Τμήμα Διοίκησης Επιχειρήσεων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τμήμα Διοίκησης Επιχειρήσεων"

Transcript

1 Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 1: Γραµµικός προγραµµατισµός(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ: ,

2 Γραμμικός προγραμματισμός Περιεχόμενα 1. Στοιχεία ενός προβλήματος Γ.Π. 2. Τυπική μορφή ενός προβλήματος Γ.Π. και παραδείγματα 3. Μαθηματική διατύπωση προβλήματος Γ.Π. και παραδείγματα 4. Ερωτήσεις 2

3 Γραμμικός προγραμματισμός Γενικό πρότυπο Γραμ.προγραμματισμού max z= c 1 x 1 + c 2 x c n x 1n a 11 x 1 + a 12 x a 1n x n <= ή >= b 1.. z είναι η αντικειµενική συνάρτηση Γραµµικοί περιορισµοί Συνήθως επίσης ισχύει x 1, x 2, x n >=0. Περιορισµοί µη αρνητικότητας x 1, x 2, x n είναι οι µεταβλητές αποφάσεων b 1, b 2, b n είναι οι σταθερές 3

4 Γραμμικός προγραμματισμός Ιδιότητες προβλημάτων Γ.Π. Αναλογικότητα: Αν για παράδειγμα μία μονάδα του προϊόντος 1 χρειάζεται ποσότητα α 1i της πρώτης ύλης i, τότε x 1 μονάδες του προϊόντος 1χρειάζονταιποσότηταα 1i x 1. Προσθετικότητα: η συνολική ποσότητα της πρώτης ύλης προκύπτει από την πρόσθεση των επιμέρους ποσοτήτων που απαιτούνται για κάθε προϊόν. ιαιρετότητα: γίνονται αποδεκτές δεκαδικές τιμές για τις μεταβλητές x 1, x 2,..x n,μετηνπροϋπόθεσηότιαυτέςοιτιμέςέχουν νόημα. Αν δεν έχουμε δεκαδικούς έχουμε πρόβλημα ακέραιου προγραμματισμού. Βεβαιότητα: Οι συντελεστές α ij, b i και c i είναι γνωστοί και σταθεροί. 4

5 Γραμμικός προγραμματισμός Τυπική μορφή προβλήματος Γ.Π. Η τυπική µορφή ενός προβλήµατος Γ.Π. πρέπει να έχει τα παρακάτω χαρακτηριστικά: Να είναι πρόβλημα μεγιστοποίησης(max) Οι γραμμικοί περιορισμοί να είναι ισότητες (=) Οι μεταβλητές του προβλήματος να μην είναι αρνητικές, δηλαδή να είναι >=0. Οι σταθεροί όροι b του προβλήματος να μην είναι αρνητικοί, δηλαδή να είναι >=0. 5

6 Γραμμικός προγραμματισμός Τυπική μορφή Τυπική µορφή προβλήµατος Γ.Π. max z= c 1 x 1 + c 2 x c n x 1n a 11 x 1 + a 12 x a 1n x n = b 1 x 1, x 2, x n >=0. b 1, b 2, b n >=0. 6

7 Γραμμικός προγραμματισμός Τυπική μορφή Οδηγίες µετατροπής στην τυπική µορφή Το minz γίνεται max-z και αλλάζουν τα πρόσημα Στην ανισότητα >=, προσθέτουμε περιθώρια (ή βοηθητική)μεταβλητήπουέχειαρνητικόπρόσημο(π.χ.-x 3 ) Στην ανισότητα <=, προσθέτουμε περιθώρια μεταβλητή πουέχειθετικόπρόσημο(π.χ.+x 3 ). Αν x 2 <=0, θέτουμε x 2 =-x 2, όπου x 2 >=0 Αν x 3 Ε R, θέτουμε x 3 =x 3 x 3, όπου x 3, x 3 >=0 7

8 Παράδειγμα 2.1 σελ.25 Γραμμικός προγραμματισμός Να τεθεί σε τυπική μορφή το παρακάτω πρόβλημα Γ.Π. minz= 3x 1 x 2 + 4x 3 x 1 + 2x 2 + x 3 = 15 3x 1 + x 2 x 3 <= -7 2x 1-7x 2 + 3x 3 <= 6 x 1 >=0, x 2 <=0, x 3 E R 8

