1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ"

Transcript

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Παραδείγματα προβλημάτων γραμμικού προγραμματισμού Τα προβλήματα γραμμικού προγραμματισμού ασχολούνται με καταστάσεις όπου ένας αριθμός πλουτοπαραγωγικών πηγών, όπως άνθρωποι, υλικά, μηχανές και ακίνητα τα οποία είναι διαθέσιμα πρέπει να συνδυαστούν για να παραχθούν ένα ή περισσότερα προϊόντα. Στην διαδικασία παραγωγής οι πηγές αυτές υπόκεινται σε περιορισμούς όπως στην συνολική ποσότητα των διαθέσιμων πηγών, τον αριθμό κάθε προϊόντος που παράγεται, τον αριθμό κάθε προϊόντος που διατίθεται. Σκοπός του γραμμικού προγραμματισμού είναι από όλες τις δυνατές κατανομές των πηγών να υπολογίσουμε εκείνη ή εκείνες οι οποίες μεγιστοποιούν ή ελαχιστοποιούν μια αριθμητική ποσότητα όπως το κέρδος ή το κόστος Το πρόβλημα της δίαιτας Ένα από τα κλασικά προβλήματα εφαρμογής του γραμμικού προγραμματισμού είναι το πρόβλημα της δίαιτας. Το πρόβλημα θεωρείται ότι παρέχει ένα ελάχιστο κόστος μιας επαρκούς δίαιτας για ένα άτομο να μπορεί να συντηρήσει τον εαυτό του. Δηλαδή ποιος είναι ο φθηνότερος τρόπος σύνθεσης ποικίλων ποσοτήτων από διαθέσιμα τρόφιμα σε μια δίαιτα η οποία μπορεί να ικανοποιεί τις θρεπτικές απαιτήσεις ενός ανθρώπινου οργανισμού. Ας υποθέσουμε ότι οι τροφές οι διαθέσιμες που έχουμε είναι γάλα, κρέας και αυγά και ότι αυτές οι τροφές περιέχουν βιταμίνες Α, C, και D. Έστω ότι ο αριθμός των χιλιοστών γραμμαρίου (mg) της κάθε βιταμίνης που περιέχεται σε μονάδα κάθε τροφής και το αντίστοιχο κόστος είναι τα εξής: Βιταμίνη Λίτρο γάλακτος Κιλό κρέατος Δωδεκάδα αυγών Α 0, 0 C D 00 0 Κόστος

2 Υποθέτουμε ότι η ελάχιστη απαιτούμενη ημερήσια κατανάλωση βιταμινών Α, C και D είναι αντίστοιχα mg, 50mg και 0mg. Για να κατασκευάσουμε το μοντέλο γραμμικού προγραμματισμού ονομάζουμε Χ γ, Χ κ, και Χ α τον αριθμό των λίτρων γάλακτος, κιλών κρέατος και δωδεκάδων αυγών αντίστοιχα. Ο σκοπός μας είναι να ελαχιστοποιήσουμε το κόστος αφού βέβαια λάβουμε υπόψη μας τους περιορισμούς του προβλήματος. Οι περιορισμοί εδώ έχουν την μορφή κατώτατων ορίων. Η αντικειμενική συνάρτηση για ελαχιστοποίηση είναι: Ζ = 5 Χ γ + 50 Χ κ + 5 Χ α Οι περιορισμοί μπορούν να διατυπωθούν με μαθηματική μορφή ως εξής: 0, Χ γ + Χ κ +0 Χ α (Βιταμίνη Α) 0 Χ γ +0 Χ κ +0 Χ α 50 (Βιταμίνη C) Χ γ +00 Χ κ +0 Χ α 0 (Βιταμίνη D) και Χ γ 0, Χ κ 0, Χ α 0 όπου οι τελευταίοι περιορισμοί αναφέρονται στην μη αρνητικότητα των μεταβλητών Χ γ, Χ κ, Χ α. Το πρόβλημα μεταφοράς Το πρόβλημα μεταφοράς είναι ένα από τα πρώτα είδη προβλημάτων που αναλύθηκαν με την χρήση του γραμμικού προγραμματισμού. Το γενικό πρόβλημα εμφανίστηκε όταν τα διαθέσιμα αγαθά αποθηκευμένα σε διάφορες πηγές έπρεπε να διανεμηθούν σε ποικίλους προορισμούς. Το πρόβλημα είναι να βρούμε τον βέλτιστο τρόπο μεταφοράς έτσι ώστε να ελαχιστοποιείται το κόστος μεταφοράς. Συγκεκριμένα, διαθέτουμε ποσότητες ενός ομοιόμορφου προϊόντος σε έναν αριθμό αποθηκών και θέλουμε να μεταφέρουμε καθορισμένες ποσότητες του προϊόντος σε έναν αριθμό από διαφορετικούς προορισμούς. Το κόστος για την μεταφορά μιας μονάδας ποσότητας από οποιαδήποτε αποθήκη σε οποιοδήποτε κατάστημα είναι γνωστό, ενώ η μεταφορά από κάθε αποθήκη σε κάθε κατάστημα είναι δυνατή. Θέλουμε να υπολογίσουμε το ελάχιστο κόστος μεταφοράς από τις αποθήκες στα καταστήματα λιανικής πώλησης

3 Παράδειγμα Τρία παραρτήματα ενός εργοστασίου, τα Α, Β, Γ, που παράγουν το ίδιο προϊόν, βρίσκονται σε τρεις διαφορετικές περιοχές της χώρας, που απέχουν πολύ μεταξύ τους. Οι αγοραστές του προϊόντος βρίσκονται σε πέντε διαφορετικές πόλεις. Τα παραρτήματα παράγουν ποσότητες αντίστοιχα 50, 350 και 80 μονάδων του προϊόντος, ενώ οι αγοραστές έχουν παραγγείλει αντίστοιχα 00, 30, 60, 0, και 50 μονάδες. Το κόστος μεταφοράς του προϊόντος από τα παραρτήματα Α, Β, Γ δίνεται στον πίνακα: Παράρτημα Α Αγοραστές Β Γ Θέλουμε να υπολογίσουμε τις απαραίτητες ποσότητες (μεταβλητών αποφάσεως) X i που θα πρέπει να μεταφερθούν από το παράρτημα i στον αγοραστή ώστε να ελαχιστοποιηθεί το κόστος μεταφοράς. Άγνωστες είναι οι ποσότητες X i, όπου i είναι τα Α, Β, Γ και τα,, 3, 4, 5. Η αντικειμενική συνάρτηση του προβλήματος ( κόστος μεταφοράς), της οποίας αναζητάμε το ελάχιστο, γράφεται Z = 0 X A + X A + 8 X A3 +4 X A4 + 9X A5 + + X Β + 6 X Β + 6 X Β3 + 0 X Β4 + 9 X Β X Γ + X Γ + 5 X Γ3 + X Γ4 + 7 X Γ5 Είναι φανερό ότι δεν μπορούμε να φορτώσουμε περισσότερα προϊόντα από ένα παράρτημα από όσα παράγονται στο παράρτημα αυτό. Συνεπώς έχουμε τους περιορισμούς: xa + xa + xa3 + xa4 + xa5 50 (παραγωγή παραρτήματος Α) 3

