PROIZVODNI KAPACITET

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PROIZVODNI KAPACITET"

Transcript

1 PROIZVODNI KAPACITET

2 PROGRAMSKA ORIJENTACIJA PREDUZEĆA Proizvodno preduzeće mora doneti odluku o: 1. programu proizvodnje, 2. godišnjem obimu proizvodnje, 3. godišnjem kontinuitetu proizvodnje, 4. razvoju i prilagoñavanju proizvodnih procesa programu.

3 PROIZVODNI KAPACITET Proizvodni kapacitet predstavlja proizvodnu moć nekog proizvodnog objekta. Može se izražavati na razne načine, i to: 1. količinom proizvoda u nekoj jedinici vremena, 2. u časovima rada mašine, 3. količinom prerañenih ili utrošenih sirovina u nekoj jedinici vremena, 4. analitičko utvrñivanje kapaciteta mašine preko ciklusa rada.

4 IZRAŽAVANJE PROIZVODNIH KAPACITETA Razlikuju se tri različita nivoa godišnjeg proizvodnog kapaciteta: tehnički godišnji kapacitet, Q t planirani godišnji kapacitet, Q pl iskorišćeni godišnji kapacitet, Q Q Q Q pl t

5 IZRAŽAVANJE PROIZVODNIH KAPACITETA Q Q Q = K t T t pl = = K pl K s T s T Q - ostvareni godišnji obim proizvodnje u posmatranom proizvodnom objektu, K s - ostvareni časovni kapacitet proizvodnog objekta, T s - vreme koje je u toku godine iskorišćeno za rad proizvodnog objekta. pl

6 IZRAŽAVANJE PROIZVODNIH KAPACITETA K T = s s Q const

7 IZRAŽAVANJE PROIZVODNIH KAPACITETA K s = n k

8 ANALITIČKI METOD UTVRðIVANJA PROIZVODNOG KAPACITETA MAŠINA Analiziraju se razni gubici u vremenskom ciklusu rada mašina i gubici u tekućem godišnjem vremenu. Veoma je pogodna za primenu na mašine periodičnog tehnološkog delovanja tj. na proizvodne mašine koje u toku rada ne vrše neprekidno tehnološku obradu materijala, već se taj proces prekida.

9 ANALITIČKI METOD UTVRðIVANJA PROIZVODNOG KAPACITETA MAŠINA T c t g t p T = t + c g - vreme rada mašine potrebno za obradu jedinice proizvoda, - glavno tehnološko vreme u jednom ciklusu, - pomoćno vreme u jednom ciklusu j g p t p T = t + t + T j - vreme rada mašine potrebno za izradu jedinice proizvoda (norma vreme), t d - dopunsko vreme u jednom ciklusu t d

10 ANALITIČKI METOD UTVRðIVANJA PROIZVODNOG KAPACITETA MAŠINA K pl = 1 T j K pl = t g + 1 t p + t d Tehnološki kapacitet: K t = 1 t g

11 ANALITIČKI METOD UTVRðIVANJA PROIZVODNOG KAPACITETA MAŠINA Stepen iskorišćenja vremenskog ciklusa, u odnosu na tehnološko vreme: η k = K K s t odakle je: K s = η k K t

12 ANALITIČKI METOD UTVRðIVANJA PROIZVODNOG KAPACITETA MAŠINA T g godišnji fond vremena u časovima, T t maksimalni fond vremena rada u toku godine, koji je ograničen usled potrebe za tehničkim održavanjem mašina, T pl planirano radno vreme mašina, T s stvarno vreme rada mašina.

13 ANALITIČKI METOD UTVRðIVANJA PROIZVODNOG KAPACITETA MAŠINA Stepen iskorišćenja godišnjeg fonda vremena za rad mašine: odakle je: η tg = T T s g T s = η tg T g

14 ANALITIČKI METOD UTVRðIVANJA PROIZVODNOG KAPACITETA MAŠINA Q = K T = η K η s s k t tg T g Q = K T ( η η ) t g k tg Q = Kt Tg ηt η t - koeficijent ukupnog vremenskog iskorišćenja η t = η k η tg

15 ANALITIČKI METOD UTVRðIVANJA PROIZVODNOG KAPACITETA MAŠINA Stepen opterećenja mašine: η 0 = P P s n Ukupni stepen iskorišćenja mašine: η i η η = k tg η 0

