Fermat, 1638, Newton Euler, Lagrange, 1807
|
|
- Βαλτάσαρ Μεσσηνέζης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου 2016
2 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις ΕΕ Κλάδοι Ιστορία Μάθημα Επιχειρησιακή Ερευνα Επιχειρησιακή Ερευνα= Τα μαθηματικά της βελτιστοποίησης, Μαθηματικά μοντέλα μελέτης - βελτιστ. διαδικασιών, Μαθηματική θεωρία λήψης αποφάσεων.
3 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις ΕΕ Κλάδοι Ιστορία Μάθημα Κλάδοι της Επιχειρησιακής Ερευνας Γραμμικός Προγραμματισμός. Μη-Γραμμικός Προγραμματισμός. Ακέραιος Προγραμματισμός - Συνδυαστική Βελτιστοποίηση. Δυναμικός Προγραμματισμός. Θεωρία Παιγνίων. Θεωρία Ελέγχου Αποθεμάτων. Θεωρία Ουρών Αναμονής....
4 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις ΕΕ Κλάδοι Ιστορία Μάθημα Ιστορική αναδρομή στη Βελτιστοποίηση Ι Fermat, 1638, Newton 1670 Euler, 1755 Lagrange, 1807 min f(x), x R Λύνουμε df(x) dx = 0 κλπ. min f(x 1, x 2,..., x n ) Λύνουμε f(x 1, x 2,..., x n ) = 0 κλπ. min f(x 1, x 2,..., x n ) υπό g k (x 1, x 2,..., x n ) = 0, k = 1, 2,..., m
5 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις ΕΕ Κλάδοι Ιστορία Μάθημα Ιστορική αναδρομή στη Βελτιστοποίηση ΙΙ Fourier, 1826: Λύση συστήματος γραμμικών ανισοτήτων. Farkas, Minkowski, Καραθεοδωρή, : Θεμελίωση Κυρτής Ανάλυσης, Θεωρίας πολυέδρων κλπ. Von Neumann, 1928: Θεωρία παιγνίων, δυϊκότητα. Kantorovich, Koopmans, 1930: Λύση προβλ. γρ. προγρ. Dantzig, 1947: Μέθοδος Simplex. Karmarkar, 1981: Αλγόριθμος εσωτερικού σημείου : Ημιορισμένος και κωνικός προγραμματισμός : Εύρωστος (robust) προγραμματισμός.
6 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις ΕΕ Κλάδοι Ιστορία Μάθημα Ιστορική αναδρομή στη Βελτιστοποίηση ΙΙΙ Βραβεία Νόμπελ στα Οικονομικά Leonid Kantorovich, Tjalling Koopmans 1975: Θεωρία Βέλτιστης Κατανομής των Πόρων. Harry Markowich, 1990: Χρηματοοικονομικά - Διαχείριση Χαρτοφυλακίου. John Harsanyi, John Nash, Reinhard Selten, 1994: Θεωρία Παιγνίων. Robert Aumann, Thomas Schelling, 2005: Θεωρία Παιγνίων. Robert Myerson, 2007: Θεωρία Παιγνίων - Θεωρία σχεδιασμού μηχανισμών. Lloyd Shapley, 2012: Θεωρία Παιγνίων.
7 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις ΕΕ Κλάδοι Ιστορία Μάθημα Στόχοι του μαθήματος Κατηγορίες προβλημάτων βελτιστοποίησης. Μοντελοποίηση προβλημάτων βελτιστοποίησης. Κλασικά προβλήματα βελτιστοποίησης. Διάκριση δυσκολίας προβλημάτων βελτιστοποίησης. Επίλυση προβλημάτων βελτιστοποίησης στον ΗΥ. Βασικές υπολογιστικές μέθοδοι για προβλήματα Γραμμικού Προγραμματισμού. Επεκτάσεις σε προβλήματα Ακέραιου και μη-γραμμικού Προγραμματισμού.