4 xb + xb + xb3 + xb4 + xb5 350 (παραγωγή παραρτήματος Β) xγ + xγ + xγ3 + xγ4 + xγ5 80 (παραγωγή παραρτήματος Γ) Επίσης κάθε αγοραστής πρέπει να εφοδιαστεί με τον επιθυμητό αριθμό μονάδων. Συνεπώς έχουμε τους περιορισμούς: xa + xβ + xγ = 00 (ζήτηση αγοραστή ) xa + xβ + xγ = 30 (ζήτηση αγοραστή ) xa3 + xβ3 + xγ3 = 60 (ζήτηση αγοραστή 3) x + x + x = 0 (ζήτηση αγοραστή 4) A4 Β4 Γ4 xa5 + xβ5 + xγ5 = 50 (ζήτηση αγοραστή 5) Επίσης X i 0, με i = Α, Β, Γ, και =,, 3, 4, 5 4

5 . Γενική διατύπωση προβλήματος γραμμικού προγραμματισμού Το γενικό πρόβλημα γραμμικού προγραμματισμού μπορεί να διατυπωθεί ως εξής: Να βρεθούν οι τιμές των μεταβλητών x, x,..., x που μεγιστοποιούν ή ελαχιστοποιούν την συνάρτηση z= f ( x) = cx + cx cx Οι μεταβλητές πρέπει να ικανοποιούν τους περιορισμούς m m m3 3 m { } { } { } ax + ax + ax ax,=, b ax + ax + ax ax,=, b a3x + a 3x + a33x a3x,=, b a x + a x + a x a x,=, b και x 0, =,,..., { } όπου τα α i,b i, c είναι γνωστές σταθερές. Η συνάρτηση: f ( x) = cx = ονομάζεται αντικειμενική συνάρτηση (obective function). Αυτή η συνάρτηση είναι γραμμική ως προς τις μεταβλητές x, =,,,. Επίσης, κάθε περιορισμός είναι μια γραμμική συνάρτηση ως προς τις μεταβλητές x, =,,,. Oι συντελεστές c, =, αναφέρονται και ως συντελεστές κόστους και αντιπροσωπεύουν μοναδιαίο κόστος. Η συνθήκη x 0, =,,..., αναφέρεται και ως συνθήκη της μη αρνητικότητας. Λύση ενός προβλήματος γραμμικού προγραμματισμού θα ονομάζεται κάθε σύνολο x, =,,,. το οποίο ικανοποιεί τους περιορισμούς του προβλήματος. Εφικτή ή δυνατή λύση είναι κάθε λύση που ικανοποιεί τους περιορισμούς μη αρνητικότητας. m 5

6 Βέλτιστη λύση είναι κάθε εφικτή λύση η οποία βελτιστοποιεί την αντικειμενική συνάρτηση. Συνήθως σε ένα πρόβλημα γραμμικού προγραμματισμού υπάρχουν άπειρες λύσεις και επιδιώκουμε την εύρεση της βέλτιστης δυνατής λύσης. Αν όλοι οι περιορισμοί είναι εξισώσεις ή ανισώσεις της ίδιας φοράς, ένα πρόβλημα γραμμικού προγραμματισμού μπορεί να διατυπωθεί με την χρήση πινάκων ως εξής: z T = max f (x) = c x Ax {, =, } b x 0 όπου: x x x =. M. x, c c c =. M. c, =. M,. 0 b b b =.. b m M m και Με a a A = M am a m m M παριστάνουμε το διανυσματικό χώρο των m πινάκων. m Η σπουδαιότητα της διατύπωσης αυτής έγκειται στο ότι μπορεί με τον παραπάνω τρόπο να διατυπωθεί με σαφήνεια μια μεγάλη ποικιλία οικονομικών, επιστημονικών, βιομηχανικών, επιχειρηματικών και κοινωνικών προβλημάτων. 6

7 .3 Προϋποθέσεις εφαρμογής του γραμμικού προγραμματισμού Έχοντας εξετάσει κάποιες περιπτώσεις όπου είναι δυνατό να εφαρμοστεί ο γραμμικός προγραμματισμός και τη γενική διατύπωση ενός προβλήματος γραμμικού προγραμματισμού είναι σημαντικό να εξετάσουμε τις απαιτούμενες προϋποθέσεις για την εφαρμογή του σ ένα οποιοδήποτε πρόβλημα βελτιστοποιήσεως. Αυτές είναι που περιορίζουν γενικά το φάσμα των δυνατοτήτων εφαρμογής του γραμμικού προγραμματισμού. Οι προϋποθέσεις που πρέπει να ισχύουν για να διατυπωθεί ένα πρόβλημα γραμμικού προγραμματισμού είναι οι εξής: α) Γραμμικότητα β) Διαιρετότητα και γ) Βεβαιότητα. Γραμμικότητα Όλες οι συναρτήσεις του προβλήματος, αντικειμενική συνάρτηση και περιορισμοί πρέπει να είναι γραμμικές ως προς τις άγνωστες μεταβλητές x, x,..., x. Αυτό σημαίνει ότι πρέπει να ισχύουν οι ιδιότητες της αναλογικότητας και της προσθετικότητας, δηλαδή εάν είναι μια συνάρτηση μεταβλητών και είναι σταθερές, πρέπει να ισχύει: α ( ax + x α x) = a( x) + α ( x) α ( x) a, a,..., a Σε πολλές περιπτώσεις στις οποίες δεν ισχύει απόλυτα η προϋπόθεση της γραμμικότητας μπορεί να γίνει μια αρκετά καλή προσέγγιση με γραμμικές συναρτήσεις. Διαιρετότητα Το μοντέλο του γραμμικού προγραμματισμού υποθέτει ότι κάθε δραστηριότητα (δηλ μεταβλητή) είναι συνεχής και επομένως άπειρα διαιρετή. Αυτό συνεπάγεται ότι όλα τα επίπεδα δραστηριοτήτων και όλες οι χρήσεις πόρων επιτρέπεται να πάρουν κλασματικές τιμές ή ακέραιες τιμές. Όταν η υπόθεση της διαιρετότητας δεν ισχύει υπάρχουν δύο ενδεχόμενα : α) Να αγνοηθεί η υπόθεση αυτή, να λυθεί το πρόβλημα με μεθόδους γραμμικού προγραμματισμού, και οι τιμές των μεταβλητών να στρογγυλευθούν στην 7

8 κοντινότερη ακέραια μονάδα. Η μέθοδος αυτή εφαρμόζεται κυρίως όταν οι τιμές των μεταβλητών είναι μεγάλες. β) Όταν οι τιμές των μεταβλητών είναι μικρές (π.χ. 0 ή ) όπως σε πολλά προβλήματα επενδύσεων τότε πρέπει να χρησιμοποιηθούν τεχνικές του ακέραιου προγραμματισμού. Βεβαιότητα Το μοντέλο του γραμμικού προγραμματισμού. προϋποθέτει ότι όλοι οι παράμετροι του προβλήματος είναι γνωστές με απόλυτη βεβαιότητα. Στην περίπτωση που μερικοί ή όλοι οι συντελεστές της αντικειμενικής συνάρτησης ή των περιορισμών είναι τυχαίες μεταβλητές το πρόβλημα γίνεται πρόβλημα στοχαστικού προγραμματισμού. 8