9 Παράδειγμα 2.1 σελ.25 Γραμμικός προγραμματισμός Να τεθεί σε τυπική μορφή το παρακάτω πρόβλημα Γ.Π.(bold και υπογραμμισμένα αυτά που πρέπει να αλλάξουν) minz= 3x 1 x 2 + 4x 3 -max-z= -3x 1 + x 2-4x 3 x 1 + 2x 2 + x 3 = 15 3x 1 + x 2 x 3 <= -7-3x 1 - x 2 + x 3 >= 7-3x 1 - x 2 + x 3 x 4 = 7 2x 1-7x 2 + 3x 3 <= 6 2x 1-7x 2 + 3x 3 + x 5 = 6 x 1 >=0, x 2 <=0, x 3 E R, θέτω x 2 =- x 2, x 3 = x 3 -x 3 9

10 Παράδειγμα 2.1 σελ.25 Γραμμικός προγραμματισμός Τελική Λύση -max-z= -3x 1 x 2 4(x 3 -x 3 )= -3x 1 x 2 4x 3 +x 3 x 1-2x 2 + (x 3 - x 3 )= 15-3x 1 + x 2 +(x - 3 x ) 3 x 4 =7 2x 1 + 7x 2 + 3(x - 3 x ) 3 + x 5 = 6 x 1, x 2, x 3, x 3, x 4, x 5 >=0 (Έχωθέσει x 2 =- x 2, x 3 = x 3 -x 3 ) 10

11 Παραδείγματα σελ. 26 Γραμμικός προγραμματισμός 1. maxz= -3x 1 +4 x 2 5x 1 + 2x 2 <=40 5x 1 + 2x 2 + x 3 = 40 2x 1 + 6x 2 >=28 2x 1 + 6x 2 - x 4 =28 x 1, x 2 >=0 (προστίθενταιοι x 3,x 4 ) 4. maxz= 6x x 2 2x 1 + 4x 2 >= -17-2x 1-4x 2 + x 3 = 17 4x 1 + 3x 2 <=25 4x 1 + 3x 2 + x 4 =25 x 1, x 2 >=0 (προστίθενταιοι x 3,x 4 ) 11

12 Παραδείγματα σελ. 26 Γραμμικός προγραμματισμός 5. maxz= 7x 1-3x 2 2x 1 + 4x 2 =40 x 1 + 3x 2 >=25 x 1 >=0, x 2 Ε R Λύση Θέτω x 2 =x 2 x 2, όπου x 2,x 2 >=0. Επομένως: maxz= 7x 1 3(x 2 x 2 ) maxz= 7x 1 3x 2 +3x 2 2x 1 + 4(x 2 x 2 ) =30 2x 1 + 4x 2 4x 2 =30 x (x 2 x 2 ) x 3 =25 x 1 + 3x 2 3x 2 x 3 =25 x 1,x 2,x 2,x 3 >=0 12

13 Γραμμικός προγραμματισμός Παρ. 2.2 μαθηματική διατύπωση προβλήματος Σε μια μονάδα εκτροφής ζώων δίνεται καθημερινά σε κάθε ζώο ένα μείγμα τροφής που αποτελείται από 4 διαφορετικά είδη τροφών. Ένα κιλό από κάθε είδος τροφής περιέχει συγκεκριμένες μονάδες θρεπτικών συστατικών και έχει διαφορετικό κόστος. Επιπλέον, το μείγμα τροφής πρέπει να περιέχει κάποιες ελάχιστες μονάδες από κάθε θρεπτικό συστατικό, προκειμένου κάθε ζώο να αναπτύσσεται σωστά. Να προσδιοριστούν οι ποσότητες από κάθε είδος τροφής, που πρέπει να περιλαμβάνονται στο μείγμα, ώστε να καλύπτονται οι ημερήσιες διατροφικές ανάγκες με το ελάχιστο δυνατό κόστος. 13

14 Εισαγωγή και Ορισμοί Παρ. 2.2 μαθηματική διατύπωση προβλήματος Πόσες και ποιες είναι οι μεταβλητές απόφασης; Είναι πρόβλημα ελαχιστοποίησης ή μεγιστοποίησης; Οι γραμμικοί περιορισμοί θα έχουν <= ή >=; Πόσοι γραμμικοί περιορισμοί θα υπάρχουν; 14