16 USKLAðIVANJE PROIZVODNIH KAPACITETA Skladnost kapaciteta podrazumeva jednakost izmeñu godišnjeg kapaciteta finalnog proizvoda i godišnjih kapaciteta za proizvodnju komponenata koje ulaze u odnosni proizvod. K = Q = K q = K q = K 1 2 q 3 K q n

17 USKLAðIVANJE PROIZVODNIH KAPACITETA Usko grlo proizvodnje: K < K qi Q Široko grlo: K qi > K Q

18 ODREðIVANJE POTREBNOG BROJA MAŠINA

19 ODREðIVANJE POTREBNOG BROJA MAŠINA N = m q q m N m = n j = 1 z i = 1 t ij F g + K T pz n broj komponenti koje se obrañuju na mašini z broj operacija na pojedinim komponentama t ij vreme obrade i-te operacije na j-tom delu

20 SIROVINE I FAZE PRERADE SIROVINA

21 FAZE PRERADE SIROVINA Treba razlikovati tehnološke i proizvodne faze. PROIZVODNE FAZE KVALITET TEHNOLOŠKE FAZE Prva faza Pšenica obrada zemlje sejanje kulture gajenje kulture ubiranje ploda čišćenje i skladištenje Druga faza Brašno mlevenje pšenice kvalitet selekcija pakovanje Treća faza Hleb mešanje testa i oblikovanje pečenje testa pakovanje proizvoda

22 METODE PRERADE SIROVINA Proizvodne metode se mogu klasifikovati po funkciji i po toku. Funkcionalna podela sadrži: analitičke procese, sintetičke procese, kondišning procese, i ekstraktivne procese. U zavisnosti od toka razlikuju se: kontinualna proizvodnja, repetitivna proizvodnja, i prekidna proizvodnja.

23 TIPOVI PROIZVODNJE Tri osnovna tipa proizvodnje su: 1. pojedinačna, 2. serijska, i 3. masovna proizvodnja. Svaki od navedenih tipova ima odreñene karakteristike koje se tiču nivoa potrebnih znanja radnika, dužine trajanja ciklusa, troškova proizvodnje, i drugih parametara koji su od značaja za organizaciju.

24 ORGANIZACIONO EKONOMSKE STRUKTURE PROIZVODNIH SISTEMA

25 ORGANIZACIONO EKONOMSKE STRUKTURE PROIZVODNIH SISTEMA To su organizacioni sistemi koji se sastoje iz takvih organizacionih jedinica koje mogu biti ekonomski samostalne. Tipovi proizvodnih sistema: 1. jednostavne fazne strukture; 2. redno složene fazne strukture; 3. paralelno složene fazne strukture; 4. redno-paralelno složene fazne strukture.

26 PROIZVODNI SISTEMI JEDNOSTAVNE FAZNE STRUKTURE Jednostavnu faznu strukturu imaju sistemi u kojima se prerada sirovina, odnosno izrada proizvoda vrši samo u jednoj fazi proizvodnje. E = 1 N N i = 1 ( V U )

27 PROIZVODNI SISTEMI SA REDNO SLOŽENOM STRUKTUROM Odreñene sirovine se fazno i postupno prerañuju u procesima koji su meñusobno vezani redno. Iz sistema postoji samo jedan izlaz gotovih proizvoda, i taj se nalazi u poslednjoj fazi prerade.

28 PROIZVODNI SISTEMI SA REDNO SLOŽENOM STRUKTUROM U 1 = u 1 + R 1 I 1 = V 1 R 1 U 2 = I 1 + u 2 + R 2 I 2 = V 2 R 2... U n = I (n-1) + u n + R n I n = V n R n V UP E = = U u i

29 PROIZVODNI SISTEMI SA PARALELNO SLOŽENOM STRUKTUROM Vrši se obrada različitih proizvoda, s tim što se svaki proizvod obrañuje samo u jednoj fazi obrade. Ove sisteme karakteriše tehnološka heterogenost.

30 PROIZVODNI SISTEMI SA PARALELNO SLOŽENOM STRUKTUROM E 1 i = n i = E n i= 1

31 PROIZVODNI SISTEMI REDNO PARALELNE SLOŽENE STRUKTURE To je model opšteg tipa. Obično se sastoji iz više faza prerade, ima više ulaza i više izlaza. Treba organizovati takav sistem koji će omogućiti postizanje veće efikasnosti.