9 .4 Γραφική επίλυση προβλημάτων γραμμικού προγραμματισμού Προβλήματα γραμμικού προγραμματισμού με δύο μόνο μεταβλητές μπορούν να λυθούν εύκολα γραφικά. Τυπική περίπτωση μεγιστοποίησης Έστω το πρόβλημα Γ.Π. max z = 5x + 3x με τους περιορισμούς: 3x + 5x 5 5x + x 0 και x 0, x 0 Αρχικά, θα βρούμε τα ζεύγη τιμών των x, x που αποτελούν δυνατές λύσεις του προβλήματος. Εισάγουμε σύστημα ορθογωνίων συντεταγμένων x, x και παρατηρούμε ότι κάθε σημείο που βρίσκεται στο πρώτο τεταρτημόριο έχει συντεταγμένες x 0, x 0 και συνεπώς ικανοποιεί τους περιορισμούς μη αρνητικότητας των μεταβλητών. Αντίστροφα, κάθε σημείο που αποτελεί δυνατή λύση θα βρίσκεται στο πρώτο τεταρτημόριο. Για να βρούμε το σύνολο των ζευγών του πρώτου τεταρτημόριου που ικανοποιεί τους περιορισμούς, θα πρέπει να ερμηνεύσουμε γεωμετρικά ανισότητες της μορφής 3x+ 5x 5 και 5x+ x 0. Σχεδιάζοντας τις ευθείες που παριστάνουν οι αντίστοιχες ισότητες μπορούμε να βρούμε το χωρίο που περιλαμβάνουν οι παραπάνω ανισότητες. 9

10 6 5 4 X 3 3X+5X=5 5X+X=0 z=0 z=35/9 z= X Παρατηρούμε ότι τα σημεία που ικανοποιούν την συνθήκη μη αρνητικότητας και την πρώτη ανισότητα είναι τα σημεία που βρίσκονται κάτω από την ευθεία με εξίσωση 3x + 5x = 5 και στο πρώτο τεταρτημόριο. Αντίστοιχα τα σημεία που βρίσκονται κάτω από την ευθεία με εξίσωση 5x + x = 0 και στο πρώτο τεταρτημόριο ικανοποιούν τις συνθήκες μη αρνητικότητας και την δεύτερη ανισότητα. Συνεπώς το σύνολο των σημείων που ικανοποιούν όλους τους περιορισμούς και συνθήκες είναι το γραμμοσκιασμένο χωρίο του σχήματος. Κάθε σημείο του χωρίου αυτού και μόνο αυτά τα σημεία αποτελούν δυνατή λύση του προβλήματος. Για να επιλύσουμε το πρόβλημα θα πρέπει να βρούμε από το σύνολο των δυνατών λύσεων εκείνη που μεγιστοποιεί την αντικειμενική συνάρτηση. Για κάθε σταθερή τιμή της z παρατηρούμε ότι η εξίσωση z = 5x+ 3x είναι ευθεία και μάλιστα οι ευθείες που προκύπτουν από διαφορετικές τιμές του z είναι παράλληλες. Επιθυμούμε να βρούμε την ευθεία με την μεγαλύτερη τιμή της z, που να έχει ένα τουλάχιστον κοινό σημείο με το χωρίο των δυνατών λύσεων. Παρατηρούμε από το σχήμα ότι η ευθεία αυτή που τέμνει το χωρίο και έχει το μέγιστο z είναι η z η οποία περνάει από το σημείο τομής των ευθειών 3x+ 5x = 5 και 5x+ x = 0. Άρα λύνοντας το σύστημα βρίσκουμε ότι 0 9 x = και 45 x = και αντικαθιστώντας στην 9 αντικειμενική συνάρτηση βρίσκουμε ότι το z = Αυτή είναι και η μέγιστη δυνατή λύση του προβλήματος. 0

11 Άπειρες εναλλακτικές βέλτιστες λύσεις Θεωρούμε το πρόβλημα: max z =.5x + x με τους περιορισμούς: 3x + 5x 5 5x + x 0 Και x 0, x 0 Κάνοντας πάλι εδώ το χωρίο των δυνατών λύσεων και την αντικειμενική συνάρτηση για τις διάφορες τιμές έχουμε: 0 8 X 6 4 A z=0 z=5 5X+X=0 0 z=3 B X+5X=5 X Παρατηρούμε ότι η z=5 είναι η μέγιστη βέλτιστη λύση. Η διαφορά είναι ότι εδώ η βέλτιστη λύση συμπίπτει με μια πλευρά του πολυγώνου του χωρίου των δυνατών λύσεων. Αυτό σημαίνει ότι δεν υπάρχει ένα μόνο ζεύγος τιμών των x, x που να μεγιστοποιεί την z. Κάθε σημείο της πλευράς ΑΒ του πολυγώνου δίνει την μέγιστη τιμή. Δηλαδή η μέγιστη αυτή τιμή της z είναι μοναδική, αλλά υπάρχει άπειρος αριθμός δυνατών λύσεων. Η κορυφή Α του πολυγώνου αποτελεί και αυτή ένα ζευγάρι τιμών που δίνουν την μέγιστη λύση στο πρόβλημα. Επομένως λύνοντας το σύστημα των δύο εξισώσεων 3x+ 5x = 5και 5x+ x = 0 παίρνουμε

12 0 9 x = και 45 x = από όπου παίρνουμε ότι maxz=5. Όταν ένα πρόβλημα Γ.Π έχει 9 περισσότερες από μία βέλτιστες λύσεις, τότε λέμε ότι υπάρχουν εναλλακτικές βέλτιστες λύσεις αυτό σημαίνει ότι τα διαθέσιμα μέσα είναι δυνατόν να συνδυαστούν κατά περισσότερους από ένα τρόπους προς μεγιστοποίηση του κέρδους. Περίπτωση ελαχιστοποίησης Θεωρούμε το πρόβλημα: min z= x +3 x με τους περιορισμούς: x + x 0 x + x 4 3x + x 6 x και x 0, x 0 Η γεωμετρική ερμηνεία του παραπάνω προβλήματος είναι: 0 8 X-3X=6 X 6 4 z=6 0 z=5 X+X=0 x= z= X Η ελάχιστη τιμή της z είναι η ευθεία z=0 η οποία περνάει από το σημείο x = και x =, δηλαδή από την τομή των δύο ευθειών x+ x = 4, x =.

