Γραμμές. 4.1 Γενικά. 4.2 Είδη και πάχη γραμμών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γραμμές. 4.1 Γενικά. 4.2 Είδη και πάχη γραμμών"

Transcript

1 4 Γραμμές 4.1 Γενικά Στα σχέδια, προκειμένου να απεικονίσουμε με σαφή και κατανοητό τρόπο το σχεδιαστικό μας αντικείμενο, χρησιμοποιούμε ποικίλες γραμμές, που καθεμιά έχει διαφορετική σημασία και διαφορετικές εφαρμογές. Στα σχέδιά μας παριστάνουμε πραγματικές γραμμές, όπως είναι οι ορατές ακμές και τα περιγράμματα ενός αντικειμένου, νοητές γραμμές, όπως είναι οι άξονες και οι γραμμές κέντρου βάρους, και χρησιμοποιούμε βοηθητικές γραμμές (π.χ. διαγραμμίσεων), γραμμές διαστάσεων και γραμμές ενδείξεων. Το σχέδιο είναι μια γλώσσα επικοινωνίας και όπως όλες οι γλώσσες διέπεται από νόμους και αρχές. Για να συνεννοούμαστε λοιπόν μεταξύ μας, υπάρχουν κώδικες σύμφωνα με τους οποίους οι γραμμές που χρησιμοποιούμε είναι τυποποιημένες, ώστε να αποφεύγονται παρεξηγήσεις ανάμεσα στο σχεδιαστή και σ'αυτόν που χρησιμοποιεί ένα σχέδιο. 4.2 Είδη και πάχη γραμμών Κύρια χαρακτηριστικά των γραμμών είναι το είδος τους και το πάχος τους. Οι γραμμές, επίσης, διαφοροποιούνται ως προς την ένταση (αχνές - έντονες) και το χρώμα τους. Έχουμε λοιπόν χοντρές και λεπτές γραμμές ως προς το πάχος, συνεχείς (πλήρεις), διακεκομμένες και αξονικές γραμμές ως προς το είδος. Αυτές είναι οι κύριες κατηγορίες των γραμμών. Συνδυασμοί πάχους και είδους μας δίνουν την ποικιλία των γραμμών που χρησιμοποιούμε, για να περιγράψουμε σχεδιαστικά τα αντικείμενά μας. Το είδος και το πάχος των γραμμών όπως επίσης και τα χαρακτηριστικά της μορφής κάθε γραμμής προσδιορίζονται από κανονισμούς. Οι κανονισμοί καθορίζουν επίσης τον τρόπο χρήσης κάθε γραμμής και εφαρμόζονται με αυστηρότητα στα διάφορα είδη τεχνικού σχεδίου. Στα αρχιτεκτονικά σχέδια αισθητικές απαιτήσεις και απαιτήσεις προσωπικής έκφρασης οδηγούν σε αποκλίσεις από τους κανονισμούς σε σχέση με την επιλογή του κατάλληλου πάχους γραμμών. Οι αποκλίσεις αυτές όμως δεν καταργούν τη σαφήνεια του σχεδίου και τη δυνατότητα ορθής ανάγνωσης και κατανόησής του.

2 Η επιλογή του πάχους των γραμμών καθορίζεται επίσης από το μέγεθος και την κλίμακα του σχεδίου, καθώς και από την πυκνότητα των γραμμών του. Έτσι, ένα μεγάλο σχέδιο, π.χ. σε κλίμακα 1:1, με λίγες γραμμές χρειάζεται παχύτερες γραμμές, για να μη φαίνεται άτονο και άδειο, ενώ ένα σχέδιο σε μικρή κλίμακα, π.χ. 1:500. χρειάζεται λεπτότερες γραμμές για μεγαλύτερη ευκρίνεια. Σύμφωνα με τους κανονισμούς και για να διατηρείται η ίδια σχέση πάχους μεταξύ των γραμμών ενός σχεδίου, ακόμη και μετά τη σμίκρυνση ή μεγέθυνσή του, πρέπει το πέρασμα από τη λεπτότερη στην παχύτερη γραμμή να γίνεται με σταθερό συντελεστή. Αυτός ορίζεται με τον λόγο 1/ 2. Στα τεχνικά σχέδια χρησιμοποιούνται ομάδες γραμμών που χαρακτηρίζονται από το πάχος της συνεχούς χοντρής γραμμής. Σε κάθε ομάδα ο λόγος του πάχους της χοντρής γραμμής προς το πάχος της λεπτής είναι 2:1. Ενδιάμεσο πάχος στην ίδια ομάδα γραμμών χρησιμοποιείται για τα γράμματα, για τις διαστάσεις και για διάφορες ενδείξεις. Στο ίδιο σχέδιο χρησιμοποιούνται γραμμές της ίδιας ομάδας. Τα διάφορα πάχη γραμμών και οι μεταξύ τους σχέσεις εφαρμόζονται είτε σχεδιάζουμε με μελάνι, είτε σχεδιάζουμε με μολύβι. Με τα ραπιντογκράφ, που σήμερα είναι σχεδόν τα αποκλειστικά όργανα για τη σχεδίαση με μελάνι, επιτυγχάνουμε το επιθυμητό πάχος γραμμής σε αντιστοιχία με την ένδειξη που έχει κάθε πενάκι. Με το μολύβι η σχεδίαση γραμμών μεγαλύτερου πάχους επιτυγχάνεται πιο δύσκολα. Παραθέτουμε έναν κατάλογο με τις γραμμές που χρησιμοποιούμε πιο συχνά, καθώς και τα χαρακτηριστικά και τη χρήση τους. Ας μην ξεχνάμε όμως ότι η τελική εικόνα ενός σχεδίου, πέρα από κανόνες και συμβάσεις, εκφράζει την ευαισθησία και την προσωπικότητα του σχεδιαστή. Η επιλογή του πάχους, της έντασης, της πυκνότητας των γραμμών μπορεί να δώσει σχέδιο με χαρακτήρα και ύφος περισσότερο δυναμικό ή περισσότερο ευαίσθητο, που σε συνδυασμό με την ακρίβεια και την καθαρότητα στη σχεδίαση συμβάλλουν σ'ένα ικανοποιητικό αποτέλε- Συνεχής χοντρή γραμμή Το πάχος της κυμαίνεται από 0,4 έως 1,2 χιλιοστά του μέτρου και μ'αυτήν παριστάνουμε στο τεχνικό σχέδιο τις ορατές γραμμές ενός αντικειμένου κατά τη σχεδίαση όψεων, τομών και αξονομετρικών σχεδίων. Ειδικότερα στο γραμμικό σχέδιο η γραμμή αυτής της μορφής ονομάζεται γραμμή τομής και αποδίδει τις ορατές ακμές μόνον των επιφανειών τομής των διαφόρων στοιχείων. Στις κατόψεις και στις κατακόρυφες τομές ενός αντικειμένου αρχιτεκτονικής μελέτης χρησιμοποιούμε διάφορους τρόπους σχεδίασης: (εικ. 4.1)