32 STEPEN INTEGRISANOSTI PROIZVODNIH SISTEMA

33 STEPEN INTEGRISANOSTI PROIZVODNIH SISTEMA Pod integrisanošću sistema se podrazumeva uzajamna angažovanost jedinica proizvodnog sistema u okviru samog sistema. Kao elementi za utvrñivanje ovog pokazatelja mogu se uzeti sledeći: a) broj veza meñu jedinicama proizvodnih sistema, b) angažovanost proizvodnih kapaciteta jedinica sistema za potrebe sistema i c) učešće ukupnog godišnjeg prihoda pojedinačnih jedinica sistema u ukupnom godišnjem prihodu na zajednički proizvedenim proizvodima.

34 STEPEN INTEGRISANOSTI PROIZVODNIH SISTEMA S I = n n 1 K i ( n 1) SI = (4 1) = SI = 7,95 7,95 0, (4 1) = 12 =

35 STEPEN INTEGRISANOSTI PROIZVODNIH SISTEMA

36 HVALA NA PAŽNJI!

PROIZVODNI KAPACITET

PROIZVODNI KAPACITET PROIZVODNI KAPACITET PROGRAMSKA ORIJENTACIJA PREDUZEĆA Proizvodno preduzeće mora donei odluku o: 1. programu proizvodnje, 2. godišnjem obimu proizvodnje, 3. godišnjem koninuieu proizvodnje, 4. razvoju

Διαβάστε περισσότερα

UPRAVLJANJE TROŠKOVIMA

UPRAVLJANJE TROŠKOVIMA UPRAVLJANJE TROŠKOVIMA Troškovi Predstavljaju novčano izražena trošenja sredstava i rada. Postoji više različitih klasifikacija troškova, u zavisnosti od aspekta posmatranja. Vrste troškova U zavisnosti

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Menadžment tehnologije i razvoja

Menadžment tehnologije i razvoja Menadžment tehnologije i razvoja 1. HIJERARHIJSKA STRUKTURA POSLOVNOG SISTEMA -Hijerarhijska struktura poslovnog sistema stvara mogućnost za adekvatnije upravljanje organizacijom koja predstavlja sistem

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

UPRAVLJANJE PROIZVODNJOM

UPRAVLJANJE PROIZVODNJOM UNIVERZITET U BEOGRADU TEHNIČKI FAKULTET U BORU ODSEK ZA INDUSTRIJSKI MENADŽMENT Aca Jovanović Ivan Mihajlović Živan Živković UPRAVLJANJE PROIZVODNJOM - Bor - 2005. UPRAVLJANJE PROIZVODNJOM Autori: Dr

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

BRODOGRAĐEVNA RADIONICA. Namjena: Obrada limova i profila (izrada građevnih dijelova trupa iz limova i profila) Predmontaža sklopova i sekcija trupa.

BRODOGRAĐEVNA RADIONICA. Namjena: Obrada limova i profila (izrada građevnih dijelova trupa iz limova i profila) Predmontaža sklopova i sekcija trupa. BRODOGRAĐEVNA RADIONICA Namjena: Obrada limova i profila (izrada građevnih dijelova trupa iz limova i profila) Predmontaža sklopova i sekcija trupa. Procesi obrade i predmontaže mogu biti smješteni i u

Διαβάστε περισσότερα

MTR - II KOLOKVIJUM

MTR - II KOLOKVIJUM MTR - II KOLOKVIJUM Menadžment tehnologije i razvoja 1. Hijerarhijska struktura poslovnog sistema 2. Opšti model tehnološkog sistema 3. Struktura tehnološkog sistema 4. Veze između tehnoloških sistema

Διαβάστε περισσότερα

1. TEHNOLOŠKI SISTEM, OPŠTI MODEL TEHNOLOŠKOG SISTEMA

1. TEHNOLOŠKI SISTEM, OPŠTI MODEL TEHNOLOŠKOG SISTEMA II DEO 1. TEHNOLOŠKI SISTEM, OPŠTI MODEL TEHNOLOŠKOG SISTEMA Tehnološki sistem je deo šireg sistema i rezultat je integralnog delovanja ljudi u raznim vrstama radnih procesa. Tehnološki sistemi se po svojoj