13 Μη πεπερασμένη λύση Θεωρούμε το πρόβλημα: max z = x + x με τους περιορισμούς x x 0.5x + x και x 0, x 0 Η γεωμετρική ερμηνεία του παραπάνω προβλήματος είναι: X-X=- X 4 3-0,5X+X= z= z=0 0 z= X Στο συγκεκριμένο πρόβλημα παρατηρούμε ότι η ευθεία της αντικειμενικής συνάρτησης μπορεί να μετακινηθεί παράλληλα προς την κατεύθυνση όπου αυξάνεται το z μέχρι το άπειρο χωρίς να σταματήσει να έχει κοινά σημεία με το χωρίο των δυνατών λύσεων. Συνεπώς η z μπορεί να γίνει οσοδήποτε μεγάλη και το πρόβλημα δεν έχει πεπερασμένη μέγιστη τιμή της z. Σε μια τέτοια περίπτωση λέμε ότι το πρόβλημα δεν έχει πεπερασμένη λύση ή ότι έχει μια μη φραγμένη λύση. Μη πεπερασμένη λύση με πεπερασμένες βέλτιστες τιμές ορισμένων μεταβλητών Στο προηγούμενο παράδειγμα και οι δύο μεταβλητές μπορούν να λάβουν απεριόριστα μεγάλες τιμές καθώς αυξάνεται η z. Μια μη φραγμένη λύση όμως μπορεί 3

14 να έχει και μεταβλητές με πεπερασμένη τιμή. Στο ακόλουθο πρόβλημα μπορούμε να το παρατηρήσουμε: max z = 3x + x Με τους περιορισμούς: x x x 3 0 και x 0, x 0 Η γραφική του επίλυση είναι: X=3 0 z=0 8 z=5 X 6 z= 4 X-X= X Παρατηρούμε ότι ενώ η αντικειμενική συνάρτηση μπορεί να αυξάνεται απεριόριστα η μεταβλητή x είναι πεπερασμένη. Πεπερασμένη βέλτιστη τιμή της αντικειμενικής συνάρτησης με μη πεπερασμένες τιμές των μεταβλητών Έστω το παρακάτω πρόβλημα Γ.Π.: max z = x+ x Με τους περιορισμούς: x x 0.5x + x και x 0, x 0 4

15 Και με γραφική επίλυση: X X z=8 X-X=- z=5-0.5x+x= z= Παρατηρούμε ότι Στην συγκεκριμένη περίπτωση παρατηρούμε ότι ενώ η z έχει πεπερασμένη μέγιστη τιμή z=4 οι τιμές των μεταβλητών είναι απεριόριστα μεγάλες. Καμία λύση - ασυμβίβαστοι περιορισμοί Έστω το πρόβλημα Γ.Π.: max z = x + 3x Με τους περιορισμούς: x + x 0 x + x 4 3x + x 6 και x 0, x 0 Με γραφική επίλυση: 5

16 0 8 X-3X=6 X 6 4 z=6 X+X=0 z=5 z= X Παρατηρούμε ότι οι περιορισμοί σε αυτή την περίπτωση είναι μη συμβιβαστοί και έτσι δεν υπάρχει χωρίο δυνατών λύσεων. Δηλαδή δεν υπάρχει σημείο ( x, x ) που να ικανοποιεί όλους τους περιορισμούς. Γενικά, η διαδικασία γραφικής επίλυσης ενός προβλήματος γραμμικού προγραμματισμού είναι πολύ σημαντική γιατί μας δίνει τη δυνατότητα να σχεδιάσουμε την περιοχή των εφικτών λύσεων και να κατανοήσουμε τον τρόπο που λειτουργούν οι διάφορες μέθοδοι επίλυσης προβλημάτων γραμμικού προγραμματισμού. Επίσης μας βοηθά να διερευνήσουμε την ευαισθησία της βέλτιστης λύσης του προβλήματος. Πρακτικά, βέβαια δεν έχει εφαρμογή αφού τα προβλήματα έχουν πολλές μεταβλητές και πολλούς περιορισμούς. 6

17 .5 Λύση προβλημάτων γραμμικού προγραμματισμού Αν και η γεωμετρική ερμηνεία των προβλημάτων είναι αρκετά σημαντική δεν μπορεί να χρησιμοποιηθεί για όλα τα προβλήματα γραμμικού προγραμματισμού και αυτό γιατί στην πράξη τα περισσότερα προβλήματα γραμμικού προγραμματισμού έχουν περισσότερες από δύο μεταβλητές. Η κύρια μέθοδος επίλυσης προβλημάτων γραμμικού προγραμματισμού είναι η μέθοδος Simplex, ένας αλγόριθμος αριστοποίησης ο οποίος χαρακτηρίζεται από ένα αριθμό επαναλαμβανόμενων βημάτων τα οποία μπορούν να κωδικοποιηθούν στον Η/Υ. Πριν παρουσιάσουμε την μέθοδο αυτή θα διατυπώσουμε κάποιους βασικούς ορισμούς. Το γενικό μοντέλο του γραμμικού προγραμματισμού είναι: z= = T max f(x) c x Ax { =,, } b x 0 x c M 0 M b M A M M,,, m, m, Η κανονική μορφή του προβλήματος είναι: z= = T max f(x) c x Ax=b x 0 x c M 0 M b M A M και b 0. M,,, m, m Υποθέτουμε ότι m< και ότι οι γραμμές του πίνακα Α είναι ανεξάρτητες Κάθε πρόβλημα γραμμικού προγραμματισμού μπορεί να αναχθεί στην κανονική μορφή με την χρήση στοιχειωδών μετασχηματισμών όπως οι παρακάτω: 7

18 Μετασχηματισμοί προβλημάτων γραμμικού προγραμματισμού σε κανονική μορφή Περιθώριες μεταβλητές Περιορισμοί που εκφράζονται με ανισώσεις μπορούν να μετατραπούν σε εξισώσεις με την εισαγωγή νέων μη αρνητικών μεταβλητών οι οποίες μπορούν να μετατρέψουν τις ανισώσεις σε εξισώσεις. Οι μεταβλητές αυτές ονομάζονται περιθώριες. Υπάρχουν δύο είδη περιθώριων μεταβλητών οι χαλαρές και οι πλεονασματικές. Χαλαρή μεταβλητή Σε ένα περιορισμό της μορφής akx bk θεωρούμε μια νέα μεταβλητή x k 0, + = όπου x b a = x + k k k = και η οποία προστίθεται στο πρώτο μέλος της ανισότητας ώστε να έχουμε την ισότητα: = a x + x = b k + k k Θα ονομάζουμε την x + kμια χαλαρή μεταβλητή. Για παράδειγμα ένας περιορισμός της μορφής x+ 5x + 7x3 6 θα γραφεί στην μορφή x + 5x + 7x + x = 6 όπου η x 0 είναι μια χαλαρή μεταβλητή. 3 4 Πλεονασματική μεταβλητή 4 Σε ένα περιορισμό της μορφής akx bk θεωρούμε μια νέα μεταβλητή x k 0 + = όπου x = a x b + k k k = και η οποία αφαιρείται από το πρώτο μέλος της ανισότητας ώστε να έχουμε την ισότητα: 8