8 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις ΕΕ Κλάδοι Ιστορία Μάθημα Δομή του μαθήματος Εισαγωγή στην Επιχειρησιακή Ερευνα - πλαίσιο. Εισαγωγή στον γραμμικό προγραμματισμό. Κλασικά προβλήματα γραμμικού προγραμματισμού. Επίλυση προβλημάτων βελτιστοποίησης σε ΗΥ (AMPL). Μέθοδος επίλυσης Simplex. Δυϊκή θεωρία γραμμικού προγραμματισμού. Ανάλυση ευαισθησίας γραμμικού προγραμματισμού. Μέθοδοι επίλυσης εσωτερικού σημείου. Εισαγωγή στον ακέραιο προγραμματισμό. Μέθοδοι επίλυσης ακέραιου προγραμματισμού. Εισαγωγή στο μη-γραμμικό προγραμματισμό.
9 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Μαθ Προγρ Γραμ Προγρ Γενικό πρόβλημα μαθηματικού προγραμματισμού x j, j = 1, 2,..., n: μεταβλητές απόφασης. ζ: η αντικειμενική συνάρτηση. Αντικειμενική συνάρτηση: ζ = f(x 1, x 2,..., x n ). Τυπικός συναρτησιακός περιορισμός: g(x 1, x 2,..., x n ) ή = ή b. Τυπικός περιορισμός μεταβλητών: x j A j.
10 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Μαθ Προγρ Γραμ Προγρ Γενικό πρόβλημα γραμμικού προγραμματισμού x j, j = 1, 2,..., n: μεταβλητές απόφασης. ζ: η αντικειμενική συνάρτηση. Γραμμική αντικειμενική συνάρτηση: ζ = c 1 x 1 + c 2 x c n x n. Τυπικός γραμμικός περιορισμός: a 1 x 1 + a 2 x a n x n ή = ή b. Τυπικός περιορισμός μεταβλητών: x j 0 ή 0 ή R.
11 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Μαθ Προγρ Γραμ Προγρ Προϋποθέσεις γραμμικού προγραμματισμού Αναλογικότητα: Η συνεισφορά μιας μεταβλητής στην αντικειμενική και στους περιορισμούς είναι ανάλογη της τιμής της. Προσθετικότητα: Η συνεισφορά μιας μεταβλητής στην αντικειμενική και στους περιορισμούς δεν εξαρτάται από άλλες μεταβλητές. Η συνολική συνεισφορά των μεταβλητών αποφάσεων ισούται με το άθροισμα των επιμέρους συνεισφορών τους. Διαιρετότητα: Κάθε μεταβλητή παίρνει πραγματικές τιμές. Βεβαιότητα - Ντετερμινισμός: Οι παράμετροι είναι απόλυτα γνωστές. Δεν υπεισέρχεται τυχαιότητα.
12 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Μαθ Προγρ Γραμ Προγρ Κεντρική θέση του Γραμμικού Προγραμματισμού Πληθώρα εφαρμογών. Κομψή και πλήρης μαθηματική θεωρία. Υπαρξη αποτελεσματικών αλγορίθμων. Υπόβαθρο για τον ακέραιο προγραμματισμό. Υπόβαθρο για το μη-γραμμικό προγραμματισμό.
13 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Μαθ Προγρ Γραμ Προγρ Κλασική βελτιστ. / Γραμμικός Προγραμματισμός Κλασική βελτιστοποίηση με απειροστικό λογισμό: Μια μεταβλητή, Μη-γραμμική αντικειμενική συνάρτηση, Περιορισμός της μεταβλητής σε διάστημα. Γραμμικός προγραμματισμός: Μεγάλο πλήθος μεταβλητών, Γραμμική αντικειμενική συνάρτηση, Μεγάλο πλήθος γραμμικών περιορισμών.
14 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Κλασικά προβλήματα Το πρόβλημα της μίξης των υλικών. Το πρόβλημα της αποτίμησης των υλικών. Το πρόβλημα της δίαιτας. Το πρόβλημα της μεταφοράς. Προγραμματισμός παραγωγής.
15 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της μίξης των υλικών n τύποι προϊόντων προς παραγωγή. m τύποι πρώτων υλών. a ij : ποσότητα από την πρώτη ύλη i που απαιτείται για την παραγωγή μιας μονάδας προϊόντος τύπου j. b i : διαθέσιμη ποσότητα πρώτης ύλης i. c j : καθαρό κέρδος από την πώληση μιας μονάδας προϊόντος τύπου j. Στόχος: Μεγιστοποίηση συνολικού καθαρού κέρδους από την πώληση των προϊόντων.
