περισσότερα

Zadania 2. kola zimnej časti 2014/2015

Zadania 2. kola zimnej časti 2014/2015 Fyzikálny korešpondenčný seminár 8. ročník, 2014/2015 UFO, KTFDF FMFI UK, Mlynská dolina, 842 48 Bratislava e-mail: otazky@fks.sk web: http://ufo.fks.sk Zadania 2. kola zimnej časti 2014/2015 Termín: 27.

Διαβάστε περισσότερα

4 Dynamika hmotného bodu

4 Dynamika hmotného bodu 61 4 Dynamika hmotného bodu V predchádzajúcej kapitole - kinematike hmotného bodu sme sa zaoberali pohybom a pokojom telies, čiže formou pohybu. Neriešili sme príčiny vzniku pohybu hmotného bodu. A práve

Διαβάστε περισσότερα

Modelovanie dynamickej podmienenej korelácie kurzov V4

Modelovanie dynamickej podmienenej korelácie kurzov V4 Modelovanie dynamickej podmienenej korelácie menových kurzov V4 Podnikovohospodárska fakulta so sídlom v Košiciach Ekonomická univerzita v Bratislave Cieľ a motivácia Východiská Cieľ a motivácia Cieľ Kvantifikovať

Διαβάστε περισσότερα

Školské experimenty so solárnou súpravou

Školské experimenty so solárnou súpravou Univerzita Pavla Jozefa Šafárika v Košiciach Prírodovedecká fakulta Ústav fyzikálnych vied JÁN DEGRO Školské experimenty so solárnou súpravou Environmentálne vzdelávanie vo vyučovaní fyziky 2007 Práca

Διαβάστε περισσότερα

Modul pružnosti betónu

Modul pružnosti betónu f cm tan α = E cm 0,4f cm ε cl E = σ ε ε cul Modul pružnosti betónu α Autori: Stanislav Unčík Patrik Ševčík Modul pružnosti betónu Autori: Stanislav Unčík Patrik Ševčík Trnava 2008 Obsah 1 Úvod...7 2 Deformácie

Διαβάστε περισσότερα

Nové predpisy pre osvetlenie

Nové predpisy pre osvetlenie Nové predpisy pre osvetlenie Prof. Ing. Alfonz Smola, PhD. ZSR 2009 Najdôležitejšie hygienické predpisy Dôležitosť hygienických predpisov vyplýva z ich charakteru sú záväzné Zákon č. 355 z roku 2007 o

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2 Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

Laboratórna úloha č Výstupná práca fotokatódy, Planckova konštanta

Laboratórna úloha č Výstupná práca fotokatódy, Planckova konštanta Laboratórna úloha č. 5 28 Výstupná práca fotokatódy, Planckova konštanta Úloha: Na základe merania V-A charakteristiky fotónky určte výstupnú prácu fotokatódy. Teoretický úvod Pri vonkajšom fotoelektrickom

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 % Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť Meranie a diagnostika. Meranie snímačov a akčných členov

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť Meranie a diagnostika. Meranie snímačov a akčných členov Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Vzdelávacia oblasť: Predmet:

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

Riadenie elektrizačných sústav

Riadenie elektrizačných sústav Riaenie elektrizačných sústav Paralelné spínanie (fázovanie a kruhovanie) Pomienky paralelného spínania 1. Rovnaký sle fáz. 2. Rovnaká veľkosť efektívnych honôt napätí. 3. Rovnaká frekvencia. 4. Rovnaký

Διαβάστε περισσότερα

3. VPLYV ATMOSFÉRICKEJ REFRAKCIE NA ŠÍRENIE ZVUKU

3. VPLYV ATMOSFÉRICKEJ REFRAKCIE NA ŠÍRENIE ZVUKU VPLYV METEOROLOGICKÝCH PODMIENOK NA ŠÍRENIE ZVUKU Milan DRAHOŠ 1, Richard Drahoš 1,2 1 D2R engineering, s.r.o., Na letisko 42, 058 01 Poprad, Slovensko, d2r@d2r.sk 2 Technická univerzita v Košiciach, Strojnícka

Διαβάστε περισσότερα