Διαβάστε περισσότερα

Drugi zakon termodinamike

Drugi zakon termodinamike Drugi zakon termodinamike Uvod Drugi zakon termodinamike nije univerzalni prirodni zakon, ne važi za sve sisteme, naročito ne za neobične sisteme (mikrouslovi, svemirski uslovi). Zasnovan je na zajedničkom

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Otvorene mreže. Zadatak 1

Otvorene mreže. Zadatak 1 Otvorene mreže Zadatak Na slici je data otvorena mreža u kojoj je rocesor centralni server. Prosečan intenzitet ulaznog toka rocesa u sistem iznosi X rocesa/sec. Posle rocesorske obrade, roces u % slučajeva

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

POGONSKI SISTEMI KOD CNC MAŠINA ALATKI

POGONSKI SISTEMI KOD CNC MAŠINA ALATKI POGONSKI SISTEMI KOD CNC MAŠINA ALATKI Glavna osovina PLC NC Kom. signal Servo uređaj Povr. sprega Servo motor Tahogenerator Obradak Enkoder po brzini Poziciona povratna sprega Sto ^itač trake Drugi uređaji

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

PLANIRANJE I UPRAVLJANJE PROIZVODNJOM

PLANIRANJE I UPRAVLJANJE PROIZVODNJOM TEHNIČKI FAKULTET ZAVOD ZA INDUSTRIJSKO INŽENJERSTVO I MANAGEMENT KATEDRA ZA ORGANIZACIJU I OPERACIJSKI MANAGEMENT Prof. dr. sc. Tonči Mikac, dipl.ing Asist. mr.sc. Dalibor Blažević, dipl.ing. PLANIRANJE

Διαβάστε περισσότερα

Elementi energetske elektronike

Elementi energetske elektronike ELEKTRIČNE MAŠINE Elemen energeske elekronke Uvod Čme se bav energeska elekronka? Energeska elekronka se bav konverzjom (prevaranjem) razlčh oblka elekrčne energje. Uvod Gde se kors? Elemen energeske elekronke

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

UNUTRAŠNJI TRANSPORT. Branko Davidovi} UNUTRA[NJI TRANSPORT INTELEKT. Iz sadr`aja. Iz recenzije PROCESI. O autoru

UNUTRAŠNJI TRANSPORT. Branko Davidovi} UNUTRA[NJI TRANSPORT INTELEKT. Iz sadr`aja. Iz recenzije PROCESI. O autoru Branko Davidović Iz sadr`aja Znaèaj i osnovni elementi intralogistike. Sistemi pakovanja. Skladišni sistemi. Transportno manipulativni sistemi. Identifikacija problemskih mesta i pravci racionalizacije

Διαβάστε περισσότερα

PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. d r dr J ovo Jovo J ednak Jednak

PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. d r dr J ovo Jovo J ednak Jednak PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. dr Jovo Jednak Proizvodnja, proizvodna funkcija, dodata vrednost i priroda inputa Transformacija faktora proizvodnje (inputa) u učinak zove se proces proizvodnje.

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Varijabilni. troškovi. Ukupni. troškovi. Granični troškovi

Varijabilni. troškovi. Ukupni. troškovi. Granični troškovi Ovisnost troškova o promjenama opsega proizvodnje Stalni troškovi Varijabilni troškovi Ukupni troškovi Granični troškovi Prosječni troškovi troškovi proizvodnje su različiti po: svom porijeklu (prirodnim

Διαβάστε περισσότερα

VJEŽBE 4. Proizvodnja i organizacija poslovanja, analiza troškova

VJEŽBE 4. Proizvodnja i organizacija poslovanja, analiza troškova VJEŽBE 4. Proizvodnja i organizacija poslovanja, analiza troškova I SKUPINA ZADATAKA 1. Proizvodna funkcija predstavlja odnos između a) inputa i outputa b) troškova i radnika c) ukupnog proizvoda i graničnog

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I . Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne

Διαβάστε περισσότερα

Sistemi linearnih jednačina

Sistemi linearnih jednačina Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

TROŠKOVI, PONUDA I PROFIT. PREDAVANJE 8 Prof.dr Jovo Jednak

TROŠKOVI, PONUDA I PROFIT. PREDAVANJE 8 Prof.dr Jovo Jednak TROŠKOVI, PONUDA I PROFIT PREDAVANJE 8 Prof.dr Jovo Jednak Troškovi, ponuda i profit U prethodnom poglavlju bavili smo se proizvodnom tehnologijom preduzeća, koja opisuje kako se inputi transformišu u

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

TEHNOLOŠKI POSTUPAK PROIZVODNJE I KVALITET GUMA ZA ŢVAKANJE. Prof. dr Jovanka Popov-Raljić Mr Jovanka Laličić-Petronijević

TEHNOLOŠKI POSTUPAK PROIZVODNJE I KVALITET GUMA ZA ŢVAKANJE. Prof. dr Jovanka Popov-Raljić Mr Jovanka Laličić-Petronijević TEHNOLOŠKI POSTUPAK PROIZVODNJE I KVALITET GUMA ZA ŢVAKANJE Prof. dr Jovanka Popov-Raljić Mr Jovanka Laličić-Petronijević Uvod U praistorijsko vreme, čovek je sakupljao i ţvakao sve što je u prirodi uspeo

Διαβάστε περισσότερα

Osnovne akademske studije Studijski program - Inženjerski menadžment T-9. OBRADA RENDISANJEM

Osnovne akademske studije Studijski program - Inženjerski menadžment T-9. OBRADA RENDISANJEM T-9. OBRADA RENDISANJEM Tehnički sistemi Dušan B. Regodić CILJEVI UČENJA: 1. Razumete proizvodne operacije rendisanjem. 2. Planirate mašine u obradi rendisanjem. 3. Pojmovno odredite alate u obradi rendisanjem.

Διαβάστε περισσότερα

Projektovanje informacionih sistema 39

Projektovanje informacionih sistema 39 Projektovanje informacionih sistema 39 Glava 3 3.0 Osnove relacione algebre - uvod Za manipulisanje podacima i tabelama u relacionim bazama podataka potrebna su osnovna znanja iz relacione algebre. Relaciona

Διαβάστε περισσότερα

Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola. Hasan Jamak Prirodno-matematički fakultet Sarajevo

Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola. Hasan Jamak Prirodno-matematički fakultet Sarajevo Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola Hasan Jamak Prirodno-matematički fakultet Sarajevo January 24, 2012 Uvod U Bosni i Hercegovini već pedesetak godina se organizuju

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

Jul 2007 ZA KANALIZACIONE I DRENAŽNE SISTEME, ZA KOMUNALNU I INDUSTRIJSKU NAMENU. Inteligentna rešenja u niskogradnji

Jul 2007 ZA KANALIZACIONE I DRENAŽNE SISTEME, ZA KOMUNALNU I INDUSTRIJSKU NAMENU. Inteligentna rešenja u niskogradnji Jul 7 Sistem PVCU kanalizacije Proizvodni program ZA KANALIZACIONE I DRENAŽNE SISTEME, ZA KOMUNALNU I INDUSTRIJSKU NAMENU Inteligentna rešenja u niskogradnji Sistem PVCU kanalizacije Sadržaj Sadržaj PVC

Διαβάστε περισσότερα

Utrošci faktora proizvodnje

Utrošci faktora proizvodnje Utrošci faktora proizvodnje Ulaganja u reprodukciju Ulaganja u reprodukciju FINANSIJSKO NATURALNO ANGAŽOVANJE KNm Bm Cilj-kontinuitet reprodukcije TROŠENJE Cilj-proizvodnja nove upotrebne vrednosti KNi

Διαβάστε περισσότερα

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova. Pojam skupa U matematici se pojam skup ne definiše eksplicitno. On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

Modeli i baze podataka

Modeli i baze podataka Modeli i baze podataka priručnik za III razred 1 Kratki istorijat baza podataka Praistorija Nastanak baza podatakaa se vezuje za Herman-aa Holerith-a koji je 1884. godine prijavio patent sistem za automatsku

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

USB Charger. Battery charger/power supply via 12 or 24V cigarette lighter

USB Charger. Battery charger/power supply via 12 or 24V cigarette lighter USB Charger Battery charger/power supply via 12 or 24V cigarette lighter Compact charger for devices chargeable via USB For example ipod, iphone, MP3 player, etc. Output voltage: 5V; up to 1.2A; short-circuit

Διαβάστε περισσότερα

Čas 11: Optimizacija parametara električnih mreža sa EM komponentama

Čas 11: Optimizacija parametara električnih mreža sa EM komponentama Čas 11: Optimizacija parametara električnih mreža sa EM komponentama Kratak uvod. EM projekti i komponente mogu se uvesti (importovati) u MW Circuit Solver na tri načina: 1. Iz biblioteke gotovih EM komponenti.