16 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της μίξης - Μοντελοποίηση x j : ποσότητα προϊόντος j που θα παραχθεί. Π.γ.π.: max υπό n j=1 c jx j n j=1 a ijx j b i, i = 1, 2,..., m x j 0, j = 1, 2,..., n.
17 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της αποτίμησης των υλικών n τύποι προϊόντων προς παραγωγή. m τύποι πρώτων υλών. a ij : ποσότητα από την πρώτη ύλη i που απαιτείται για την παραγωγή μιας μονάδας προϊόντος τύπου j. b i : διαθέσιμη ποσότητα πρώτης ύλης i. c j : καθαρό κέρδος από την πώληση μιας μονάδας προϊόντος τύπου j. Στόχος: Καθορισμός τιμών ανά μονάδα πρώτης ύλης ώστε να ελαχιστοποιείται η συνολική αξία των πρώτων υλών στην οποία είναι πρόθυμη η επιχείρηση να τις πουλήσει αντί να παραγάγει προϊόντα.
18 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της αποτίμησης - Μοντελοποίηση y i : τιμή ανά μονάδα πρώτης ύλης i που θα πωληθεί. Π.γ.π.: min υπό m m i=1 b iy i i=1 a ijy i c j, j = 1, 2,..., n y i 0, i = 1, 2,..., m.
19 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της δίαιτας n τύποι φαγητών προς κατανάλωση. m είδη θρεπτικών συστατικών. a ij : η ποσότητα θρεπτικού συστατικού i που περιέχεται σε μια μερίδα φαγητού j. b i : η ελάχιστη ημερήσια ποσότητα θρεπτικού συστατικού i που επιβάλλεται να προσληφθεί. d i : η μέγιστη ημερήσια ποσότητα θρεπτικού συστατικού i που επιτρέπεται να προσληφθεί. c j : κόστος μιας μερίδας φαγητού j. Στόχος: Καθορισμός της δίαιτας ελάχιστου κόστους που σέβεται τους διατροφικούς περιορισμούς.
20 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της δίαιτας - Μοντελοποίηση x j : μερίδες φαγητού j που θα αγοραστούν. Π.γ.π.: min υπό n n j=1 c jx j j=1 a ijx j b i, i = 1, 2,..., m n j=1 a ijx j d i, i = 1, 2,..., m x j 0, j = 1, 2,..., n.
21 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της μεταφοράς m σημεία παραγωγής, n σημεία κατανάλωσης. s i : η προσφορά του σημείου i. d j : η ζήτηση του σημείου j. c ij : κόστος μεταφοράς μιας μονάδας προϊόντος από το i στο j. Στόχος: Ελαχιστοποίηση του συνολικού κόστους μεταφοράς από τα σημεία παραγωγής στα σημεία κατανάλωσης.
22 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Το πρόβλημα της μεταφοράς - Μοντελοποίηση x ij : ποσότητα προς μεταφορά από το i στο j. Π.γ.π.: min υπό m m n i=1 j=1 c ijx ij i=1 x ij = d j, j = 1, 2,..., n n j=1 x ij = s i, i = 1, 2,..., m x ij 0, i = 1, 2,..., m, j = 1, 2,..., n.
23 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Προγραμματισμός παραγωγής Εταιρεία προγραμματίζει την παραγωγή προϊόντος. t: Αριθμός περιόδων παραγωγής. i initial : Αρχικό απόθεμα προϊόντος. Στην αρχή κάθε περιόδου, η εταιρεία παράγει νέα προϊόντα και αμέσως μετά ικανοποιεί την τρέχουσα ζήτηση. d n : Ζήτηση προϊόντος την περίοδο n, n = 1, 2,..., t. i final : Τελικό απαιτητό απόθεμα προϊόντος. c n : Κόστος παραγωγής ανά μονάδα προϊόντος την περίοδο n, n = 1, 2,..., t. h n : Κόστος αποθήκευσης υπερβάλλοντος προϊόντος ανά μονάδα προϊόντος την περίοδο n, n = 1, 2,..., t. Η ζήτηση κάθε περιόδου πρέπει να ικανοποιείται άμεσα (no backlogging). Στόχος: Ελαχιστοποίηση κόστους αποθήκευσης.