15 Γραμμικός προγραμματισμός Παρ. 2.2 μαθηματική διατύπωση προβλήματος Είδη τροφής Θρ.συστ Α Β Γ Δ Ελ.ημερ.α νάγκες x 1 =ποσότητατροφήςακλπ Ι ΙΙ ΙΙΙ ΙV Κόστος 0,25 0,30 0,28 0,20 minz=0,25x 1 +0,30x 2 +0,28x 3 +0,20x 4 90x 1 +95x 2 +68x 3 +35x 4 <=

16 Παράδειγμα 2.2 στο Excel Γραμμικός προγραμματισμός 16

17 Εισαγωγή και Ορισμοί Παρ. 2.3 μαθηματική διατύπωση προβλήματος Μηχανουργείο παράγει 3 προϊόντα µε τη χρήση 4 µηχανών. Αναζητείται το εβδοµαδιαίο κέρδος. Πόσες και ποιες είναι οι μεταβλητές απόφασης; Είναι πρόβλημα ελαχιστοποίησης ή μεγιστοποίησης; Οι γραμμικοί περιορισμοί θα έχουν <= ή >=; Πόσοι γραμμικοί περιορισμοί θα υπάρχουν; 17

18 Εισαγωγή και Ορισμοί Παρ. 2.3 μαθηματική διατύπωση προβλήματος Προϊόντα Μηχανές A B Γ Διαθ.ώρες Ι 0,5 0, ΙΙ 2, maxz= 39x 1 +45x 2 +48x 3 0,5x 1 + 0,8x 2 +1,0x 3 <=40 2,5x 1 + 3,0x 2 + 2,0x 3 <=28... x 1, x 2, x 3 >=0 ΙΙΙ 2 1, IV 2 1, Κέρδος

19 Εισαγωγή και Ορισμοί Παρ. 2.4 μαθηματική διατύπωση προβλήματος Παραγωγή 3 προϊόντων με τη χρήση 4 πρώτων υλών. Είναι πρόβλημα μεγιστοποίηση κέρδους. Έστω x 1 μονάδεςτουπροϊόντοςα Έστω x2 μονάδεςτουπροϊόντοςβ Έστω x 3 μονάδεςτουπροϊόντοςγ Κέρδος προϊόντος Α: 45 [(2*3)+ (1,5*7) +(0,8*6,5) + (3*4)]=45-33,7=11,3 κέρδος πρ.α Κέρδος προϊόντος Β: 39 [(1,5*3)+ (2*7) +(1*6,5) + (0,5*4)]=12. Κέρδος προϊόντος Γ: 41 [(1*3)+ (3*7) +(0*6,5) + (0,5*4)]=15. 19

20 Εισαγωγή και Ορισμοί Παρ. 2.4 μαθηματική διατύπωση προβλήματος Ποσότητα πρώτων υλών ανά προϊόν Προϊόντα πυ 1 πυ 2 πυ 3 πυ 4 Τιμές πώλησης Υπολογίσ τηκε Κέρδος Α 2,0 1,5 0,8 3, ,3 Β 1,5 2,0 1,0 0, Γ 1,0 3,0 0 0, maxz= 11,3x 1 +12x 2 +15x 3 2,0x 1 + 1,5x 2 +1,0x 3 <=800 1,5x 1 + 2,0x 2 + 3,0x 3 <= x 2 >=15 x 3 >=30 x 1, x 2, x 3 >=0 Διαθ.ποσ ότητες Κόστος αγοράς ,5 4 20

21 Γραμμικός προγραμματισμός Παρ. 2.5 μαθηματική διατύπωση προβλήματος 3 εργοστάσια προµηθεύουν 4 αγορές. Ελαχιστοποίηση κόστους µεταφοράς. Πρόβληµα µεταφοράς Αγορές Εργοστάσια Β 1 Β 2 Β 3 Β 4 Προσφορά Α1 (x 11 ) 19 (x 12 ) Α2 (x 21 ) Α Ζήτηση minz= 19x x x 34 x 11 + x 12 + x 13 + x 14 =