3 Μαυρίζουμε τα τεμνόμενα μέρη με το μολύβι ή με το μελάνι, ή χρησιμοποιούμε ράστερ. Σχεδιάζουμε το περίγραμμα των μερών που τέμνονται με χοντρή γραμμή. Σχεδιάζουμε με χοντρή γραμμή το περίγραμμα και διαγραμμίζουμε τα τεμνόμενα μέρη (κλίση διαγράμμισης 45 ). Σχεδιάζουμε με χοντρή γραμμή το περίγραμμα και απεικονίζουμε τα υλικά από τα οποία αποτελούνται τα τεμνόμενα μέρη. εικ. 4.1 Η συνεχής χοντρή γραμμή είναι η γραμμή αναφοράς όλων των άλλων γραμμών του σχεδίου Η γραμμή τομής του εδάφους σε σχέδια όψεων και τομών σχεδιάζεται με συνεχή χοντρή γραμμή. Συνεχής λεπτή γραμμή Το πάχος της κυμαίνεται από 0,1 έως 0,3 χιλιοστά του μέτρου και χρησιμοποιείται στο τεχνικό σχέδιο στις γραμμές διαστάσεων και ως βοηθητική (π.χ. διαγραμμίσεων), ενώ στο γραμμικό σχέδιο κυρίως χρησιμοποιείται, για να απεικονίσει τις ορατές γραμμές που προβάλλονται (εικ. 4.2). Για την απόδοση βάθους σ'ένα σχέδιο όψης ή τομής χρησιμοποιούμε εικ. 4.2 λεπτότερες γραμμές, για να αποδώσουμε περιγράμματα που βρίσκονται μακρύτερα, και εντονότερες γραμμές γι'αυτά που βρίσκονται πλησιέστερα προς το επίπεδο προβολής. Στο γραμμικό σχέδιο η συνεχής λεπτή γραμμή χρησιμοποιείται επίσης για να σχεδιάσουμε με τη βοήθεια οργάνων έπιπλα, πλακοστρώσεις κ.τ.λ. (εικ. 4.3). Επίσης, χρηεικ. 4.3

4 σιμοποιείται για όλα τα προβαλλόμενα σε όψη στοιχεία που συμπληρώνουν ένα σχέδιο, όπως λιθοδομές, καμινάδες, διακοσμητικά στοιχεία κ.τ.λ. Διακεκομμένη γραμμή Χρησιμοποιείται για την παράσταση όλων των μη ορατών ακμών ενός αντικειμένου κατά τη σχεδίαση όψεων, τομών και αξονομετρικών σχεδίων (εικ. 4.4). Στο αρχιτεκτονικό σχέδιο απεικονίζει μη ορατές ακμές στοιχείων. Το πάχος της ορίζεται ως το μισό της συνεχούς γραμμής. Σχεδιάζεται με ίσα ευθύγραμμα τμήματα, τα οποία απέχουν μεταξύ τους ίσες αποστάσεις. εικ. 4.4 Αξονική λεπτή γραμμή Οι αξονικές γραμμές (παύλα-τελείαπαύλα) αναπαριστούν νοητές γραμμές. Η αξονική λεπτή γραμμή χρησιμοποιείται, για να παρασταθεί ο άξονας συμμετρίας ενός αντικειμένου ή σχήματος (εικ. 4.5). Το πάχος της είναι περίπου ίσο με το 1/4 του πάχους της συνεχούς γραμμής. Αποτελείται από ευθύγραμμα τμήματα ίσα μεταξύ τους και κενά ανάμεσά τους. Στη μέση των κενών υπάρχουν τελείες ή μικρά ευθύγραμμα τμήματα ίσα μεταξύ τους. εικ. 4.5 Αξονική χοντρή γραμμή Χρησιμοποιείται για την απεικόνιση της θέσης του ίχνους των επιπέδων τομής πάνω στα επίπεδα προβολής, και παρουσιάζεται κυρίως στα σχέδια των κατόψεων (εικ. 4.6). εικ. 4.6

5 Συνεχής λεπτή γραμμή με ελεύθερο χέρι Χρησιμοποιείται για την απόδοση σχεδιαστικών διακοπών (εικ. 4.7). Στο γραμμικό σχέδιο ειδικότερα χρησιμοποιούνται συνεχείς λεπτές γραμμές με ελεύθερο χέρι, που όμως δεν έχουν σταθερή σχέση πάχους προς τις άλλες γραμμές, όπως προβλέπεται στο τεχνικό σχέδιο γενικά. Μ'αυτές σχεδιάζουμε πλακοστρώσεις, λιθοδομές, ανθρώπινες φιγούρες, δένδρα και ό,τι άλλο συμπληρώνει σχέδια κατόψεων, όψεων και τομών (εικ. 4.8). εικ. 4.7 εικ Χάραξη γραμμών Στα σχέδια χαράζουμε τις γραμμές, ευθείες ή καμπύλες, με τρεις τρόπους. Με οδηγούς, όπως είναι το ταυ, το παράλληλο, τα τρίγωνα, τα καμπυλόγραμμα και οι οδηγοί γραμμάτων και συμβόλων (stencils). Με διαβήτη Με ελεύθερο χέρι Το βασικό πρόβλημα που αντιμετωπίζουμε και με τους τρεις τρόπους σχεδίασης, τόσο όταν σχεδιάζουμε με μολύβι όσο και όταν σχεδιάζουμε με μελάνι, είναι να επιτύχουμε ομοιόμορφο πάχος γραμμής σε όλο το μήκος της Επίσης, πρέπει να προσέχουμε την ένωση των γραμμών, ώστε το σημείο συνάντησής τους να είναι σαφές και καθαρό. Όταν συνδέουμε καμπύλες γραμμές μεταξύ τους ή καμπύλες με ευθείες, πρέπει να προσέχουμε, ώστε η τελική γραμμή να εμφανίζεται ως μονοκόμματη (ενιαία), χωρίς να φαίνεται ότι αποτελείται από διαφορετικά τμήματα. Στη σχεδίαση με μελάνι πρέπει να προσέχουμε ιδιαιτέρως τη σειρά με την οποία μελανώνουμε, για να αποφεύγουμε λάθη και να εξοικονομούμε χρόνο. Σχεδιάζουμε λοιπόν πρώτα όλες τις καμπύλες και έπειτα όλες τις ευθείες γραμμές, για να πετύχουμε καλύτερες συναρμογές. Μελανώνουμε με τη βοήθεια του ταυ ή του παράλληλου, τις ευθείες που είναι παράλληλες προς τη μεγάλη πλευρά της πινακίδας ή του σχεδιαστηρίου, αρχίζοντας από πάνω προς τα κάτω. Μελανώνουμε τις γραμμές που είναι κάθετες στη μεγάλη πλευρά της πινακίδας ή του σχεδιαστηρίου, με τη βοήθεια ενός ορθογωνίου τριγώνου, σύροντας το τρίγωνο από αριστερά προς τα δεξιά για τους δεξιόχειρους, και από δεξιά προς τα αριστερά για τους αριστερόχειρους Αποφεύγουμε έτσι να περάσουμε πάνω από τις γραμμές που μόλις έχουμε μελανώσει και να τις μουτζουρώσουμε, με αποτέλεσμα να κερδίζουμε χρόνο στη σχεδίαση.