24 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Παρ1 Παρ2 Παρ3 Παρ4 Παρ5 Προγραμματισμός παραγωγής - Μοντελοποίηση x n : ποσότητα παραγωγής προϊόντος την περίοδο n, n = 1, 2,..., t. y n : απόθεμα προϊόντος την περίοδο n, n = 1, 2,..., t (αμέσως μετά την ικανοποίηση της ζήτησης). Π.γ.π.: min t n=1 (c nx n + h n y n ) υπό i initial + x 1 = d 1 + y 1 y n 1 + x n = d n + y n, n = 2, 3,..., t y t = i final x n, y n 0, n = 1, 2,..., t.
25 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Απόλυτες τιμές max-min/min-max Προβλήματα που ανάγονται σε π.γ.π. Προβλήματα με απόλυτες τιμές μεταβλητών. Προβλήματα max min και min max: Μεγ. κατά τμήματα γραμμικών κοίλων συναρτήσεων, Ελαχ. κατά τμήματα γραμμικών κυρτών συναρτήσεων.
26 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Απόλυτες τιμές max-min/min-max Αντικειμενική συνάρτηση με απόλυτες τιμές Πρόβλημα ελαχιστοποίησης. Στην αντικειμενική συνάρτηση υπάρχει όρος c j x j με c j > 0 και x j R. Θέτουμε: x j = x + j x j, x j = x + j + x j, x + j 0, x j 0. Στη βέλτιστη λύση θα είναι σίγουρα x + j x j = 0 (λόγω ελαχιστοποίησης της αντικειμενικής και c j > 0).
27 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Απόλυτες τιμές max-min/min-max Παράδειγμα Το πρόβλημα μη-γραμμικού προγραμματισμού min 2 x + y υπό 3x + 4y 12 5x + 2y 10 γράφεται ισοδύναμα (x = x + x, y = y + y ) min 2x + + 2x + y + + y υπό 3x + 3x + 4y + 4y 12 5x + 5x + 2y + 2y 10 x +, x, y +, y 0.
28 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Απόλυτες τιμές max-min/min-max Προβλήματα max min και min max (α) Κατά τμήματα γραμμική κυρτή συνάρτηση. (β) Προσέγγιση κυρτής συνάρτησης από κατά τμήματα γραμμική. Κατά τμήματα γραμμική κυρτή συνάρτηση = Μέγιστο γραμμικών συναρτήσεων Π.χ. max(c 1 x + d 1, c 2 x + d 2, c 3 x + d 3 ).
29 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Απόλυτες τιμές max-min/min-max Προβλήματα max min και min max Πρόβλημα ελαχιστοποίησης. Η αντικειμενική συνάρτηση είναι κατά τμήματα γραμμική κυρτή συνάρτηση. Την εκφράζουμε ως max i=1,2,...,m (c T i x + d i ). Την αντικαθιστούμε με μια νέα μεταβλητή z. Προσθέτουμε τους περιορισμούς z c T i x + d i, i = 1, 2,..., m. Στη βέλτιστη λύση θα είναι z = c T i x + d i για κάποιο i = 1, 2,..., m (λόγω ελαχιστοποίησης της αντικειμενικής). Οπότε πράγματι θα είναι z = max i=1,2,...,m (c T i x + d i ) στη βέλτιστη λύση.
30 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Απόλυτες τιμές max-min/min-max Παράδειγμα Το πρόβλημα μη-γραμμικού προγραμματισμού min max i=1,2,...,m (c T i x + d i ) υπό Ax b γράφεται ισοδύναμα (z = max i=1,2,...,m (c T i x + d i )) min υπό z z c T i x + d i, i = 1, 2,..., m Ax b.