22 Γραμμικός προγραμματισμός Πρόβλημα προς επίλυση 1, σελ.49 Τύποι επίπλων Τμήματα Α (x 1 ) Β (x 2 ) Διαθ.ώρες εργασίας Ι maxz= 100x x 2 2x 1 + 2x 2 <=50 4x 1 + 2x 2 <=60 2x 1 + 3x 2 <=60 x 1, x 2 >=0 ΙΙ ΙΙΙ Κέρδος

23 Γραμμικός προγραμματισμός Πρόβλημα προς επίλυση 3, σελ.49 Προϊόντα Τύπος ξύλου Ι Τύπος ξύλου ΙΙ Ώρες Κέρδος Τραπέζια(x 1 ) maxz= 35x 1 +15x 2 +44x 3 +29x 4 5x 1 + 1x 2 + 9x <=1500. x 1, x 2 x 3, x 4 >=0 Καρέκλες(x 2 ) Γραφεία(x 3 ) Βιβλιοθήκες(x 4 ) Διαθ.πόροι

24 Ερωτήσεις 0 γραμμικός προγραμματισμός μπορεί να εφαρμοστεί στη διαχείριση αγροτικής παραγωγής για τη βέλτιστη κατανομή πόρωνόπως..,μετρόποπουναοδηγεί στη μεγιστοποίηση των κερδών. Α) διαθέσιμης προς καλλιέργειας γης Β) εργασίας Γ) υδάτινων πόρων και κεφαλαίων Δ) όλων των παραπάνω 24

25 Ερωτήσεις Τα μοντέλα Γ.Π. έχουν τις ιδιότητες της Α) αναλογικότητας Β) προσθετικότητας Γ) διαιρετότητας Δ) όλες τις παραπάνω 25

26 Ερωτήσεις Οι τιμές των μεταβλητών αποφάσεων: Α) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ. Β) απεικονίζουν τις ποσότητες των περιορισμών Γ) δηλώνουν την τελική τιμή της αντικειμενικής συνάρτη Δ) πρέπει να οριστούν για κάθε περιορισμό 26

27 Ερωτήσεις Ποια από τις παρακάτω μαθηματικές εκφράσεις αποτελεί μία αποδεκτή αντικειμενική συνάρτηση για ένα πρόβλημα Γ.Π.;..; Α) max 5xy B) min 4x + 3y + (2/3)z Γ) max 5x 2 + 6y 2 Δ) min (x 1 +x 2 )/x 3 27

28 Ερωτήσεις Στα προβλήματα Γ.Π. οι περιγράφονται με τη μορφή ανισοτήτων ή/και ισοτήτω Α) ) περιορισμοί Β) αντικειμενικές συναρτήσεις Γ) περιορισμοί και αντικειμενικές συναρτήσεις Δ) κανένα από τα παραπάνω 28

29 Ερωτήσεις Η αντικειμενική συνάρτηση και οι περιορισμοί είναι γραμμικές σχέσεις των Α) ) μεταβλητών Β) περιορισμών Γ) συναρτήσεων Δ) όλων των παραπάνω 29

30 Ερωτήσεις Ένα πρόβλημα ελαχιστοποίησης μπορεί να μετασχηματιστεί σε ένα πρόβλημα μεγιστοποίησης αλλάζοντας το πρόσημο των συντελεστών: : Α) των περιορισμών Β) της αντικειμενικής συνάρτησης Γ) και των δύο (α) και (β) Δ) τίποτα από τα παραπάνω 30

31 Ερωτήσεις Θεωρούμε το ακόλουθο πρόβλημα Γ.Π. Μεγιστοποίηση z=6x+5y, Με τους περιορισμούς: 4x+3y <=48 x+2y <=18 x,y >=0 Ποιος από τους ακολουθούμενους συνδυασμούς (x,y) θα μπορούσε να αντιστοιχεί σε μια κορυφή της εφικτής περιοχής; Α) (10,8) Β) (12,0) Γ) (0,18) Δ) (6,12) 31

32 ΤΕΛΟΣ ΕΝΟΤΗΤΑΣ

Α) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ.

Α) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ. 1. 0 γραμμικός προγραμματισμός μπορεί να εφαρμοστεί στη διαχείριση αγροτικής παραγωγής για τη βέλτιστη κατανομή πόρων όπως., με τρόπο που να οδηγεί στη μεγιστοποίηση των κερδών. Α) διαθέσιμης προς καλλιέργειας

Διαβάστε περισσότερα

Β. Τυπική μορφή (κανόνες μετατροπής, προβλήματα μετατροπής) - Λυμένο πρόβλημα 2, Ασκήσεις 2,3,4,5.