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je

Διαβάστε περισσότερα

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013. Linearna algebra skripta Januar 3 Reč autora Ovaj tekst je nastao od materijala sa kursa Linearna algebra i analitička geometrija za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

ZADACI ZA VEZBE1 MENADZERSKO RACUNOVODSTVO BEOGRADSKA POSLOVNA SKOLA VISOKA SKOLA STRUKOVNIH STUDIJA

ZADACI ZA VEZBE1 MENADZERSKO RACUNOVODSTVO BEOGRADSKA POSLOVNA SKOLA VISOKA SKOLA STRUKOVNIH STUDIJA ZADACI ZA VEZBE1 MENADZERSKO RACUNOVODSTVO BEOGRADSKA POSLOVNA SKOLA VISOKA SKOLA STRUKOVNIH STUDIJA ZADATAK BR. 1 Na osnovu podataka preduzeca Valsacor u 2010.godinisastaviti bilans stanja i bilans uspeha

Διαβάστε περισσότερα

Industrijski sistemi i protokoli - Asinhroni serijski prenos podataka -

Industrijski sistemi i protokoli - Asinhroni serijski prenos podataka - Industrijski sistemi i protokoli asinhroni serijski prenos podataka 1 Industrijski sistemi i protokoli - Asinhroni serijski prenos podataka - 1 Uvod u asinhrone serijske protokole... 2 2 RS232 protokol...

Διαβάστε περισσότερα

Prema stupnju iskorištenja kapaciteta troškovi se dijele na: 1. Promjenjive (varijabilne) troškove 2. Nepromjenjive (fiksne) troškove

Prema stupnju iskorištenja kapaciteta troškovi se dijele na: 1. Promjenjive (varijabilne) troškove 2. Nepromjenjive (fiksne) troškove TROŠKOVI I KALKULACIJE Troškove je moguće definirati kao novčanu vrijednost inputa korištenih u proizvodnom procesu tijekom vremena. Visina troškova ovisi o količini korištenih inputa i njihovoj cijeni.

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

2.2. Analiza vremena Pert metodom

2.2. Analiza vremena Pert metodom 2.2. Analiza vremena Pert metodom Dok je kod CPM metode poznato samo jedno vreme trajanja aktivnosti t, kod Pert metode dane su tri procjene: a - optimistično vreme (najkraće moguće vreme u kojemu se može

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

Производна функција. Тематска целина. 6.1 Производња, производна функција и гранична стопа техничке супституције

Производна функција. Тематска целина. 6.1 Производња, производна функција и гранична стопа техничке супституције 1 Производна функција Радна недеља 6 Тематска целина 6. Производна функција Тематска јединица 6.1 Производња, производна функција и гранична стопа техничке супституције 6.2 Укупан, просечан и граничан

Διαβάστε περισσότερα

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT OASDSP : 7 FFT Dkompozicija DFT Brzi algoritmi a bazi radix- Brza Furijova trasofrmacija Tačost izračuavaja Komplksa FFT ovi Sad, Oktobar 5 straa OASDSP : 7 FFT Brza trasformacija : itrativa dkompozicija

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Tačno merenje Precizno Tačno i precizno

Tačno merenje Precizno Tačno i precizno MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA Izmeriti neku veličinu u fizici znači naći brojni odnos merene fizičke veličine prema vrednosti iste fizičke veličine, koja je dogovorno izabrana za jedinicu.