6 Χάραξη με οδηγούς Σ'αυτή την περίπτωση, και εφ'όσον σχεδιάζουμε με μολύβι, πρέπει να προσέξουμε, ώστε το μολύβι να σχηματίζει γωνία ως προς την κατακόρυφη και να το περιστρέφουμε καθώς τραβάμε τη γραμμή, για να λειαίνεται ομοιόμορφα, έτσι ώστε να χαράζουμε ισοπαχή γραμμή σε όλο το μήκος της. Επίσης, πρέπει να το ξύνουμε συχνά για τον ίδιο λόγο, για να διατηρούμε, δηλαδή, ομοιόμορφο πάχος γραμμής. Αντίθετα, όταν σχεδιάζουμε με μελάνι, πρέπει να κρατάμε το ραπιντογκράφ κάθετα προς το χαρτί και να το κινούμε με τέτοιο τρόπο ώστε να ακουμπά στην κατακόρυφη πλευρά του οδηγού (στην περίπτωση που ο οδηγός έχει πατούρα). Αν ο οδηγός ακουμπά εντελώς στο χαρτί (δηλαδή δεν έχει πατούρα), μια μικρή απόκλιση από την κατακόρυφη βοηθά να αποφεύγουμε το άπλωμα του μελανιού. Αυτή την κλίση πρέπει να την κρατάμε πάντα σταθερή. Επίσης σταθερή πρέπει να κρατάμε την ταχύτητα με την οποία σύρουμε το ραπιντογκράφ. Χάραξη με διαβήτη Το πρόβλημα εδώ είναι ότι πρέπει να κρατάμε σταθερό το κέντρο του κύκλου που χαράζουμε και την ένταση του χεριού μας, για να επιτύχουμε ομοιόμορφη γραμμή. Στην περίπτωση κυρίως που έχουμε να χαράξουμε πολλούς ομόκεντρους κύκλους, είναι χρήσιμο να κολλάμε στη θέση του κέντρου ένα κομμάτι σελοτέιπ, που αποτρέπει το άνοιγμα τρύπας στο χαρτί σχεδίασης. Το ίδιο μπορούμε να πετύχουμε με τη χρήση ειδικών εξαρτημάτων (καρφάκια με υποδοχή στην κεφαλή), τα οποία προσαρμόζουμε στο σχέδιο, για να στηρίξουμε την ακίδα του διαβήτη. Όταν σχεδιάζουμε με μολύβι, φροντίζουμε να είναι η μύτη καλά ξυσμένη, για να επιτυγχάνουμε ομοιόμορφο πάχος γραμμής. Στη σχεδίαση με μελάνι είναι βασικό να κρατάμε το ραπιντογκράφ κάθετο στο χαρτί σχεδίασης. Χάραξη με ελεύθερο χέρι Εδώ αναφερόμαστε στη σχεδίαση τμημάτων του γραμμικού σχεδίου και ειδικότερα του αρχιτεκτονικού, που γίνονται με ελεύθερο χέρι, δηλαδή πλακοστρώσεις, τοιχοποιίες, ανθρώπινες φιγούρες, δένδρα, καμινάδες, κεραμίδια, νερά ξύλου, γράμματα, διαστάσεις κ.τ.λ. Όλα αυτά τα στοιχεία συμπληρώνουν το σχέδιο και συμβάλλουν στην ολοκλήρωση της εικόνας του. Ορισμένα από αυτά μπορούν να γίνουν και με τη βοήθεια οδηγών ή διαβήτη. Στο εμπόριο βρίσκουμε αυτοκόλλητα διαφανή φύλλα, πάνω στα οποία απεικονίζονται, υπό κλίμακα, πολλά από τα στοιχεία που αναφέρονται εδώ. Ενώ δίνουν μια άρτια και επαγγελματική εμφάνιση στο σχέδιο, είναι δαπανηρά και το στερούν από την αυθεντικότητα και τη ζωντάνια της προσωπικής έκφρασης. Πολλοί αρχιτέκτονες και σχεδιαστές βιομηχανικού σχεδίου δημιουργούν ένα προσωπικό ύφος στον τομέα αυτό, που κάνει τα σχέδιά τους αναγνωρίσιμα. Με τη συνεχή εξάσκηση αποκτά κανείς την ικανότητα να σχεδιάζει με ελεύθερο χέρι ομοιόμορφα και σταθερά

7 4.4 Ασκήσεις 1. Να σχεδιάσετε τετράγωνο ΑΒΓΔΑ με πλευρά ίση με 12 εκατοστά του μέτρου. Μέσα σ'αυτά να φέρετε: 1. γραμμές παράλληλες προς την πλευρά ΑΒ, 2. γραμμές παράλληλες προς την πλευρά ΑΔ. Οι γραμμές και στις δύο περιπτώσεις θα απέχουν μεταξύ τους αποστάσεις ίσες με 6 χιλιοστά του μέτρου. Να χρησιμοποιήσετε το ταυ ή το παράλληλο και ένα τρίγωνο. Να σχεδιάσετε το τετράγωνο και τις γραμμές με μολύβι. Να επαναλάβετε την άσκηση με μελάνι. Να χρησιμοποιήσετε συνεχή γραμμή με πάχος 0,2 χιλιοστά του μέτρου. 2. Στο τετράγωνο της προηγούμενης άσκησης να φέρετε γραμμές που σχηματίζουν γωνία 45 με τις πλευρές του και απέχουν μεταξύ τους αποστάσεις ίσες με 6 χιλιοστά του μέτρου. Να επαναλάβετε την άσκηση με γραμμές που απέχουν μεταξύ τους αποστάσεις ίσες με 1,5 χιλιοστό του μέτρου. Να χρησιμοποιήσετε το ταυ ή το παράλληλο και το ισοσκελές τρίγωνο. Οι ασκήσεις να γίνουν με μολύβι. Να χρησιμοποιήσετε συνεχή γραμμή με πάχος 0,2 χιλιοστά του μέτρου. 3. Να σχεδιάσετε κύκλο με ακτίνα ίση με 4 εκατοστά του μέτρου. Να χαράξετε τέσσερις διαμέτρους του, που να τον χωρίζουν σε 8 ίσους κυκλικούς τομείς, και να κατασκευάσετε τα τετράγωνα ΑΓΕΗΑ και ΒΔΖΘΒ (βλ. σχήμα). Για τη χάραξη των διαμέτρων και την κατασκευή των τετραγώνων να χρησιμοποιήσετε το ταυ ή το παράλληλο και το ισοσκελές τρίγωνο, θα κάνετε την άσκηση μια φορά με μολύβι και μια με μελάνι και θα χρησιμοποιήσετε συνεχή γραμμή με πάχος 0,3 χιλιοστά του μέτρου. Γ 4. Να σχεδιάσετε πέντε ίσα ημικύκλια με ακτίνα ίση με α, που τα κέντρα τους βρίσκονται πάνω στην ίδια ευθεία και απέχουν μεταξύ τους αποστάσεις ίσες με 2α όπως στο σχήμα. Να σχεδιάσετε με μολύβι. Να χρησιμοποιήσετε συνεχή γραμμή με πάχος 0,2 χιλιοστά του μέτρου. Να κάνετε την άσκηση όταν: 1) α = 12 χιλιοστά του μέτρου, 2) α = 15 χιλιοστά του μέτρου. 5. Να σχεδιάσετε το διακοσμητικό στοιχείο που φαίνεται στο σχήμα. Η άσκηση να γίνει με μελάνι. Για τις ευθείες γραμμές να χρησιμοποιήσετε συνεχή γραμμή με πάχος 0,1 χιλιοστό του μέτρου, και για