Β. Τυπική μορφή (κανόνες μετατροπής, προβλήματα μετατροπής) - Λυμένο πρόβλημα 2, Ασκήσεις 2,3,4,5. Άλυτες Ασκήσεις ΓΠ Α. Μέρη ενός προβλήματος ΓΠ - Λυμένο πρόβλημα 1, Άσκηση 1. Β. Τυπική μορφή (κανόνες μετατροπής, προβλήματα μετατροπής) - Λυμένο πρόβλημα 2, Ασκήσεις 2,3,4,5. Γ. Διατύπωση μαθηματικού

Διαβάστε περισσότερα

Διαδικασία μετατροπής σε τυπική μορφή

Διαδικασία μετατροπής σε τυπική μορφή ΤΕΙ Δυτικής Μακεδονίας -Τμήμα Διοίκησης επιχειρήσεων- Μάθημα: Ποσοτικές μέθοδοι στη διοίκηση επιχειρήσεων- ΣΤ Εξάμηνο Ημερομηνία: Τρίτη 25 ΑΠΡ 2017, 1 η γραπτή Πρόοδος Εκπαιδευτής: Βασίλειος Ισμυρλής,

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 2: Γραφική επίλυση προβληµάτων γραµµικού προγραµµατισµού(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ανάλυση ευαισθησίας. (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων

Περιεχόμενα. 1. Ανάλυση ευαισθησίας. (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων Περιεχόμενα (1) Ανάλυση ευαισθησίας (2) Δυϊκό πρόβλημα (κανονική μορφή) (3) Δυαδικός προγραμματισμός (4) Ανάλυση αποφάσεων 1. Ανάλυση ευαισθησίας Λυμένο παράδειγμα 7 από το βιβλίο, σελ.85, λύση σελ.328

Διαβάστε περισσότερα

Fermat, 1638, Newton Euler, Lagrange, 1807

Fermat, 1638, Newton Euler, Lagrange, 1807 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Παράδειγμα ΕΠΙΠΛΟΞΥΛ Η βιοτεχνία ΕΠΙΠΛΟΞΥΛ παράγει δύο βασικά προϊόντα: τραπέζια και καρέκλες υψηλής ποιότητας. Η διαδικασία παραγωγής και για τα δύο προϊόντα περιλαμβάνει την

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μια μαθηματική τεχνική Ευρύτατο φάσμα εφαρμογών Προβλήματα με γραμμικότητα ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΑΓΩΓΗ Ο Γραμμικός Προγραμματισμός επιλύει, κάτω από ορισμένες προϋποθέσεις,

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 3: Ανάλυση ευαισθησίας ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com http://vasilis-ismyrlis.webnode.gr/

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Γραμμικός προγραμματισμός: Εισαγωγή Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 3 η /2017 Γραμμικός προγραμματισμός Είναι μια μεθοδολογία

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

Ασκήσεις γραφικής επίλυσης

Ασκήσεις γραφικής επίλυσης Ασκήσεις γραφικής επίλυσης Άσκηση 1- (Παράδειγµα 3.4 βιβλίου) Σε ένα πτηνοτροφείο χρησιµοποιείται για την καθηµερινή διατροφή ενός συνόλου πτηνών ένα µείγµα αποτελούµενο από δύο είδη δηµητριακών: το είδος

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (ασκήσεις)

Επιχειρησιακή έρευνα (ασκήσεις) Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 3: Μαθηματικό Πρότυπο, Κανονική Μορφή, Τυποποιημένη Μορφή Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Άσκηση 21. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Άσκηση 21. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Εταιρία παράγει σκυρόδεμα με το οποίο προμηθεύει σε καθημερινή βάση διάφορες οικοδομικές επιχειρήσεις. Το σκυρόδεμα παράγεται σε δύο εργοτάξια της εταιρίας, το Α και το Β. Με τα σημερινά δεδομένα, υπάρχει

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού

Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 τελευταία ενημέρωση: 21/10/2016 1 Γραφική μέθοδος