19 a x x = b k + k k = Θα ονομάζουμε την x + kμια πλεονασματική μεταβλητή. Για παράδειγμα, ο περιορισμός της μορφής x+ 3x + 5x3 0 θα γραφεί στην μορφή x + 3x + 5x x = 0 όπου η x4 0 είναι μια πλεονασματική μεταβλητή. 3 4 Μετασχηματισμός προβλήματος ελαχιστοποίησης Όταν ζητάμε να προσδιορίσουμε το ελάχιστο της αντικειμενικής συνάρτησης f ( x ) τότε θέτουμε f ( x ) = - g( x ) και μεγιστοποιούμε την συνάρτηση g( x). Άρα min f ( x) = max g( x). Για παράδειγμα η min z = f( x) = x+ x + 5x3 θα γίνει Maxz = g x = x x x. ( ) 5 3 Μεταβλητές χωρίς περιορισμό στο πρόσημο Αυτές οι μεταβλητές x δεν υπόκεινται στον περιορισμό x 0. Στην περίπτωση i i αυτή θέτουμε + xi = xi xi όπου x + i, x i 0. Αν η μεταβλητή x είναι μη θετική, θέτουμε x = x +, όπου x 0. Για παράδειγμα εάν έχω τον περιορισμό x+ 3x + 5x3 = 0 με x, x 0 και x 3 + αγνώστου πρόσημου, τότε θέτω x3 = x3 x3 και ο περιορισμός γίνεται + x + 3x + 5x 5x = Αρνητικοί σταθεροί όροι σε περιορισμούς Εάν σε κάποιο περιορισμό ο σταθερός όρος είναι αρνητικός τότε πολλαπλασιάζοντας με (-) γίνεται θετικός. Δηλαδή ο περιορισμός x+ 3x + 5x3 = 0 θα γίνει x 3x 5x3 = 0 Στην κανονική μορφή του προβλήματος το σύστημα και m γραμμικές εξισώσεις με m<. Ax=b έχει μεταβλητές 9

20 Βασική λύση είναι μία λύση που προκύπτει αν θέσουμε -m μεταβλητές ίσες με το μηδέν και λύσουμε ως προς τις υπόλοιπες m μεταβλητές υπό τον όρο το γραμμικό σύστημα που προκύπτει να περιλαμβάνει m από τις στήλες (διανύσματα) του πίνακα Α έτσι ώστε τα διανύσματα αυτά να είναι γραμμικώς ανεξάρτητα. Δηλαδή ο πίνακας Α να περιέχει έναν υποπίνακα διάστασης m m για τον οποίο ισχύει ότι η ορίζουσα του είναι διάφορη του μηδενός. Η τετραγωνική μήτρα m m, που προκύπτει από τον Α και έχει m γραμμικά ανεξάρτητες στήλες καλείται βάση του συστήματος ενώ οι m μεταβλητές που αντιστοιχούν στις στήλες της βάσεως καλούνται βασικές μεταβλητές. Οι υπόλοιπες -m μεταβλητές που δεν περιλαμβάνονται στη βάση καλούνται μη βασικές μεταβλητές. Αν συμβολίσουμε τον υποπίνακα των m γραμμικά ανεξάρτητων στηλών του Α με Β, επειδή det(b) 0, η βασική λύση μπορεί να υπολογιστεί από την σχέση X B =B - b, όπου X B είναι το διάνυσμα των βασικών μεταβλητών. Ο πίνακας Β ονομάζεται και βασικός πίνακας. Βασική εφικτή λύση είναι μία βασική λύση όπου όλες οι βασικές μεταβλητές είναι μη αρνητικές. Μη εκφυλισμένη βασική εφικτή λύση είναι μία βασική εφικτή λύση με ακριβώς m θετικά x i. Επομένως, μία εκφυλισμένη βασική εφικτή λύση έχει λιγότερα από m θετικά x i. Ορισμός: Ένα υποσύνολο S του x, S, και για κάθε λ [0,], ισχύει λx + (-λ) S λέγεται κυρτό αν για οποιοδήποτε στοιχεία Θεώρημα : Το σύνολο όλων των εφικτών λύσεων ενός προβλήματος γραμμικού προγραμματισμού είναι ένα κυρτό σύνολο Απόδειξη Έστω u,v εφικτές λύσεις. Τότε Au=b, u 0 και Αv=b, v 0. Για 0 λ πρέπει να δείξουμε ότι λu + (-λ)v είναι εφικτή λύση. Έχουμε ότι λu + (-λ)v 0 και Α(λu + (-λ)v)=λ Αu+(-λ)Av=λb+(-λ)b=b. 0

21 Άρα το λu + (-λ)v είναι εφικτή λύση. Ορισμός: Ένα σημείο x ενός κυρτού συνόλου S καλείται ακραίο σημείο (exteme point) αν δεν υπάρχουν u,v S διαφορετικά μεταξύ τους, τέτοια ώστε x= λu + (-λ)v για κάποιο λ με 0<λ<. Ορισμός: Ένα πολύεδρο του είναι ένα σύνολο της μορφής { i ( ) i, i=,,...,m} W = x a x ή= ή b Ένα ακραίο σημείο ενός πολυέδρου καλείται κορυφή του πολυέδρου. Θεώρημα : Υποθέτουμε ότι το σύνολο U={x R Ax=b, x 0} είναι φραγμένο και μη κενό. Τότε η αντικειμενική συνάρτηση ένα ακραίο σημείο του U. Απόδειξη T f(x)=c x λαμβάνει τη μέγιστη τιμή της σε Το U είναι κλειστό και φραγμένο άρα συμπαγές και η f λαμβάνει τη μέγιστη τιμή της σε κάποιο σημείο x U. Αν το x είναι ακραίο σημείο, το θεώρημα έχει αποδειχθεί. Αν υποθέσουμε ότι το μπορούμε να x δεν είναι ακραίο σημείο, τότε είναι γνωστό ότι εκφράσουμε το x σαν κυρτό συνδυασμό ακραίων σημείων του U. Δηλαδή αν n λ =. = x είναι ακραία σημεία του U τότε x = n λ x, με 0 = λ και Έστω f ( x ) = max f( x ). Τότε p f ( x) = λ f( x ) + λ f( x ) λ f( x ) λ f( x ) + λ f( x ) λ f( x ) = f( x ) n n p p n p p και επειδή f( x) f( x), x U πρέπει να έχουμε f ( x) = f( x p ) δηλαδή υπάρχει ακραίο σημείο x p στο οποίο η αντικειμενική συνάρτηση λαμβάνει τη μέγιστη τιμή της.