31 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Απόλυτες τιμές max-min/min-max Προβλήματα max min και min max Αν έχουμε ελαχιστοποίηση κυρτής συνάρτησης, μπορούμε να την προσεγγίσουμε από κατά τμήματα γραμμική κυρτή συνάρτηση και να ανάγουμε σε προσεγγιστικό π.γ.π. Αν έχουμε μεγιστοποίηση κατά τμήματα γραμμικής κοίλης συνάρτησης, η μέθοδος προσαρμόζεται και ανάγουμε σε π.γ.π. Περιορισμός f(x) b με f(x) = max i=1,2,...,m (c T i x + d i ) μπορεί να αντικατασταθεί από τους γραμμικούς περιορισμούς c T i x + d i b, i = 1, 2,..., m. x = max(x, x). Επομένως η μέθοδος μπορεί να εφαρμοστεί όταν εμφανίζονται απόλυτες τιμές μεταβλητών.
max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m
Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 10 Εισαγωγή στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 29 Φεβρουαρίου 2016 Προβλήματα
Διαβάστε περισσότεραΤμήμα Διοίκησης Επιχειρήσεων
Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 1: Γραµµικός προγραµµατισµός(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com http://vasilis-ismyrlis.webnode.gr/
Διαβάστε περισσότεραΜοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Διαβάστε περισσότεραΘεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα
Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία
Διαβάστε περισσότεραΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
Διαβάστε περισσότεραΘεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και
Διαβάστε περισσότεραΑ) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ.
1. 0 γραμμικός προγραμματισμός μπορεί να εφαρμοστεί στη διαχείριση αγροτικής παραγωγής για τη βέλτιστη κατανομή πόρων όπως., με τρόπο που να οδηγεί στη μεγιστοποίηση των κερδών. Α) διαθέσιμης προς καλλιέργειας
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα. Εισαγωγική Διάλεξη
Επιχειρησιακή Έρευνα Εισαγωγική Διάλεξη Πληροφορίες Διδάσκων: Αντώνης Δημάκης (dimakis@aueb.gr) Γραφείο: 506, 5 ος όροφος, Τροίας 2 (νέο κτήριο), Ώρες: Πέμπτη 1-3μμ Τηλ: 210-8203-924 Βοηθός: Δέσποινα Μεντζελιώτου
Διαβάστε περισσότεραΣυνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)
Δυϊκότητα Θα δείξουμε πώς μπορούμε να αντιστοιχίσουμε ένα πρόβλημα ελαχιστοποίησης με ένα πρόβλημα ΓΠ στην συνήθη του μορφή. Ένα πρόβλημα στην συνήθη του μορφή μπορεί να είναι ένα κατασκευαστικό πρόβλημα,
Διαβάστε περισσότερα3.7 Παραδείγματα Μεθόδου Simplex
3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x
Διαβάστε περισσότεραΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
Διαβάστε περισσότεραΠοσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,
Διαβάστε περισσότεραΓραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής
Διαβάστε περισσότεραz = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
Διαβάστε περισσότεραΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού
Διαβάστε περισσότεραΕισαγωγή στο Γραμμικό Προγραμματισμό
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Εισαγωγή στο Γραμμικό Προγραμματισμό Φουτσιτζή Γεωργία-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 15/10/2016 1 Περιεχόμενα Γραμμικός
Διαβάστε περισσότεραΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ολοκληρωμένη μαθηματική τεχνική βελτιστοποίησης Ευρύτατο φάσμα εφαρμογών Εισαγωγή ακέραιων/λογικών/βοηθητικών μεταβλητών Δυνατότητα γραμμικοποίησης με 0-1 μεταβλητές
Διαβάστε περισσότερα1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός
Διαβάστε περισσότεραΘεωρία Μεθόδου Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης Θεωρία Μεθόδου Simplex Άδεια Χρήσης
Διαβάστε περισσότεραΗ επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος.
Τι είναι Επιχειρησιακή Έρευνα (Operations Research); Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος. Το σύνολο των τεχνικών (μαθηματικά μοντέλα) οι οποίες δημιουργούν μια ποσοτική
Διαβάστε περισσότερα2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ
2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική
Διαβάστε περισσότερα3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex
Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07
Διαβάστε περισσότεραΠληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό
Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων
Διαβάστε περισσότεραΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
Διαβάστε περισσότεραΠεριεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...