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

z = c 1 x 1 + c 2 x c n x n

z = c 1 x 1 + c 2 x c n x n Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος

Διαβάστε περισσότερα

ιαµόρφωση Προβλήµατος

ιαµόρφωση Προβλήµατος Γραµµικός Προγραµµατισµός ιαµόρφωση Προβλήµατος Η παρουσίαση προετοιµάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόµενα Παρουσίασης 1. Γενικά Στοιχεία Γραµµικού

Διαβάστε περισσότερα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Θέμα 1 Μια επιχείρηση χρησιμοποιεί 3 πρώτες ύλες Α, Β, Γ για να παράγει 2 προϊόντα Π1 και Π2. Για την παραγωγή μιας μονάδας προϊόντος Α απαιτούνται 1

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 1: Εισαγωγή στο Γραμμικό Προγραμματισμό (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ ΙΟΥΛΙΟΥ 2014

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ ΙΟΥΛΙΟΥ 2014 ΠΑΝΕΠΙΣΤΗΜΙΟΥΠΟΛΗ - ΡΙΟ 00 ΠΑΤΡΑ UNIVERSITY CAMPUS-RIO 00 PATRAS, GR ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ ΙΟΥΛΙΟΥ 0 ΘΕΜΑ ( Μονάδες ) Στο παρακάτω πρόβληµα γ.π c max = + s. t + - + + + 0 +,,

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Δυϊκότητα Θα δείξουμε πώς μπορούμε να αντιστοιχίσουμε ένα πρόβλημα ελαχιστοποίησης με ένα πρόβλημα ΓΠ στην συνήθη του μορφή. Ένα πρόβλημα στην συνήθη του μορφή μπορεί να είναι ένα κατασκευαστικό πρόβλημα,

Διαβάστε περισσότερα

ΤΟ ΔΥΑΔΙΚΟ ΠΡΟΒΛΗΜΑ. Θεωρίες δυϊσμού Θεώρημα Thevenin-Norton. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

ΤΟ ΔΥΑΔΙΚΟ ΠΡΟΒΛΗΜΑ. Θεωρίες δυϊσμού Θεώρημα Thevenin-Norton. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΤΟ ΔΥΑΔΙΚΟ ΠΡΟΒΛΗΜΑ Θεωρίες δυϊσμού Θεώρημα Thevenin-Norton minu = b 1 Π 1 + b Π + + b m Π m ΔΥΑΔΙΚΟ X 1 X X n Π 1 α 11 a 1... a 1n b 1 Π α 1 a... a n b............ Π m a m1 a m a mn b m c 1 c... c n maxz

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015 ΘΕΜΑ 1 ( Μονάδες 2) Μια επιχείρηση κατασκευής tablet έχει εργοστάσια σε τρεις διαφορετικές χώρες Α,Β,Γ που παράγουν αντίστοιχα 200, 260 και

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Γραμμικός προγραμματισμός: μέθοδος simplex Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 4 η /2017 Η γεωμετρία των προβλημάτων γραμμικού

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31 Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Μάρτιος 2014 Δρ. Δημήτρης

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ

ΕΝΔΕΙΚΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ Πρόβλημα 1 ΕΝΔΕΙΚΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ Η εταιρεία GALAXY INDUSTRIES διαθέτει στην αγορά 2 είδη πλάκες πεζοδρομίου: τη Space Ray και τη Galaxy Ray. Τα 2 είδη κατασκευάζονται σε δωδεκάδες από την ίδια βασική πρώτη

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 013 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ 1 ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #1: Γραμμικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 0: Στοιχεία για το µάθηµα- Εισαγωγικές έννοιες ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com http://vasilis-ismyrlis.webnode.gr/

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό

Εισαγωγή στο Γραμμικό Προγραμματισμό Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Εισαγωγή στο Γραμμικό Προγραμματισμό Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 15/10/2016 1 Παραδείγματα Που στοχεύει ο Γραμμικός Προγραμματισμός;

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #: Εφαρμογές του Γραμμικού Προγραμματισμού Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

ΠΡΩΤΟ ΣΕΤ ΑΣΚΗΣΕΩΝ-ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΠΡΩΤΟ ΣΕΤ ΑΣΚΗΣΕΩΝ-ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΠΡΩΤΟ ΣΕΤ ΑΣΚΗΣΕΩΝ-ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΣΚΗΣΗ 1 Ένας κτηµατίας πρέπει να καθορίσει πόσα στρέµµατα καλαµποκιού και σιταριού να φυτέψει αυτή τη χρονιά. Ένα στρέµµα σιταριού