22 Έστω A = ( AA... A ), όπου A η στήλη του πίνακα Α και A διάνυσμα διάστασης m. Θεώρημα 3:(Ισοδυναμία ακραίων σημείων και βασικών εφικτών λύσεων) Για x U ορίζουμε το Ι(x)={, x > 0}. Ένα σημείο x U, x 0 είναι κορυφή του U αν και μόνο αν οι στήλες Α, I(x) του πίνακα Α είναι ανεξάρτητες, δηλαδή αν το x είναι βασική εφικτή λύση. Απόδειξη Έστω x βασική εφικτή λύση δηλαδή οι στήλε ς Α, I(x) είν αι ανεξάρτητες και έστω ότι x= λu + (-λ)v, 0 λ, u,v U. Τότε για I(x) x = 0 u =v =0 και Α u=av=b A(u-v)=0 (u -v )A =0 u =v για I(x), επειδή οι στήλες Α, I(x) είναι ανεξάρτητες. Άρα u=v και x ακραίο σημείο του U. Έστω ότι x δεν είναι βασική εξαρτημένες. Τότε I( x) ua= 0 με εφικτή λύση, δηλαδή οι στήλες Α, I(x) είναι u όχι όλα μηδέν. Συμπληρώνοντας το διάνυσμα u με u =0 για κάθε I(x) έχουμε ότι υπάρχει u 0 τέτοιο ώστε Αu=0. Επειδή x >0 για I(x) μπορούμε να διαλέξουμε θ 0 τέτοιο ώστε x± θu 0. Επίσης Α(x ± θu)=αx+θαu=ax=b δηλαδή x ± θu U. Τότε x=/(x+θu)+/(x-θu), θu 0 που σημαίνει ότι το x δεν είναι ακραίο σημείο του U. Θεώρημα 4 Αν υπάρχει βέλτιστη λύση σε ένα πρόβλημα γραμμικού προγραμματισμού τότε υπάρχει βέλτιστη βασική εφικτή λύση..

23 Μέθοδος Simplex Η βέλτιστη λύση όπως παρατηρήθηκε προηγουμένως αντιστοιχεί σε μια κορυφή στη γεωμετρική απεικόνιση του εφικτού συνόλου. Η μέθοδος simplex ξεκινώντας από μια αρχική κορυφή μπορεί να πάει σε άλλες γειτονικές κορυφές κατά μήκος των ακμών του πολυγώνου του εφικτού συνόλου. Σε κάθε μετάβαση της μεθόδου από μία κορυφή σε μια άλλη η μέθοδος simplex κατορθώνει να βρει την ακμή που την οδηγεί σε μια κορυφή, η οποία δίνει βελτιωμένη τιμή στην αντικειμενική συνάρτηση. Συνεχίζοντας κατά αυτό τον τρόπο η τιμή της αντικειμενικής συνάρτησης από κορυφή σε κορυφή βελτιώνεται και τελικά φτάνουμε σε μια κορυφή όπου η αντικειμενική συνάρτηση βελτιστοποιείται. Οποιαδήποτε άλλη κορυφή δίνει χειρότερη λύση και έτσι η διαδικασία τερματίζεται. Η μέθοδος simplex είναι μια αλγεβρική επαναληπτική διαδικασία όπου σε κάθε βήμα έχουμε μια νέα βασική εφικτή λύση προβλημάτων της μορφής: z= = T max f(x) c x Ax=b x 0 Στη συνέχεια πρέπει να εξετάσουμε αν η τρέχουσα βασική εφικτή λύση είναι και η βέλτιστη. Συνεπώς χρειαζόμαστε έναν έλεγχο για το αν η λύση είναι η βέλτιστη. Αν είναι τότε η διαδικασία τερματίζεται. Αν η τρέχουσα βασική λύση δεν είναι βέλτιστη τότε χρειαζόμαστε μια μέθοδο με την οποία θα μπορούμε να βρούμε μία καλύτερη βασική βέλτιστη λύση. Η διαδικασία θα περατωθεί ως ένα πεπερασμένο πλήθος βημάτων, επειδή ο αριθμός των βασικών εφικτών λύσεων είναι πεπερασμένος, και αν η λύση δεν επιστρέψει σε κάποια προηγούμενη τελικά θα φθάσουμε στην βέλτιστη. Ο Αλγόριθμος Simplex Tα βασικά σημεία του αλγόριθμου simplex είναι:. Υπολογίζουμε μια αρχική βασική λύση x B, επιλέγοντας τη βάση Β από τις στήλες του πίνακα Α, με κατάλληλη επιλογή μεταξύ των γραμμικώς ανεξάρτητων στηλών του πίνακα Α. 3

24 . Εκφράζουμε τα διανύσματα του πίνακα Α που δεν ανήκουν στην βάση συναρτήσει των διανυσμάτων της βάσης και υπολογίζουμε τα αντίστοιχα σύμφωνα με την σχέση: =, όπου A η στήλη του πίνακα Α. B A 3. Υπολογίζουμε τις τιμές z για τα διανύσματα εκτός βάσης εφαρμόζοντας τη σχέση z = c T B 4. Υπολογίζουμε τις ποσότητες z - c. Αν για όλα τα ισχύει ότι z - c 0, τότε έχουμε βέλτιστη λύση 5. Αν ένα ή περισσότερα z - c <0, επιλέγουμε ένα διάνυσμα για να εισέλθει στη βάση, εφαρμόζοντας το επόμενο κριτήριο: { } z c = min z c z c < 0 k k a k από τα εκτός βάσης 6. Αν όλα τα 0, τότε υπάρχει μια μη φραγμένη λύση. Αν ένα τουλάχιστον ik ik > 0, επιλέγουμε το διάνυσμα b που θα φύγει από τη βάση σύμφωνα με το x B x Bi κριτήριο: = min, ik > 0 = θ i k ik 7. Υπολογίζουμε την νέα βάση B η οποία προκύπτει από την προηγούμενη αντικαθιστώντας το διάνυσμα b με το νέο a k. Υπολογίζουμε την νέα βασική εφικτή λύση x ˆB, με τις σχέσεις : i xˆ Bi = xbi xb, i xˆ B x = B και τις νέες τιμές των i, z - c και z. 8. Επιστρέφουμε στο δεύτερο βήμα και επαναλαμβάνουμε την διαδικασία. 4

25 Ο πίνακας Simplex Ο πίνακας simplex αποτελεί ένα συστηματικό τρόπο καταχώρησης των απαραίτητων ποσοτήτων, έτσι ώστε τα αναγκαία βήματα εφαρμογής του αλγορίθμου simplex να μπορούν να εκτελούνται με ποιο απλό, σύντομο και αποτελεσματικό τρόπο. Ένας αρχικός και ένας μετασχηματισμένος πίνακας είναι : c c c m cn c B x B B m n c c c B B Bm b b b m x x x B B Bm m m m m mm n n mn z z c z c... z c... z c m m n n Και ο μετασχηματισμένος: B B c. c. c c B x.. c b x. 0. n B B k k n k k k k x c b x. 0. c B n B B k k n k xk k k B b =a k B Bm b m Bm m m mk. 0. mn mk xk k xb.. x k k k x c x x z z c z c z c z c z c ) B n ( k k) ( ) ( k k). 0. ( n n) ( k k k k k k k n n n n k 5