Διαβάστε περισσότεραΑναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20
Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 3: Μαθηματικό Πρότυπο, Κανονική Μορφή, Τυποποιημένη Μορφή Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότερα(sensitivity analysis, postoptimality analysis).
Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 7 Ανάλυση ευαισθησίας Παραμετρική ανάλυση Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 11 Φεβρουαρίου 2016 Α.
Διαβάστε περισσότεραmin f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
Διαβάστε περισσότεραΣυστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Περιεχόμενα 1 Γενικά στοιχεία γραμμικού προγραμματισμού 2 Παράδειγμα γραμμικού προγραμματισμού και γραφικής επίλυσης του 3 Γραμμικός προγραμματισμός
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 1: Εισαγωγή στο Γραμμικό Προγραμματισμό (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ μέθοδοι των εσωτερικών σημείων
ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ Γραμμικός Προγραμματισμός είναι η διαδικασία εύρεσης μιας βέλτιστης λύσης μιας γραμμικής συνάρτησης, η οποία να είναι συμβατή με ένα πεπερασμένο σύνολο γραμμικών ανισοτήτων, δηλαδή, ο
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Μάρτιος 2014 Δρ. Δημήτρης
Διαβάστε περισσότεραΤο µαθηµατικό µοντέλο του Υδρονοµέα
Ερευνητικό έργο: Εκσυγχρονισµός της εποπτείας και διαχείρισης του συστήµατος των υδατικών πόρων ύδρευσης της Αθήνας Το µαθηµατικό µοντέλο του Υδρονοµέα Ανδρέας Ευστρατιάδης και Γιώργος Καραβοκυρός Τοµέας
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 1: Δυϊκή Θεωρία, Οικονομική Ερμηνεία Δυϊκού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2013-2014 ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΔΥΙΚΟΤΗΤΑ Κάθε πρόβλημα γραμμικού προγραμματισμού συνδέεται με εάν άλλο πρόβλημα γραμμικού προγραμματισμού
Διαβάστε περισσότερα12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ
ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Γραμμικός Προγραμματισμός είναι η διαδικασία εύρεσης μιας βέλτιστης λύσης μιας γραμμικής συνάρτησης, η οποία να είναι συμβατή με ένα πεπερασμένο σύνολο γραμμικών ανισοτήτων, δηλαδή,
Διαβάστε περισσότεραΔιαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
Διαβάστε περισσότεραmax f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0
Μαθηματικές Μέθοδοι Βελτιστοποίησης - Εστιάζουμε στο ακόλουθο πρόβλημα μεγιστοποίησης μιας αντικειμενικής συνάρτησης f υπό ένα σύνολο ανισοτικών περιορισμών: max f( x,..., x ) { x,..., x } 1 n 1 st. :
Διαβάστε περισσότεραΕισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο
Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης
Διαβάστε περισσότεραmax f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0
Μαθηματικές Μέθοδοι Βελτιστοποίησης - Εστιάζουμε στο ακόλουθο πρόβλημα μεγιστοποίησης μιας αντικειμενικής συνάρτησης f υπό ένα σύνολο ανισοτικών περιορισμών: max f( x,..., x ) { x,..., x } st. : g ( x,...,
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:
Διαβάστε περισσότεραΠληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού
Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη
Διαβάστε περισσότεραΤμήμα Εφαρμοσμένης Πληροφορικής
Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Δυϊκή Θεωρία (1) Θεώρημα : Το δυϊκό πρόβλημα του γραμμικού προβλήματος 0 0 1 1 2 2 0 0 T
Διαβάστε περισσότεραΓραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Παράδειγμα ΕΠΙΠΛΟΞΥΛ Η βιοτεχνία ΕΠΙΠΛΟΞΥΛ παράγει δύο βασικά προϊόντα: τραπέζια και καρέκλες υψηλής ποιότητας. Η διαδικασία παραγωγής και για τα δύο προϊόντα περιλαμβάνει την
Διαβάστε περισσότεραΔιαχείριση Εφοδιαστικής Αλυσίδας
Διαχείριση Εφοδιαστικής Αλυσίδας 4 η Διάλεξη: Βελτιστοποίηση πολλαπλών στόχων (Μulti-objective optimization) 2019 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στην βελτιστοποίηση
Διαβάστε περισσότεραΚεφάλαιο 3ο: Γραμμικός Προγραμματισμός
Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΟΜαθηµατικός Προγραµµατισµός είναι κλάδος των εφαρµοσµένων µαθηµατικών που ασχολείται µε την εύρεση άριστης λύσης. ιαφέρει από την κλασική αριστοποίηση στο ότι προσπαθεί να
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 9: Δυϊκή Θεωρία Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραmax 17x x 2 υπό 10x 1 + 7x 2 40 x 1 + x 2 5 x 1, x 2 0.
Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 11 Επίλυση στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 6 Μαΐου 2016 Η μέθοδος κλάδος-φράγμα
Διαβάστε περισσότεραΧρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Διαβάστε περισσότεραΒασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
Διαβάστε περισσότεραΤμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Πρόβλημα Μεταφοράς Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς Μαθηματική Διατύπωση Εύρεση Αρχικής Λύσης Προσδιορισμός Βέλτιστης Λύσης
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αναλυτικές τεχνικές - Ειδικά θέματα θεωρίας - Λύση ασκήσεων πράξης ΑΝΑΛΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ Τι μάθαμε μέχρι τώρα: Να επιλύουμε
Διαβάστε περισσότεραΑνάλυση Ευαισθησίας. αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η
Ανάλυση Ευαισθησίας αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η μεταβολή των αντικειμενικών συντελεστών c μεταβολή των όρων b i στο δεξιό μέλος του συστήματ των περιορισμ μεταβολή των συντελεστών
Διαβάστε περισσότεραΤ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΤ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης
Διαβάστε περισσότεραΜέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΘεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης
Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 1 η Διάλεξη Ορισμός Θεωρίας Παιγνίων και Παιγνίου Κατηγοριοποίηση παιγνίων Επίλυση παιγνίου Αξία (τιμή) παιγνίου Δίκαιο παίγνιο Αναπαράσταση Παιγνίου Με πίνακα Με
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 013 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ 1 ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize
Διαβάστε περισσότεραΗ γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού
Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 τελευταία ενημέρωση: 21/10/2016 1 Γραφική μέθοδος
Διαβάστε περισσότεραΔυναμικότητα (GWh) A B C Ζήτηση (GWh) W X Y Z
Άσκηση Η εταιρία ηλεκτρισμού ELECTRON έχει τρείς μονάδες ηλεκτροπαραγωγής Α, Β, C και θέλει να καλύψει τη ζήτηση σε τέσσερις πόλεις W, Χ, Υ, Ζ. Η μέγιστη παραγωγή, η απαιτούμενη ζήτηση και το κόστος μεταφοράς
Διαβάστε περισσότεραΤμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει
Διαβάστε περισσότεραΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ. 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ. Μ. Καρλαύτης Ν. Λαγαρός
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative Commons.
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #: Εφαρμογές του Γραμμικού Προγραμματισμού Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
Διαβάστε περισσότεραΠοσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΤο Πρόβλημα Μεταφοράς
Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού
Διαβάστε περισσότεραιαµόρφωση Προβλήµατος
Γραµµικός Προγραµµατισµός ιαµόρφωση Προβλήµατος Η παρουσίαση προετοιµάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόµενα Παρουσίασης 1. Γενικά Στοιχεία Γραµµικού
Διαβάστε περισσότεραΗ γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού
Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 τελευταία ενημέρωση: 21/10/2016
Διαβάστε περισσότεραΒασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Γραμμικός προγραμματισμός: Εισαγωγή Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 3 η /2017 Γραμμικός προγραμματισμός Είναι μια μεθοδολογία
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής
Διαβάστε περισσότεραείναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές
Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς
Διαβάστε περισσότεραΓραμμικός Προγραμματισμός
Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή
Διαβάστε περισσότεραΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική
Διαβάστε περισσότεραΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014
ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2013-2014 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2013 Δρ. Χρήστος Γενιτσαρόπουλος
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ 2 Μεταβατικές Διατάξεις
Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών ΠΑΡΑΡΤΗΜΑ 2 Μεταβατικές Διατάξεις 1. Μαθήματα του Τμήματος Μαθηματικών και Εφαρμοσμένων Μαθηματικών στα οποία έχεις επιτύχει μέχρι το Σεπτέμβριο 2017 αναγνωρίζονται
Διαβάστε περισσότεραΕφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 4: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις πολλών μεταβλητών Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας
Διαβάστε περισσότεραΠεριεχόμενα. Πρόλογος Η ιοικητική Επιστήμη στην Κοινωνία της Πληροφορίας... 17
Πρόλογος... 13 1. Η ιοικητική Επιστήμη στην Κοινωνία της Πληροφορίας... 17 1.1. Εισαγωγή... 19 1.2. Ένα μοντέλο ανάλυσης οργανισμού... 21 1.3. Νέες τάσεις στην οργανωτική δομή των επιχειρήσεων... 23 1.4.