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 3 3.1 Γενικά Τις τελευταίες δεκαετίες ένας μεγάλος αριθμός μεθόδων βελτιστοποίησης έχει αναπτυχθεί με βάση τη θεωρία του μαθηματικού λογισμού. Οι διάφοροι μαθηματικοί

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ μέθοδοι των εσωτερικών σημείων

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ μέθοδοι των εσωτερικών σημείων ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ Γραμμικός Προγραμματισμός είναι η διαδικασία εύρεσης μιας βέλτιστης λύσης μιας γραμμικής συνάρτησης, η οποία να είναι συμβατή με ένα πεπερασμένο σύνολο γραμμικών ανισοτήτων, δηλαδή, ο

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

ΤΕΙ υτικής Μακεδονίας -Τµήµα ιοίκησης επιχειρήσεων- Μάθηµα: Ποσοτικές µέθοδοι στη διοίκηση επιχειρήσεων- ΣΤ Εξάµηνο

ΤΕΙ υτικής Μακεδονίας -Τµήµα ιοίκησης επιχειρήσεων- Μάθηµα: Ποσοτικές µέθοδοι στη διοίκηση επιχειρήσεων- ΣΤ Εξάµηνο ΤΕΙ υτικής Μακεδονίας -Τµήµα ιοίκησης επιχειρήσεων- Μάθηµα: Ποσοτικές µέθοδοι στη διοίκηση επιχειρήσεων- ΣΤ Εξάµηνο Ηµεροµηνία: Τρίτη 23 ΜΑΪ 2017, 2 η γραπτή Πρόοδος Εκπαιδευτής: Βασίλειος Ισµυρλής, ιάρκεια

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Παραδείγματα προβλημάτων γραμμικού προγραμματισμού Τα προβλήματα γραμμικού προγραμματισμού ασχολούνται με καταστάσεις όπου ένας αριθμός πλουτοπαραγωγικών πηγών, όπως άνθρωποι,

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 1: Δυϊκή Θεωρία, Οικονομική Ερμηνεία Δυϊκού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ

12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Γραμμικός Προγραμματισμός είναι η διαδικασία εύρεσης μιας βέλτιστης λύσης μιας γραμμικής συνάρτησης, η οποία να είναι συμβατή με ένα πεπερασμένο σύνολο γραμμικών ανισοτήτων, δηλαδή,

Διαβάστε περισσότερα

Ανάλυση ευαισθησίας. Άσκηση 3 Δίνεται ο παρακάτω τελικός πίνακας Simplex. Επιχειρησιακή Έρευνα Γκόγκος Χρήστος

Ανάλυση ευαισθησίας. Άσκηση 3 Δίνεται ο παρακάτω τελικός πίνακας Simplex. Επιχειρησιακή Έρευνα Γκόγκος Χρήστος Τμήμα Μηχανικών Πληροφορικής ΤΕ Ακαδημαϊκό έτος 2016-2017 Άρτα Επιχειρησιακή Έρευνα Γκόγκος Χρήστος Μεταπτυχιακό Μηχανικών Η/Υ και Δικτύων Μεταπτυχιακό Μηχανικών Η/Υ και Δικτύων ΣΕΤ ΑΣΚΗΣΕΩΝ 3 Ανάλυση

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός (ΓΠ)

Γραµµικός Προγραµµατισµός (ΓΠ) Γραµµικός Προγραµµατισµός (ΓΠ) Περίληψη Επίλυση δυσδιάστατων προβληµάτων Η µέθοδος simplex Τυπική µορφή Ακέραιος Προγραµµατισµός Προγραµµατισµός Παραγωγής Προϊόν Προϊόν 2 Παραγωγική Δυνατότητα Μηχ. 4 Μηχ.