26 Ο Αλγόριθμος Simplex είναι εκθετικού χρόνου. Αν και υπάρχουν παραδείγματα που επιβεβαιώνουν το παραπάνω, στην πράξη κάτι τέτοιο δεν συμβαίνει γι αυτό και η μέθοδος Simplex χρησιμοποιείται ευρύτατα. Το 979 ο Khachian ανακάλυψε τον πρώτο πολυωνυμικό αλγόριθμο για τον γραμμικό προγραμματισμό την ελλειψοειδή μέθοδο, η οποία δεν είχε όμως μεγάλο πρακτικό ενδιαφέρον γιατί στις περισσότερες πρακτικές εφαρμογές έδινε χειρότερα αποτελέσματα από την μέθοδο Simplex. Τελικά το 984 ο Kamaka ανακάλυψε έναν άλλον πολυωνυμικό αλγόριθμο που είχε και πρακτικά αποτελέσματα καλύτερα από την μέθοδο Simplex. 6

27 .6 Ανάλυση ευαισθησίας Η ανάλυση ευαισθησίας είναι μία μέθοδος η οποία εφαρμόζεται για να προσδιορίσει την ευαισθησία της λύσης ενός προβλήματος γραμμικού προγραμματισμού στις μεταβολές των παραμέτρων του. Το πλέον διαδεδομένο μέσο για εύρεση της βέλτιστης λύσης ενός προβλήματος καθώς και την ανάλυση ευαισθησίας του είναι το Micosoft Excel και πιο συγκεκριμένα το εργαλείο Solve. Το Solve μας δίνει την αναφορά απάντησης (Answe Repot), την ανάλυση ευαισθησίας (Sensitivit Repot) και την αναφορά ορίων (Limits Repot). Αναφορά απάντησης Κελί προορισμού Κελί Όνομα Αρχική τιμή Τελική τιμή Στη θέση Κελί αναγράφεται το κελί του Excel που έχω ορίσει την αντικειμενική συνάρτηση και στο Όνομα το όνομα που έχω δώσει στην αντικειμενική συνάρτηση. Στην Αρχική τιμή αναγράφεται η τιμή που είχε η αντικειμενική συνάρτηση πριν την λύση, ενώ στην Τελική τιμή η τιμή που πήρε μετά την λύση του προβλήματος. Ρυθμιζόμενα κελιά Στα ρυθμιζόμενα κελιά αντίστοιχα, αναγράφονται το κελί, το όνομα, η αρχική και η τελική τιμή της κάθε μεταβλητής. Κελί Όνομα Αρχική τιμή Τελική τιμή Περιορισμοί Κελί Όνομα Τιμή κελιού Τύπος Κατάσταση Απόκλιση 7

28 Το μέρος αυτό της αναφοράς απάντησης αναφέρεται στους περιορισμούς. Δείχνει το κελί που βρίσκονται, το όνομα τους, την τιμή που παίρνουν καθώς και τον τύπο που έχει ο κάθε περιορισμός. Στην Κατάσταση, αναφέρεται αν ένας περιορισμός είναι ενεργός (υποχρεωτικός) ή μη ενεργός (μη υποχρεωτικός). Ένας περιορισμός θεωρείται binding (ενεργός) όταν στην βέλτιστη λύση ισχύει σαν ισότητα. Οι περιορισμοί αυτοί είναι εκείνοι των οποίων η τομή των αντίστοιχων ευθειών τους καθορίζει την κορυφή που αποτελεί την βέλτιστη λύση. Στην περίπτωση που ο περιορισμός αυτός είναι της μορφής { } δείχνει έναν πόρο ο οποίος έχει στη βέλτιστη λύση καταναλωθεί πλήρως ενώ όταν είναι της μορφής { } δείχνει έναν πόρο ο οποίος έχει καταναλωθεί στο ελάχιστο, δηλαδή στην βέλτιστη λύση ικανοποιείται το κατώτατο όριο του περιορισμού. Ένας περιορισμός που δεν είναι ενεργός λέγεται not binding (μη ενεργός) και στην περίπτωση που είναι της μορφής { } εκφράζει ένα πόρο ο οποίος δεν έχει καταναλωθεί πλήρως, δηλαδή υπάρχει περίσσευμα του πόρου αυτού. Ένας μη ενεργός περιορισμός της μορφής { } εκφράζει μια απαίτηση της οποίας όχι μόνο έχει ικανοποιηθεί η ελάχιστη απαιτούμενη ποσότητα αλλά και έχει ξεπεραστεί. Οι μη ενεργοί περιορισμοί δεν μετέχουν στη βέλτιστη λύση. Η απόκλιση είναι η διαφορά τις τιμής που παίρνει ένας μη ενεργός περιορισμός από την ελάχιστη η μέγιστη τιμή που μπορεί να πάρει. Ανάλυση ευαισθησίας Το Solve παρουσιάζει την ανάλυση ευαισθησίας σε δύο μέρη. Το πρώτο είναι τα Ρυθμιζόμενα Κελιά (Changing Cells) και το δεύτερο οι Περιορισμοί (Constaints). Ρυθμιζόμενα Κελιά Κελί Όνομα Τελική Μειωμένο Αντικειμενικός Επιτρεπόμενη Επιτρεπόμενη Τιμή κόστος Συντελεστής αύξηση μείωση Τα ρυθμιζόμενα κελιά δίνουν πληροφορίες για τις μεταβλητές του 8

29 προβλήματος και για την αντικειμενική συνάρτηση. Περιέχει τα κελιά, τα ονόματα των μεταβλητών, την τελική βέλτιστη τιμή τους, το μειωμένο κόστος (Reduced Cost), τους συντελεστές της αντικειμενικής συνάρτησης (Obective Coefficient) και την επιτρεπόμενη αύξηση και μείωση των συντελεστών της αντικειμενικής συνάρτησης. Αν αλλάξουμε τον περιορισμό, για κάποιο =,,, (συνθήκη μη αρνητικότητας), όπως για παράδειγμα η συγκεκριμένη μεταβλητή να είναι μεγαλύτερη ή ίση της μονάδας, δηλαδή x 0 συνάρτησης θα ονομάζεται Μειωμένο κόστος (Reduced cost). x, τότε η μεταβολή της αντικειμενικής Η επιτρεπτή αύξηση (allowable incease) και επιτρεπτή μείωση (allowable decease) δείχνει το πόσο οι συντελεστές των μεταβλητών της αντικειμενικής συνάρτησης μπορούν να αλλάξουν χωρίς να αλλάξει η τιμή οποιασδήποτε μεταβλητής. Ωστόσο η τιμή της αντικειμενικής συνάρτησης θα αλλάξει εάν ένας συντελεστής αλλάξει και η αντίστοιχη μεταβλητή του παραμείνει αμετάβλητη. Περιορισμοί Κελί Όνομα Τελική Σκιώδης Περιορισμός Επιτρεπόμενη Επιτρεπόμενη τιμή τιμή R.H Side αύξηση μείωση Στο δεύτερο μέρος της ανάλυσης ευαισθησίας τα τρία πρώτα κελιά αναφέρονται στο κελί, το όνομα και την τελική τιμή του αριστερού μέλους κάθε περιορισμού για τη βέλτιστη λύση. Τα υπόλοιπα κελιά αναλύονται ως εξής: Σκιώδης τιμή (Shadow pice) είναι η μεταβολή της αντικειμενικής συνάρτησης για κάθε μεταβολή ενός περιορισμού κατά μία μονάδα. Όταν η αντικειμενική συνάρτηση είναι κέρδος, μπορούμε να πούμε ότι εκφράζει την μοναδιαία αύξηση ή μείωση του κέρδους όταν ο περιορισμός αυξάνεται ή μειώνεται αντίστοιχα κατά μία μονάδα. Η σύγκριση των shadow pices κάθε περιορισμού μπορεί να παρέχει πολύτιμη πληροφορία για το που και πως μπορούμε να διαθέσουμε πιο αποδοτικά επιπρόσθετους πόρους έτσι ώστε να πετύχουμε καλύτερη βέλτιστη λύση της αντικειμενικής συνάρτησης. Ο περιορισμός R.H Side είναι η τιμή του δεξιού μέλους του περιορισμού. Η επιτρεπόμενη αύξηση και μείωση δείχνει το πόσο μπορεί να αυξηθεί ή να μειωθεί το δεξί μέλος ενός περιορισμού έτσι ώστε η σκιώδης τιμή του να ισχύει. 9