Διαβάστε περισσότεραΛύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)
Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Θέμα 1 Μια επιχείρηση χρησιμοποιεί 3 πρώτες ύλες Α, Β, Γ για να παράγει 2 προϊόντα Π1 και Π2. Για την παραγωγή μιας μονάδας προϊόντος Α απαιτούνται 1
Διαβάστε περισσότεραΓραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
Διαβάστε περισσότερα5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΕισαγωγή στο Γραμμικό Προγραμματισμό
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Εισαγωγή στο Γραμμικό Προγραμματισμό Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 15/10/2016 1 Παραδείγματα Που στοχεύει ο Γραμμικός Προγραμματισμός;
Διαβάστε περισσότερα2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εισαγωγή Οι κλασσικές μέθοδοι αριστοποίησης βασίζονται κατά κύριο λόγο στο διαφορικό λογισμό. Ο Μαθηματικός Προγραμματισμός ο οποίος περιλαμβάνει τον Γραμμικό Προγραμματισμό
Διαβάστε περισσότεραΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ
ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ Βασικός τελικός στόχος κάθε επιστηµονικής τεχνολογικής εφαρµογής είναι: H γενική βελτίωση της ποιότητας του περιβάλλοντος Η βελτίωση της ποιότητας ζωής Τα µέσα µε τα
Διαβάστε περισσότεραΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη 5 ο Εξάμηνο 4 ο ΜΑΘΗΜΑ Δημήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τμήμα Στατιστικής & Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 6: Εφαρμογές Γραμμικού Προγραμματισμού (2 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Διαβάστε περισσότερα2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Διαβάστε περισσότεραΆσκηση 5. Εργοστάσια. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης
Άσκηση Μια μεγάλη εταιρεία σκοπεύει να μπει δυναμικά στην αγορά αναψυκτικών της χώρας διαθέτοντας συνολικά 7 μονάδες κεφαλαίου. Το πρόβλημα που αντιμετωπίζει είναι αν πρέπει να κατασκευάσει ένα κεντρικό
Διαβάστε περισσότεραΣτοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 1 η ενότητα: Εισαγωγή στον Δυναμικό Προγραμματισμό Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Διαβάστε περισσότεραΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος
ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2014-2015 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2014 Δρ. Χρήστος Γενιτσαρόπουλος
Διαβάστε περισσότεραΕισαγωγή στην Επιχειρησιακή Έρευνα
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Εισαγωγή στην Επιχειρησιακή Έρευνα Γκόγκος Χρήστος ΤΕΙ Ηπείρου τελευταία ενημέρωση: 7/10/2016 1 Τι είναι η Επιχειρησιακή Έρευνα; Η Επιχειρησιακή Έρευνα (Operations
Διαβάστε περισσότεραΓραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης
Διαβάστε περισσότεραΣχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 6 Γραμμικός Προγραμματισμός Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Γραμμικός Προγραμματισμός
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 3 3.1 Γενικά Τις τελευταίες δεκαετίες ένας μεγάλος αριθμός μεθόδων βελτιστοποίησης έχει αναπτυχθεί με βάση τη θεωρία του μαθηματικού λογισμού. Οι διάφοροι μαθηματικοί
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex 1. Αλγόριθμός Simplex
Διαβάστε περισσότερα