Διαβάστε περισσότερα

UREDBU O NAKNADI ZA PODSTICANJE PROIZVODNJE ELEKTRIČNE ENERGIJE IZ OBNOVLJIVIH IZVORA ENERGIJE I KOGENERACIJE. ( Službeni list CG, broj 8/14) Član 1

UREDBU O NAKNADI ZA PODSTICANJE PROIZVODNJE ELEKTRIČNE ENERGIJE IZ OBNOVLJIVIH IZVORA ENERGIJE I KOGENERACIJE. ( Službeni list CG, broj 8/14) Član 1 Na osnovu člana 21 stav 5 Zakona o energetici ( Službeni list CG, br. 28/10 i 6/13), Vlada Crne Gore na sjednici od 23. januara 2014. godine donijela je: UREDBU O NAKNADI ZA PODSTICANJE PROIZVODNJE ELEKTRIČNE

Διαβάστε περισσότερα

Korelacijska i regresijska analiza

Korelacijska i regresijska analiza Korelacijska i regresijska analiza Odnosi među pojavama Odnos među pojavama može biti: deterministički ili funkcionalni i stohastički ili statistički Kod determinističkoga se odnosa za svaku vrijednost

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

Regulacioni termostati

Regulacioni termostati Regulacioni termostati model: KT - 165, 90/15 opseg regulacije temperature: 0 90, T85 dužina osovine: 15 mm, opciono 18 i 23 mm dužina kapilare: L= 650 mm 16(4)A 250V - 6(1)A400V promena opsega regulacije

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

Personalni računar II deo. MEMORIJE Operativna memorija Spoljašnje memorije Keš memorija

Personalni računar II deo. MEMORIJE Operativna memorija Spoljašnje memorije Keš memorija Personalni računar II deo MEMORIJE Operativna memorija Spoljašnje memorije Keš memorija Memorije Memorija služi za čuvanje programa i podataka. U personalnom računaru postoje tri vrste memorijskih jedinica:

Διαβάστε περισσότερα

Orjentaciona pitanja sa odgovorima za kolokvijum II iz Osnova ekonomije

Orjentaciona pitanja sa odgovorima za kolokvijum II iz Osnova ekonomije Orjentaciona pitanja sa odgovorima za kolokvijum II iz Osnova ekonomije Budžetsko ograničenje predstavlja potrošačke korpe (sve moguće kombinacije) dobara koje potrošač može sebi da priušti sa raspoloživim

Διαβάστε περισσότερα

Str. 454;139;91.

Str. 454;139;91. Str. 454;39;9 Metod uzorka Predavač: Dr Mirko Savić avicmirko@eccf.u.ac.yu www.eccf.u.ac.yu Statitička maa može da e pomatra a jeda od ledeća dva ačia: potpuo pomatraje, delimičo pomatraje (metod uzorka).

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

S A D R Ž A J. 1.1 Opšti podaci Čelik za prednaprezanje Kotve i kablovi Oprema Gubici sile prednaprezanja...

S A D R Ž A J. 1.1 Opšti podaci Čelik za prednaprezanje Kotve i kablovi Oprema Gubici sile prednaprezanja... 1 1 S A D R Ž A J 1.0 OPIS SISTEMA 1.1 Opšti podaci... 2 1.2 Čelik za prednaprezanje... 2 1.3 Kotve i kablovi... 2 1.4 Oprema... 3 1.5 Gubici sile prednaprezanja... 3 1.5.1 Uvlačenje klina... 4 1.5.2 Elastično

Διαβάστε περισσότερα

EKONOMIKA POSLOVANJA

EKONOMIKA POSLOVANJA EKONOMIKA POSLOVANJA 1.1.OdreĎivanje i razumevanje preduzeća - ekonomski aspekti Ekonomika preduzeća je ekonomska disciplina koja izučava poslovanje preduzeća uz fokusiranje na poslovnu efikasnost. Ona

Διαβάστε περισσότερα

ULAZ - IZLAZ + GENERISANJE = AKUMULACIJA (1.1) U SISTEMU U SISTEMU

ULAZ - IZLAZ + GENERISANJE = AKUMULACIJA (1.1) U SISTEMU U SISTEMU .UVOD. Matematički model Matematički model se može definisati kao skup matematičkih relacija koje opisuju ili definišu veze između pojedinih fizičkih veličina u posmatranom procesu (dimenzije uređaja,

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD 10.2012-13. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak TEHNIČKA SREDSTVA U CESTOVNOM PROMETU 1. UVOD 1 Literatura: [1] Novak, Z.: Predavanja Tehnička sredstva u cestovnom prometu, Web stranice Veleučilišta

Διαβάστε περισσότερα