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ

12/10/2015 LINEAR_PROGRAMMING_EBOOK ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Γραμμικός Προγραμματισμός είναι η διαδικασία εύρεσης μιας βέλτιστης λύσης μιας γραμμικής συνάρτησης, η οποία να είναι συμβατή με ένα πεπερασμένο σύνολο γραμμικών ανισοτήτων, δηλαδή,

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ μέθοδοι των εσωτερικών σημείων

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ μέθοδοι των εσωτερικών σημείων ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ Γραμμικός Προγραμματισμός είναι η διαδικασία εύρεσης μιας βέλτιστης λύσης μιας γραμμικής συνάρτησης, η οποία να είναι συμβατή με ένα πεπερασμένο σύνολο γραμμικών ανισοτήτων, δηλαδή, ο

Διαβάστε περισσότερα

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ . ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εισαγωγή Οι κλασσικές μέθοδοι αριστοποίησης βασίζονται κατά κύριο λόγο στο διαφορικό λογισμό. Ο Μαθηματικός Προγραμματισμός ο οποίος περιλαμβάνει τον Γραμμικό Προγραμματισμό

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex

Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός και θεωρία Παιγνίων

Γραμμικός Προγραμματισμός και θεωρία Παιγνίων Σε αυτό το κεφάλαιο θα χρησιμοποιήσουμε πίνακες οι οποίοι δεν θα είναι γραμμικές εξισώσεις. Θα πρέπει λοιπόν να δούμε την γεωμετρική ερμηνεία των ανισώσεων. Μια ανίσωση διαιρεί τον n-διάστατο χώρο σε δύο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΑΤΕΥΘΥΝΣΗ: ΕΠΙΧΕΙΡΗΜΑΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΊΑ ΜΕ ΤΙΤΛΟ: «ΠΕΡΙΓΡΑΦΗ, ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΧΡΗΣΗ ΛΟΓΙΣΜΙΚΩΝ

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα ΚΕΦΑΛΑΙΟ 4 Ακέραια Πολύεδρα 1 Ορισμός 4.1 (Convex Hull) Έστω ένα σύνολο S C R n. Ένα σημείο x του R n είναι κυρτός συνδυασμός (convex combination) σημείων του S, αν υπάρχει ένα πεπερασμένο σύνολο σημείων

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 3 3.1 Γενικά Τις τελευταίες δεκαετίες ένας μεγάλος αριθμός μεθόδων βελτιστοποίησης έχει αναπτυχθεί με βάση τη θεωρία του μαθηματικού λογισμού. Οι διάφοροι μαθηματικοί

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (ασκήσεις)

Επιχειρησιακή έρευνα (ασκήσεις) Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Γραμμικός και Ακέραιος προγραμματισμός

Γραμμικός και Ακέραιος προγραμματισμός ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ ΔΜΠΣ «ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ» Γραμμικός και Ακέραιος προγραμματισμός Διπλωματική εργασία της

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31 Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Μάρτιος 2014 Δρ. Δημήτρης

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 013 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ 1 ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo)

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo) ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo) Μπουντούρης Ηρακλήs Επιβλέπουσα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX. 2.1 Βασικές έννοιες - Ορισμοί ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΤΥΠΟΥ SIMPLEX 2.1 Βασικές έννοιες - Ορισμοί Ο αλγόριθμος Simplex για τα προβλήματα γραμμικού προγραμματισμού, βλέπε Dntzig (1963), αποδίδει αρκετά καλά στην πράξη, ιδιαίτερα σε προβλήματα

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

Fermat, 1638, Newton Euler, Lagrange, 1807

Fermat, 1638, Newton Euler, Lagrange, 1807 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού Πρόγραμμα Γενικό γραμμικό πρόβλημα με πολύγωνη περιοχή εφικτών λύσεων Να λυθεί το παρακάτω γραμμικό πρόγραμμα: ma z μ. π. 4

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού Κεφάλαιο 6 Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού 1 Γραφική επίλυση Η γραφική μέθοδος επίλυσης μπορεί να χρησιμοποιηθεί μόνο για πολύ μικρά προβλήματα με δύο ή το πολύ τρεις μεταβλητές απόφασης.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ακαδημαϊκό Έτος: 2013-2014 (Χειμερινό Εξάμηνο) Μάθημα: Σχεδιασμός Αλγορίθμων και Επιχειρησιακή Έρευνα Καθηγητής: Νίκος Τσότσολας Εργασία

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex ) 1

Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex )  1 Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex ) http://users.uom.gr/~acg 1 Η μέθοδος SIMPLEX Χρησιμοποιείται ο λεγόμενος πίνακας simplex (simplex table, simplex

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 00-0 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (/05/0, 9:00) Να απαντηθούν 4 από τα 5

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, 7 Ιανουαρίου 00 Θέμα. (μονάδες.5) α) [μονάδες:.0]. Υπολογίστε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά (1) Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Η «OutBoard Motors Co» παράγει τέσσερα διαφορετικά είδη εξωλέμβιων (προϊόντα 1 4) Ο γενικός διευθυντής κ. Σχοινάς, ενδιαφέρεται

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μέθοδοι επίλυσης γραμμικού συστήματος χ Γραφική επίλυση Σχεδιάζουμε τις ευθείες που αντιπροσωπεύουν οι εξισώσεις του συστήματος. Αν: - οι δύο ευθείες τέμνονται, τότε το σύστημα έχει

Διαβάστε περισσότερα

Πανεπιστήμιο Αιγαίου. Γραμμικός Προγραμματισμός

Πανεπιστήμιο Αιγαίου. Γραμμικός Προγραμματισμός Πανεπιστήμιο Αιγαίου URL: http://www.aegean.gr Γραμμικός Προγραμματισμός Ευστράτιος Ιωαννίδης Πανεπιστήμιο Αιγαίου Τμήμα Μαθηματικών 832 Καρλόβασι Σάμος Copyright Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014 ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2013-2014 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2013 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #1: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους.

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους. ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ 71 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ Αν έχουμε δύο γραμμικές εξισώσεις με δύο αγνώστους,, π.χ. α + β

Διαβάστε περισσότερα