8 τους κύκλους συνεχή γραμμή με πάχος 0,3 χιλιοστά του μέτρου. Να κάνετε την άσκηση όταν: 1) α = 12 χιλιοστά του μέτρου, 2) α = 15 χιλιοστά του μέτρου. 6. Να σχεδιάσετε το διακοσμητικά στοιχείο που φαίνεται στο σχήμα. Η ακτίνα των κύκλων είναι ίση με 1,5 εκατοστό του μέτρου. Για τη διαγράμμιση θα χρησιμοποιήσετε το ισοσκελές τρίγωνο. Οι οκτώ αριστεροί κύκλοι και η διαγράμμιση σ'αυτούς θα γίνουν με μολύβι. Οι υπόλοιπες ευθείες γραμμές θα σχεδιαστούν με μελάνι. Να χρησιμοποιήσετε γι'αυτές συνεχή γραμμή με πάχος 0,1 χιλιοστό του μέτρου. Να χρησιμοποιήσετε συνεχή γραμμή με πάχος 0,4 χιλιοστά του μέτρου για τους κύκλους και με πάχος 0,2 χιλιοστά του μέτρου για τη διαγράμμιση. 7. Να σχεδιάσετε τα διακοσμητικά στοιχεία που φαίνονται στο σχήμα. Τα σχέδια θα γίνουν με μελάνι. Για τις βοηθητικές γραμμές θα χρησιμοποιήσετε συνεχή γραμμή με πάχος 0,1 χιλιοστό του μέτρου. Για τους κύκλους και τις ευθείες των διακοσμητικών στοιχείων να χρησιμοποιήσετε συνεχή γραμμή με πάχος 0,4 χιλιοστά του μέτρου.

γραμμικό σχέδιο GRAMMIKOSXEDIOBlykeiou new.indd 1 13/9/2013 5:12:54 µµ

γραμμικό σχέδιο GRAMMIKOSXEDIOBlykeiou new.indd 1 13/9/2013 5:12:54 µµ γραμμικό σχέδιο ΣΥΓΓΡΑΦΕΙΣ: Αλέκα Μονεμβασίτου, αρχιτέκτων, επίκουρος καθηγήτρια τμήματος αρχιτεκτόνων Ε.Μ.Π. Γεώργιος Παυλίδης, αρχιτέκτων, σχολικός σύμβουλος Άννα Παυλίδου, αρχιτέκτων, εκπαιδευτικός

Διαβάστε περισσότερα

Τεχνικό Τοπογραφικό Σχέδιο

Τεχνικό Τοπογραφικό Σχέδιο Τεχνικό Τοπογραφικό Σχέδιο Γ. Καριώτου ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ & ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

6 Γεωμετρικές κατασκευές

6 Γεωμετρικές κατασκευές 6 Γεωμετρικές κατασκευές 6.1 Γενικά Στα σχέδια εφαρμόζουμε γεωμετρικές κατασκευές, προκειμένου να επιλύσουμε προβλήματα που απαιτούν μεγάλη σχεδιαστική και κατασκευαστική ακρίβεια. Τα γεωμετρικά - σχεδιαστικά

Διαβάστε περισσότερα

1.2 Στοιχεία Μηχανολογικού Σχεδίου

1.2 Στοιχεία Μηχανολογικού Σχεδίου 1.2 Στοιχεία Μηχανολογικού Σχεδίου Τα µηχανολογικά σχέδια, ανάλογα µε τον τρόπο σχεδίασης διακρίνονται στις παρακάτω κατηγορίες: Σκαριφήµατα Κανονικά µηχανολογικά σχέδια Προοπτικά σχέδια Σχηµατικές παραστάσεις.

Διαβάστε περισσότερα

Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ

Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ ΤΕΙ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ Θέμα: ΟΡΓΑΝΩΣΗ & ΠΑΡΟΥΣΙΑΣΗ ΓΡΑΜΜΙΚΩΝ ΣΧΕΔΙΩΝ ΕΡΓΑΣΤΗΡΙΩΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ & ΟΙΚΟΔΟΜΙΚΗΣ Σύνταξη κειμένου: Μαρία Ν. Δανιήλ, Αρχιτέκτων

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

Σχεδίαση τομών Συνήθη σφάλματα και Παραδείγματα. Πότε;

Σχεδίαση τομών Συνήθη σφάλματα και Παραδείγματα. Πότε; Σχεδίαση τομών... Πότε;...Συνήθη σφάλματα και Παραδείγματα Οταν 5 η Διάλεξη οι οψεις Τομές δημιουργουν συγχυση και δεν εμφανιζουν αμεσα το εσωτερικο των αντικειμένων Ι.Ν. ΑΓ. ΔΗΜΗΤΡΙΟΥ, ΗΠΕΙΡΟΣ Διαδικασία

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα)

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 20 1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 1.3.1 Ορισµός- Είδη - Χρήση Σκαρίφηµα καλείται η εικόνα ενός αντικειµένου ή εξαρτήµατος που µεταφέρεται σε χαρτί µε ελεύθερο χέρι (χωρίς όργανα σχεδίασης ή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΟΜΕΣ - ΔΙΑΣΤΑΣΕΙΣ

ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΟΜΕΣ - ΔΙΑΣΤΑΣΕΙΣ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΟΜΕΣ - ΔΙΑΣΤΑΣΕΙΣ Τομές Η σχεδίαση σε τομή είναι απαραίτητη όταν θέλουμε να αποδώσουμε το εσωτερικό ενός αντικειμένου ή ενός μηχανήματος. Η σχεδίαση σε τομή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΣΤΑΣΕΙΣ - ΤΟΜΕΣ

ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΣΤΑΣΕΙΣ - ΤΟΜΕΣ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΣΤΑΣΕΙΣ - ΤΟΜΕΣ Διαστασιολόγηση Μια από τις σημαντικότερες εργασίες του σχεδιαστή, αλλά και η πιο δύσκολη και υπεύθυνη, είναι η σωστή τοποθέτηση διαστάσεων

Διαβάστε περισσότερα

289 Κεφάλαιο 6 Τομές 289

289 Κεφάλαιο 6 Τομές 289 Κεφάλαιο 6 Τομές Mark Manders, Ολλανδός καλλιτέχνης Μικρή άψητη πήλινη μορφή Συμμετοχή με ένα γλυπτό του στην 1 η Μπιενάλε της Αθήνας 2007 Destroy Athens 6.1 Τι είναι τομή στο σχέδιο; Πολλές φορές στο

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

φιλόλογος ΓΛΩΣΣΙΚΗ ΕΠΙΜΕΛΕΙΑ: Λία Μπουσούνη, ΣΧΕΔΙΑΣΗ ΣΧΗΜΑΤΩΝ: Βάσια Καυκαλά, αρχιτέκτων