Διαβάστε περισσότερα

The Product Mix Problem

The Product Mix Problem Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας 1 The Product Mix Problem Τα προβλήματα αυτά αναφέρονται σε συστήματα τα οποία εκμεταλλευόμενα τους περιορισμένους πόρους που έχουν στη διάθεσή του, παράγουν

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ

ΜΑΘΗΜΑ 3 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ 3 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Προβλήµατα Ακέραιου Προγραµµατισµού Ι Τα προβλήµατα Ακέραιου Προγραµµατισµού, ανήκουν γενικά σε 3

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Άσκηση 1. Λύση

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Άσκηση 1. Λύση ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Άσκηση 1 Η εταιρεία Ζ εξετάζει την πιθανότητα κατασκευής ενός νέου, πρόσθετου εργοστασίου για την παραγωγή ενός νέου προϊόντος. Έτσι έχει δυο επιλογές: Η πρώτη αφορά στην

Διαβάστε περισσότερα

2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #6: Στοχαστικός Γραμμικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

Πόρος Προϊόν 1 Προϊόν 2 Διαθέσιμη ποσότητα πόρου Απαιτούμενη ποσότητα πόρου ανά μονάδα προϊόντος. Γάλα (λίτρα)

Πόρος Προϊόν 1 Προϊόν 2 Διαθέσιμη ποσότητα πόρου Απαιτούμενη ποσότητα πόρου ανά μονάδα προϊόντος. Γάλα (λίτρα) 1 ο Ερώτημα Έστω μια βιομηχανική επιχείρηση γαλακτοκομικών προϊόντων. Στην προσπάθειά της να διεισδύσει ακόμα περισσότερο στην αγορά γιαουρτιού παράγει μεταξύ άλλων δύο νέα προϊόντα σε οικογενειακή συσκευασία,

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2013-2014 ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΔΥΙΚΟΤΗΤΑ Κάθε πρόβλημα γραμμικού προγραμματισμού συνδέεται με εάν άλλο πρόβλημα γραμμικού προγραμματισμού

Διαβάστε περισσότερα

Ακέραιος Γραµµικός Προγραµµατισµός

Ακέραιος Γραµµικός Προγραµµατισµός Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς

Διαβάστε περισσότερα

Ακέραιος Γραµµικός Προγραµµατισµός

Ακέραιος Γραµµικός Προγραµµατισµός Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014 ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2013-2014 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2013 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

ΑΣΚΗΣΗ (ΜΟΝΑΔΕΣ 5) Ένας κατασκευαστής αυτοκινήτων θέλει να προγραμματίσει για μια χρονική περίοδο την παραγωγή δύο μοντέλων αυτοκινήτου: του μοντέλου Α και του μοντέλου Β. Κάθε μοντέλο αυτοκινήτου απαιτεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) + KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση

Διαβάστε περισσότερα

Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις

Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 6.1 2 Τυπικά δεδομένα Ενότητα 6.3 Δοκιμή με σταθερή

Διαβάστε περισσότερα

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ακαδημαϊκό Έτος: 2013-2014 (Χειμερινό Εξάμηνο) Μάθημα: Σχεδιασμός Αλγορίθμων και Επιχειρησιακή Έρευνα Καθηγητής: Νίκος Τσότσολας Εργασία

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Παράδειγμα προβλήματος ελαχιστοποίησης Μια κατασκευαστική εταιρία κατασκευάζει εξοχικές κατοικίες κοντά σε γνωστά θέρετρα της Εύβοιας Η

Διαβάστε περισσότερα

Δυαδικό Πρόβλημα Εισαγωγή στην Ανάλυση Ευαισθησίας

Δυαδικό Πρόβλημα Εισαγωγή στην Ανάλυση Ευαισθησίας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης Δυαδικό Πρόβλημα Εισαγωγή στην Ανάλυση

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ Βασικός τελικός στόχος κάθε επιστηµονικής τεχνολογικής εφαρµογής είναι: H γενική βελτίωση της ποιότητας του περιβάλλοντος Η βελτίωση της ποιότητας ζωής Τα µέσα µε τα

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #1: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Νοέμβριος 006 Αθήνα Κεφάλαιο ο Ακέραιος και μικτός προγραμματισμός. Εισαγωγή Μια από τις

Διαβάστε περισσότερα

Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος.

Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος. Τι είναι Επιχειρησιακή Έρευνα (Operations Research); Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος. Το σύνολο των τεχνικών (μαθηματικά μοντέλα) οι οποίες δημιουργούν μια ποσοτική

Διαβάστε περισσότερα