φιλόλογος ΓΛΩΣΣΙΚΗ ΕΠΙΜΕΛΕΙΑ: Λία Μπουσούνη, ΣΧΕΔΙΑΣΗ ΣΧΗΜΑΤΩΝ: Βάσια Καυκαλά, αρχιτέκτων γραμμικό σχέδιο ΓΛΩΣΣΙΚΗ ΕΠΙΜΕΛΕΙΑ: Λία Μπουσούνη, φιλόλογος ΣΧΕΔΙΑΣΗ ΣΧΗΜΑΤΩΝ: Βάσια Καυκαλά, αρχιτέκτων ΣΧΕΔΙΑΣΜΟΣ-ΣΕΛΙΔΟΠΟΙΗΣΗ ΣΩΜΑΤΟΣ ΚΑΙ ΕΞΩΦΥΛΛΟΥ: Ελένη Φινέ, γραφίστας ΦΩΤΟΓΡΑΦΙΑ: Στέλιος Ντελής,

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1ο Γνωριμία με το σχέδιο

Περιεχόμενα. Κεφάλαιο 1ο Γνωριμία με το σχέδιο Περιεχόμενα Πρόλογος Περιεχόμενα Εισαγωγή Κεφάλαιο 1ο Γνωριμία με το σχέδιο 1.1 Ορισμός σχεδίου 1.2 Ελεύθερη σχεδίαση 1.2.1 Γνωριμία με το ελεύθερο σχέδιο 1.2.2 Ιστορική αναδρομή ελεύθερης σχεδίασης 1.2.3

Διαβάστε περισσότερα

Εισαγωγή. Μηχανολογικό Σχέδιο

Εισαγωγή. Μηχανολογικό Σχέδιο Εισαγωγή Σχέδιο: Γραφική παράσταση αντικειμένου. Η φωτογραφία είναι ανεπαρκής γιατί αποτελεί την προοπτική αναπαράσταση των αντικειμένων, δηλαδή δεν έχει πραγματικές διαστάσεις και γιατί δεν αποκαλύπτει

Διαβάστε περισσότερα

Σχεδιασμός αρχιτεκτονικών σχεδίων

Σχεδιασμός αρχιτεκτονικών σχεδίων 4. Σχεδιασμός αρχιτεκτονικών σχεδίων ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΕΙΣ Σαμίρ Μπαγιούκ Για να κάνουμε αντιληπτό ένα αντικείμενο στον χώρο, μπορούμε να χρησιμοποιήσουμε τη φωτογράφιση με πολλαπλές λήψεις από διάφορες

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 3: Μηχανολογικό Σχέδιο Τομή, Ημιτομή

Τεχνικό Σχέδιο. Ενότητα 3: Μηχανολογικό Σχέδιο Τομή, Ημιτομή Τεχνικό Σχέδιο Ενότητα 3: Μηχανολογικό Σχέδιο Τομή, Ημιτομή Διάλεξη 3η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΣΧΕΔΙΑΣΗ ΤΟΜΩΝ Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΕΙΣ. Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων

ΔΙΑΣΤΑΣΕΙΣ. Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων ΔΙΑΣΤΑΣΕΙΣ Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων Η Σωστή τοποθετηση Διαστασεων στο Μηχανολογικο Σχεδιο ειναι απαραιτητη για τη Σωστή Κατασκευή Εχετε κατι να παρατηρησετε;

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙ ΕΣ http://www.ikastiko.gr/ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΚΥΡΙΑΚΗ 24 ΙΟΥΝΙΟΥ 2012 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΠΕΝΤΕ (5) ΘΕΜΑ: «ΜΙΚΡΗ ΔΙΩΡΟΦΗ ΚΑΤΟΙΚΙΑ»

Διαβάστε περισσότερα

Εργαστήριο 1: Σχέδια από την οικοδομική άδεια ενός κτηνοτροφικού κτηρίου

Εργαστήριο 1: Σχέδια από την οικοδομική άδεια ενός κτηνοτροφικού κτηρίου Εργαστήριο 1: Σχέδια από την οικοδομική άδεια ενός κτηνοτροφικού κτηρίου Περιεχόμενα 1. Στόχος του εργαστηρίου... 3 2. ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ... 3 2.1 Εξοπλισμός σχεδίασης... 3 2.1.1 Μολύβια... 3 2.1.2. Επιφάνεια

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Τεχνικό Σχέδιο Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Διάλεξη 2η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΣΧΕΔΙΑΣΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ

Διαβάστε περισσότερα

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3 Σύμβολα και σχεδιαστικά στοιχεία Μάθημα 3 Τα αρχιτεκτονικά σύμβολα αποτελούν μια διεθνή, συγκεκριμένη και απλή γλώσσα. Είναι προορισμένα να γίνονται κατανοητά από τον καθένα, ακόμα και από μη ειδικούς.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΩΝ

ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΕΙΣ ΣΧΕΔΙΟΥ. Αναγκαιότητα τοποθέτησης διαστάσεων. 29/10/2015 Πολύζος Θωμάς

ΔΙΑΣΤΑΣΕΙΣ ΣΧΕΔΙΟΥ. Αναγκαιότητα τοποθέτησης διαστάσεων. 29/10/2015 Πολύζος Θωμάς Αναγκαιότητα τοποθέτησης διαστάσεων 29/10/2015 Πολύζος Θωμάς 1 Αναγκαιότητα τοποθέτησης διαστάσεων Σφάλμα μέτρησης που οφείλεται: Σε υποκειμενικό λάθος εκείνου που κάνει την μέτρηση. Σε σφάλμα του οργάνου

Διαβάστε περισσότερα

Συντήρηση Έργων Τέχνης και Αρχαιοτήτων Γραμμικό Σχέδιο

Συντήρηση Έργων Τέχνης και Αρχαιοτήτων Γραμμικό Σχέδιο Συντήρηση Έργων Τέχνης και Αρχαιοτήτων Γραμμικό Σχέδιο 1.Υλικά, μέσα και όργανα σχεδίασης Στο εμπόριο κυκλοφορεί μεγάλη ποικιλία υλικών, μέσων και οργάνων σχεδίασης και πολλά από τα όργανα είναι ιδιαίτερα

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ. Γενικά. Επιφάνεια σχεδίασης. Όργανα σχεδίασης

ΠΑΡΑΡΤΗΜΑ. Γενικά. Επιφάνεια σχεδίασης. Όργανα σχεδίασης ΠΑΡΑΡΤΗΜΑ Γενικά Τα περισσότερα στοιχεία αυτού του κεφαλαίου είναι γνωστά στους φοιτητές. Η εκ νέου παράθεσή τους στο παράρτημα γίνεται για λόγους υπενθύμισης και πιο ολοκληρωμένης παρουσίασης. Στην ενότητα

Διαβάστε περισσότερα

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ.

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ. ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ ΔΙΑΡΚΕΙΑ: 1 περιόδους 28/9/2008 12:48 καθ. Τεχνολογίας 28/9/2008 12:57 Προοπτικό σχέδιο με 2 Σημεία Φυγής Σημείο φυγής 1 Σημείο φυγής 2 Γωνία κτιρίου

Διαβάστε περισσότερα

ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι

ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

1.4 Κλίµακες σχεδίασης και κανόνες τοποθέτησης διαστάσεων

1.4 Κλίµακες σχεδίασης και κανόνες τοποθέτησης διαστάσεων 1.4 Κλίµακες σχεδίασης και κανόνες τοποθέτησης διαστάσεων 1.4.1 Κλίµακες σχεδίασης Στο µηχανολογικό σχέδιο είναι επιθυµητό να σχεδιάζεται ένα αντικείµενο σε φυσικό µέγεθος, γιατί έτσι παρουσιάζεται η αληθινή

Διαβάστε περισσότερα

ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ. (Μέρος πρώτο)

ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ. (Μέρος πρώτο) ΤΕΙ ΛΑΡΙΣΑΣ - Παράρτημα Καρδίτσας ΤΜΗΜΑ ΣΧΕΔΙΑΣΜΟΥ & ΤΕΧΝΟΛΟΓΙΑΣ ΞΥΛΟΥ ΕΠΙΠΛΟΥ ΣΗΜΕΙΩΣΕΙΣ ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ ΙΙ (Μέρος πρώτο) - ΠΛΑΓΙΑ ΠΡΟΒΟΛΗ - ΑΞΟΝΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ - ΑΝΟΧΕΣ - ΣΥΝΑΡΜΟΓΕΣ ΚΟΛΛΑΤΟΣ ΓΕΩΡΓΙΟΣ

Διαβάστε περισσότερα

ΘΕΜΑ: «ΜΙΚΡΗ ΚΑΤΟΙΚΙΑ ΔΙΑΚΟΠΩΝ»

ΘΕΜΑ: «ΜΙΚΡΗ ΚΑΤΟΙΚΙΑ ΔΙΑΚΟΠΩΝ» ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 26 ΙΟΥΝΙΟΥ 2010 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΠΕΝΤΕ (5) ΘΕΜΑ: «ΜΙΚΡΗ ΚΑΤΟΙΚΙΑ ΔΙΑΚΟΠΩΝ» ΠΕΡΙΓΡΑΦΗ: Πρόκειται

Διαβάστε περισσότερα

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή ΑΞΟΝΟΜΕΤΡΙΑ Εισαγωγή Η προβολή τρισδιάστατου αντικειμένου πάνω σε δισδιάστατη επιφάνεια αποτέλεσε μια από τις βασικές αναζητήσεις μεθόδων απεικόνισης και απασχόλησε από πολύ παλιά τους ανθρώπους. Με την

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

Κεφάλαιο 7 Γεωμετρικές Κατασκευές

Κεφάλαιο 7 Γεωμετρικές Κατασκευές Κεφάλαιο 7 Γεωμετρικές Κατασκευές Συντομεύσεις Ακρωνύμια... 2 Σύνοψη... 3 Προαπαιτούμενη γνώση... 3 7.1. Κατασκευή ευθύγραμμων τμημάτων... 3 7.2. Κατασκευή γωνιών... 8 7.3. Κατασκευή πολυγώνων... 11 7.4.

Διαβάστε περισσότερα

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Κ Ε Φ Α Λ Α Ι Ο Α Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Σκοπός Σκοπός του κεφαλαίου αυτού είναι να γνωρίσουν οι μαθητές τα υλικά που χρειάζονται για το ελεύθερο σχέδιο και τον τρόπο που θα τα

Διαβάστε περισσότερα

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων?

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? ΣΧΕΔΙΑΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - Εξεταστέα ύλη Β εξαμήνου 2011 1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? Τρεις μέθοδοι προβολών

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 1: Μηχανολογικό Σχέδιο - Εισαγωγή

Τεχνικό Σχέδιο. Ενότητα 1: Μηχανολογικό Σχέδιο - Εισαγωγή Τεχνικό Σχέδιο Ενότητα 1: Μηχανολογικό Σχέδιο - Εισαγωγή Διάλεξη 1η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ Εισαγωγή Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Λεμονιά Αμυγδάλου, Ε.Τ.Ε.Π. ΤΜΟΔ (Ειδικό Τεχνικό Εργαστηριακό Προσωπικό) email αποστολής εργασιών: idaegean@gmail.com ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή στην Τεχνική Σχεδίαση

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

Η κατασκευή με τις δύο πινέζες και το νήμα

Η κατασκευή με τις δύο πινέζες και το νήμα Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1 ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 Ο Βασικές Γεωμετρικές Έννοιες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Μια τεντωμένη κλωστή με άκρα δύο σημεία Α και Β μας δίνει μια εικόνα της έννοιας του.. Τα σημεία Α και Β λέγονται.. 2. Τι ονομάζεται ευθεία;..

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2.

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ης ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ης ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΕΤΑΡΤΗ 22 ΙΟΥΝΙΟΥ 2016 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ: «ΠΕΡΙΠΤΕΡΟ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΕΝΗΜΕΡΩΣΗΣ»

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Λεμονιά Αμυγδάλου, Ε.Τ.Ε.Π. ΤΜΟΔ (Ειδικό Τεχνικό Εργαστηριακό Προσωπικό) email αποστολής εργασιών: idaegean@gmail.com ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή στην Τεχνική Σχεδίαση

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΗ ΣΥΝΔΕΣΜΩΝ ΜΕ ΛΟΞΑ ΔΟΝΤΙΑ

ΚΑΤΑΣΚΕΥΗ ΣΥΝΔΕΣΜΩΝ ΜΕ ΛΟΞΑ ΔΟΝΤΙΑ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΠΑΡΑΓΩΓΗΣ ΕΠΙΠΛΟΥ ΚΑΤΑΣΚΕΥΗ ΣΥΝΔΕΣΜΩΝ ΜΕ ΛΟΞΑ ΔΟΝΤΙΑ Μιχάλης Σκαρβέλης Για την κατασκευή συνδέσμων με λοξά δόντια χρησιμοποιούνται αρκετές εμπειρικές μέθοδοι. Αφού γωνιάσουμε τα

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D 1 Φύλλο 2 Δράσεις με το λογισμικό Cabri-geometry 3D Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο με το αντίστοιχο λογισμικό του Cabri II. Περιέχει γενικές εντολές και εικονίδια που συμπεριλαμβάνουν

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Λεμονιά Αμυγδάλου, Ε.Τ.Ε.Π. ΤΜΟΔ (Ειδικό Τεχνικό Εργαστηριακό Προσωπικό) (e-mail: lamygdalou@fme.aegean.gr) ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή στην Τεχνική Σχεδίαση Όψεις

Διαβάστε περισσότερα

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ Η προοπτική εικόνα, είναι, όπως είναι γνωστό, η προβολή ενός χωρικού αντικειμένου, σε ένα επίπεδο, με κέντρο προβολής, το μάτι του παρατηρητή. Η εικόνα αυτή, θεωρούμε ότι αντιστοιχεί

Διαβάστε περισσότερα

4. Πολύγωνα Πολύγωνο ονομάζεται κάθε κλειστά γεωμετρικό σχήμα που αποτελείται από διαδοχικά ευθύγραμμα τμήματα

4. Πολύγωνα Πολύγωνο ονομάζεται κάθε κλειστά γεωμετρικό σχήμα που αποτελείται από διαδοχικά ευθύγραμμα τμήματα 4. Πολύγωνα Πολύγωνο ονομάζεται κάθε κλειστά γεωμετρικό σχήμα που αποτελείται από διαδοχικά ευθύγραμμα τμήματα Όταν όλες οι πλευρές και οι εσωτερικές γωνίες του πολύγωνου είναι ίσες, τότε λέγεται κανονικό

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Λεμονιά Αμυγδάλου, Ε.Τ.Ε.Π. ΤΜΟΔ (Ειδικό Τεχνικό Εργαστηριακό Προσωπικό) email αποστολής εργασιών: idaegean@gmail.com ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή στην Τεχνική Σχεδίαση

Διαβάστε περισσότερα

Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό.

Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό. Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να

Διαβάστε περισσότερα

ιαστασιολόγηση Περιεχόμενα Ορισμός Μηχανολογικός Σχεδιασμός Εισαγωγή Στοιχεία διαστασιολόγησης ιαστασιολόγηση χαρακτηριστικών αντικειμένων

ιαστασιολόγηση Περιεχόμενα Ορισμός Μηχανολογικός Σχεδιασμός Εισαγωγή Στοιχεία διαστασιολόγησης ιαστασιολόγηση χαρακτηριστικών αντικειμένων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή ιαστασιολόγηση η Στοιχεία διαστασιολόγησης ιαστασιολόγηση χαρακτηριστικών αντικειμένων Πρακτική διαστασιολόγησης Μηχανολογικός

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 4: Μηχανολογικό Σχέδιο - Διαστάσεις

Τεχνικό Σχέδιο. Ενότητα 4: Μηχανολογικό Σχέδιο - Διαστάσεις Τεχνικό Σχέδιο Ενότητα 4: Μηχανολογικό Σχέδιο - Διαστάσεις Διάλεξη 4η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΔΙΑΣΤΑΣΕΙΣ Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

γραµµικό σχέδιο GRAMMIKOSXEDIOBlykeiou new.indd 1 13/9/2013 5:12:54 µµ

γραµµικό σχέδιο GRAMMIKOSXEDIOBlykeiou new.indd 1 13/9/2013 5:12:54 µµ γραµµικό σχέδιο ΣΥΓΓΡΑΦΕΙΣ: Αλέκα Μονεµβασίτου, αρχιτέκτων, επίκουρος καθηγήτρια τµήµατος αρχιτεκτόνων Ε.Μ.Π. Γεώργιος Παυλίδης, αρχιτέκτων, σχολικός σύµβουλος Άννα Παυλίδου, αρχιτέκτων, εκπαιδευτικός

Διαβάστε περισσότερα

2. τα ρωμαϊκά, που το λούκι έχει μετασχηματιστεί σε επίπεδο και έχει ενσωματωθεί στο καπάκι

2. τα ρωμαϊκά, που το λούκι έχει μετασχηματιστεί σε επίπεδο και έχει ενσωματωθεί στο καπάκι Οι αριθμοί αντιμετωπίζονται με τον ίδιο τρόπο, αλλά είναι σημαντικό να μελετήσουμε τον τρόπο που σημειώνονται οι αριθμοί που αποδίδουν στα σχέδια τις διαστάσεις του αντικειμένου. Οι γραμμές διαστάσεων

Διαβάστε περισσότερα

1 ο Εξάμηνο. αποτύπωση. Εισαγωγικές έννοιες στην και τεκμηρίωση αντικειμένων. Αποτυπώσεις Τεκμηρίωση Αντικειμένων

1 ο Εξάμηνο. αποτύπωση. Εισαγωγικές έννοιες στην και τεκμηρίωση αντικειμένων. Αποτυπώσεις Τεκμηρίωση Αντικειμένων 1 ο Εξάμηνο 2015-2016 Εισαγωγικές έννοιες στην αποτύπωση και τεκμηρίωση αντικειμένων Αποτυπώσεις Τεκμηρίωση Αντικειμένων Μάθημα 1ο Τζώρτζια Πλατυπόδη Αρχιτέκτων Μηχανικός Ε.Μ.Π. MSc Διαχείριση Μνημείων

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ης ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ης ΑΠΟ 6 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 19 ΙΟΥΝΙΟΥ 2015 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΕΞΙ (6) ΘΕΜΑ: «ΜΙΚΡΗ ΕΞΟΧΙΚΗ ΚΑΤΟΙΚΙΑ ΚΑΙ ΕΡΓΑΣΤΗΡΙΟ ΓΛΥΠΤΗ»

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Σελίδα 37 Στο παρακάτω σχήμα σχεδιάστε την διάμεσο ΑΜ, την διάμεσο ΒΛ και την διάμεσο ΓΝ. Τι παρατηρείτε; Να κατασκευάσετε

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ης ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ης ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ TΡΙΤΗ 18 ΙΟΥΝΙΟΥ 2013 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΕΞΙ (6) ΘΕΜΑ: «ΧΩΡΟΣ ΕΚΘΕΣΗΣ ΚΕΡΑΜΙΚΩΝ ΕΙΔΩΝ» ΠΕΡΙΓΡΑΦΗ: Πρόκειται

Διαβάστε περισσότερα

Μ ά θ η μ α «Εισαγωγή στο Σχέδιο και τα Ηλεκτροτεχνικά Υλικά»

Μ ά θ η μ α «Εισαγωγή στο Σχέδιο και τα Ηλεκτροτεχνικά Υλικά» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μ ά θ η μ α «Εισαγωγή στο Σχέδιο και τα Ηλεκτροτεχνικά Υλικά» Γεώργιος Περαντζάκης Δρ. Ηλεκτρολόγος Μηχανικός

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες.

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. Μαθηματικά A Γυμνασίου Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. 1. Τι λέμε σημείο; Η άκρη του μολυβιού μας, οι κορυφές ενός σχήματος, η μύτη μιας βελόνας, μας δίνουν την έννοια του σημείου. 2. Τι λέμε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 27 ΙΟΥΝΙΟΥ 2017 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΠΕΝΤΕ (5) Θέμα:

Διαβάστε περισσότερα

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες. ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη

Διαβάστε περισσότερα

ΜΕΤΡΩΝΤΑΣ ΤΟΝ ΠΛΑΝΗΤΗ ΓΗ

ΜΕΤΡΩΝΤΑΣ ΤΟΝ ΠΛΑΝΗΤΗ ΓΗ του Υποπυραγού Αλέξανδρου Μαλούνη* Μέρος 2 ο - Χαρτογραφικοί μετασχηματισμοί Εισαγωγή Είδαμε λοιπόν ως τώρα, ότι η γη θα μπορούσε να χαρακτηρισθεί και σφαιρική και αυτό μπορεί να γίνει εμφανές όταν την

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΚΥΡΙΑΚΗ 24 ΙΟΥΝΙΟΥ 2012 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΠΕΝΤΕ (5) ΘΕΜΑ: «ΜΙΚΡΗ ΔΙΩΡΟΦΗ ΚΑΤΟΙΚΙΑ» ΠΕΡΙΓΡΑΦΗ: Πρόκειται

Διαβάστε περισσότερα

β. Πιο κάτω από τη βάση τοποθετούμε το εστιακό σημείο του παρατηρητή, σε κάτοψη.

β. Πιο κάτω από τη βάση τοποθετούμε το εστιακό σημείο του παρατηρητή, σε κάτοψη. Προβολές σε άλλα επίπεδα - Προοπτικές απεικονίσεις Μπορεί να γίνει προβολή ως προς σημείο το οποίο μπορεί να είναι το ανθρώπινο μάτι, ή ακριβέστερα το εστιακό σημείο του ανθρώπινου ματιού: Η απεικόνιση

Διαβάστε περισσότερα

1] Σχεδιασμός Τεχνικογεωλογικής Μηκοτομής.

1] Σχεδιασμός Τεχνικογεωλογικής Μηκοτομής. Το Εργαστήριο Τεχνικής Γεωλογίας στην προσπάθεια να βοηθήσει τους αποτυχόντες φοιτητές του εργαστηριακού μέρους αποφάσισε επανεξέταση με διευρυμένη ύλη του εργαστηρίου ώστε να μην αδικηθούν οι επιτυχόντες

Διαβάστε περισσότερα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα

Διαβάστε περισσότερα

γραµµικό σχέδιο GRAMMIKOSXEDIOBlykeiou new.indd 1 13/9/2013 5:12:54 µµ

γραµµικό σχέδιο GRAMMIKOSXEDIOBlykeiou new.indd 1 13/9/2013 5:12:54 µµ γραµµικό σχέδιο ΣΥΓΓΡΑΦΕΙΣ: Αλέκα Μονεµβασίτου, αρχιτέκτων, επίκουρος καθηγήτρια τµήµατος αρχιτεκτόνων Ε.Μ.Π. Γεώργιος Παυλίδης, αρχιτέκτων, σχολικός σύµβουλος Άννα Παυλίδου, αρχιτέκτων, εκπαιδευτικός

Διαβάστε περισσότερα

ΜΕΣΗ ΤΕΧΝΙΚΗ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΚΠΑΙ ΕΥΣΗ **********

ΜΕΣΗ ΤΕΧΝΙΚΗ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΚΠΑΙ ΕΥΣΗ ********** ΚΥΠΡΙΑΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΕΣΗ ΤΕΧΝΙΚΗ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΚΠΑΙ ΕΥΣΗ ********** ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑ: : ΠΕΡΙΟ ΟΙ: ΤΕΧΝΙΚΟ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΟ ΣΧΕ ΙΟ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 4 ΤΗΝ

Διαβάστε περισσότερα

ΘΕΜΑ: «ΜΙΚΡΗ ΔΙΩΡΟΦΗ ΚΑΤΟΙΚΙΑ»

ΘΕΜΑ: «ΜΙΚΡΗ ΔΙΩΡΟΦΗ ΚΑΤΟΙΚΙΑ» ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΕΤΑΡΤΗ 15 ΙΟΥΝΙΟΥ 2011 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΠΕΝΤΕ (5) ΘΕΜΑ: «ΜΙΚΡΗ ΔΙΩΡΟΦΗ ΚΑΤΟΙΚΙΑ» ΠΕΡΙΓΡΑΦΗ: Πρόκειται

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ης ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΚΥΡΙΑΚΗ 24 ΙΟΥΝΙΟΥ 2012 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΟ ΓΡΑΜΜΙΚΟ ΣΧΕΔΙΟ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΠΕΝΤΕ (5) ΘΕΜΑ: «ΜΙΚΡΗ ΔΙΩΡΟΦΗ ΚΑΤΟΙΚΙΑ» ΠΕΡΙΓΡΑΦΗ: Πρόκειται

Διαβάστε περισσότερα

ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ

ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑ 16_10_2012 ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ 2.1 Απεικόνιση του ανάγλυφου Μια εδαφική περιοχή αποτελείται από εξέχουσες και εισέχουσες εδαφικές μορφές. Τα εξέχοντα εδαφικά τμήματα βρίσκονται μεταξύ

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

Ερωτήσεις: 1. Να αναγνωρίσετε και να ονομάσετε γεωμετρικά σχήματα στα παραπάνω στερεά.

Ερωτήσεις: 1. Να αναγνωρίσετε και να ονομάσετε γεωμετρικά σχήματα στα παραπάνω στερεά. 1. ΑΝΑΓΝΩΡΙΣΗ, ΟΝΟΜΑΣΙΑ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ a. Αναγνώριση και ονομασία Δραστηριότητα 1 1. Ας κατασκευάσουμε όσο το δυνατόν περισσότερες γραμμές μπορούμε να σκεφτούμε. 2. Έχουμε ξανασυναντήσει

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-15 1. Εισαγωγή ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Οι γραφικές παραστάσεις (ή διαγράμματα) χρησιμεύουν για την απεικόνιση της εξάρτησης

Διαβάστε περισσότερα

Φύλλο 1. Δράσεις με το λογισμικό Cabri-geometry II

Φύλλο 1. Δράσεις με το λογισμικό Cabri-geometry II 1 Φύλλο 1 Δράσεις με το λογισμικό Cabri-geometry II Στις δύο παρακάτω γραμμές από το περιβάλλον του λογισμικού αυτού η πρώτη αφορά γενικές επεξεργασίες και δεύτερη με τα εικονίδια περιλαμβάνει τις στοιχειώδεις

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο «ΑΛΓΕΒΡΑ»

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο «ΑΛΓΕΒΡΑ» ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΥ ΜΕΡΣ ο «ΑΛΓΕΒΡΑ». Να υπολογίσετε την τιμή της παράστασης: Α = ( + ) 4( ) 8, όταν = 0,45. Απλοποιούμε πρώτα την παράσταση : Α = ( + ) 4( ) 8 = = + 6 4 + 4 8

Διαβάστε περισσότερα

1. Ποια είναι τα κύρια στοιχεία ενός τριγώνου; 2. Ποια είναι τα δευτερεύοντα στοιχεία ενός τριγώνου;

1. Ποια είναι τα κύρια στοιχεία ενός τριγώνου; 2. Ποια είναι τα δευτερεύοντα στοιχεία ενός τριγώνου; ΜΕΡΟΣ Β : ΓΕΩΜΕΤΡΙΑ -ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ 1.1 Ισότητα τριγώνων 1. Ποια είναι τα κύρια στοιχεία ενός τριγώνου; Κυρια στοιχεια του τριγωνου ειναι: οι πλευρες του ΑΒ,ΒΓ,ΓΑ οι γωνιες του Α,Β,Γ.

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012 ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011 2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012 ΜΑΘΗΜΑ : Μαθηματικά ΒΑΘΜΟΣ ΤΑΞΗ : Β ΑΡΙΘΜΗΤΙΚΩΣ : ΔΙΑΡΚΕΙΑ : 2 ώρες ΟΛΟΓΡΑΦΩΣ : ΗΜΕΡΟΜΗΝΙΑ : 15.06.2012 ΥΠ. ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ:

Διαβάστε περισσότερα