Αλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών"

Transcript

1 Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Αλγεβρικες οµες ΙΙ ιδάσκουσα : Θέµατα προηγουµένων ετών 1 Θέµατα Πολλαπλής Επιλογής Στις ερωτήσεις πολλαπλής επιλογής, εάν απαντήσετε λανθασµένα ισχύει αρνητική ϐαθµολογία. Αν κυλώσετε µία πρόταση, τότε σηµαίνει ότι την ϑεωρείτε σωστή. Αν δεν κυκλώσετε µία απάντηση, τότε σηµαίνει ότι την ϑεωρείτε λάθος. Αν δεν γνωρίζετε την απάντηση τότε πρέπει να σηµειώσετε Γ. Στον δακτύλιο Z m όταν γράφουµε n εννοούµε n. 1. Εστω K, σώµα, K = 16. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Υπάρχει a K, a 1 έτσι ώστε a 2 = 1. (ϐʹ) Αν a K τότε 4a = 0. (γʹ) Αν a K τότε a 15 = 1. (δʹ) Αν ένα σώµα K έχει 16 στοιχεία, και a K τότε a 16 = a. 2. Εστω R = Z 3 [x]/ x 2. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Ο δακτύλιος R έχει 6 στοιχεία. (ϐʹ) Ο δακτύλιος R έχει 9 στοιχεία. (γʹ) Ο δακτύλιος R είναι ακεραία περιοχή. (δʹ) Το στοιχείο 1 + x 2 ως σύνολο έχει 6 στοιχεία. (εʹ) Το σύνολο 1 + x 2 έχει άπειρα στοιχεία. (ϛʹ) Το στοιχείο 2 + x 2 είναι αντιστρέψιµο και το αντίστοφό του είναι το 2 + x 2. 1

2 (Ϲʹ) Το στοιχείο x + x 2 είναι αντιστρέψιµο και το αντίστοφό του είναι το x + (x 2 ). (ηʹ) Το στοιχείο x x 2 είναι αντιστρέψιµο και το αντίστοφό του είναι το x x 2. (ϑʹ) Το στοιχείο x x 2 είναι αντιστρέψιµο και το αντίστοφό του είναι το x (x 2 ). (ιʹ) Το στοιχείο x x 2 είναι αντιστρέψιµο και το αντίστοφό του είναι το 2x (x 2 ). 3. Κυκλώστε όποια από τα παρακάτω ιδεώδη είναι κύρια : (αʹ) I 1 = x 2 + 2x + 4, x στο R 1 = Z[x], (ϐʹ) I 2 = x 2 + 2x + 4, 5 στον R 2 = R[x] (γʹ) I 3 = x 2 + 2x, x 2 + 3x στον R 3 = C[x]. 4. Αποφασίστε ποια από τα παρακάτω σύνολα είναι υποσώµατα του C. (αʹ) A 1 = {a + 2bi : a, b Q} (ϐʹ) A 2 = {a + bi : a Z, b Q} (γʹ) A 3 = {a + bi : a, b Q[ 2]} 5. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) R[i] = C. (ϐʹ) R[ 3] = R. (γʹ) Αν φ : R[x] R, φ(f(x)) = f(0) τότε φ είναι επιµορφισµός. (δʹ) Αν φ : R[x] R, φ(f(x)) = f(3) τότε x 2 3 ker φ. 6. Εστω R ο δακτύλιος των 2 2 πινάκων µε στοιχεία από το C και έστω A = (a ij ) το σύνολο των πινάκων όπου a 12 = a 21 = a 22 = 0. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Το σύνολο A είναι ιδεώδες του R. (ϐʹ) Το σύνολο A είναι υποδακτύλιος του R. (γʹ) Το σύνολο A είναι σώµα. 2

3 7. Εστω I = 3, x 3 + 4x + 10 στον Z[x]. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) 6x I (ϐʹ) 15x I (γʹ) x 3 + 4x + 13 I (δʹ) x I 8. Κυκλώστε όποια από τα παρακάτω είναι αληθή στον δακτύλιο Z[x]: (αʹ) 2, x 2 4, x) (ϐʹ) x 4, x 2 (γʹ) (δʹ) Εστω R = Z 2 Z 3 µε πρόσθεση και πολλαπλασιασµό ανά συντεταγ- µένη. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Ο δακτύλιος R είναι ακεραία περιοχή. (ϐʹ) Ο δακτύλιος R έχει ακριβώς 3 στοιχεία που είναι αντιστρέψιµα. (γʹ) Ο δακτύλιος R έχει ακριβώς 4 στοιχεία που είναι διαιρέτες του µηδενός. 10. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Εστω φ : Z Q οµοµορφισµός προσθετικών οµάδων. Τότε φ είναι και οµοµορφισµός δακτυλίων. (ϐʹ) Εστω φ : Z Q οµοµορφισµός δακτυλίων. Τότε φ(1) µπορεί να έχει µόνο δύο τιµές. (γʹ) Υπάρχει φ : Z Q οµοµορφισµός δακτυλίων έτσι ώστε ker φ = Z. (δʹ) Υπάρχει ισοµορφισµός φ : Z Q. (εʹ) Αν φ : Z Q δεν είναι ο µηδενικός οµοµορφισµός τότε ο φ είναι µονοµορφισµός. 11. Εστω a είναι αντιστρέψιµο στον R. Να κυκλώσετε τις σωστές απαντήσεις : 3

4 (αʹ) Ολες οι ϑετικές δυνάµεις του a είναι αντιστρέψιµες. (ϐʹ) Αν ab = 0 τότε b = 0. (γʹ) Αν φ : R S οµοµορφισµός δακτυλίων και a ker φ τότε φ(r) = 0, r R. (δʹ) Αν ένας δακτύλιος έχει διαιρέτες του µηδενός τότε δεν έχει αντιστρέψιµα στοιχεία. 12. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Z 4 είναι σώµα. (ϐʹ) Κάθε δακτύλιος µε 5 στοιχεία είναι σώµα. (γʹ) Κάθε σώµα µε 3 στοιχεία είναι ισόµορφο µε το Z Εστω R = Z 5 [x]/ x Πόσα γνήσια ιδεώδη έχει ο δακτύλιος R; (αʹ) Κανένα (ϐʹ) 1 (γʹ) 5 (δʹ) 25 (εʹ) Άπειρα 14. Σε ποιους από τους παρακάτω δακτυλίους ισχύει ότι κάθε ιδεώδες είναι κύριο ; Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Q (ϐʹ) Z 4 [x] (γʹ) Z 5 [x] 15. Εστω R = Z 8 [x]/ x 2. Για ποια ιδεώδη J του Z 8 [x] προκύπτει ότι J/(x 2 ) είναι µέγιστο ; Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) J = x, 4 (ϐʹ) J = x, 2 (γʹ) J = x, x + 1 4

5 16. Εστω I = x, 4, 6. Αποφασίστε ποιός από τους παρακάτω δακτυλίους είναι ισόµορφος µε τον δακτύλιο Z[x]/I. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Z 2. (ϐʹ) Z 4 Z 6. (γʹ) Z. (δʹ) R. 17. Εστω R = Z[ 5], I = 3 5, J = 2 5. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) I + J = 5 (ϐʹ) I + J = 5 5 (γʹ) IJ = I J. 18. Αποφασίστε αν x 3, y + 4 είναι µέγιστο ιδεώδες στους δακτυλίους στους αντίστοιχους δακτυλίους. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Z[x, y] (ϐʹ) Z 11 [x, y] (γʹ) Q[x, y, z]} 19. Εστω R = Z 5 [x]. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) x 3, 2x 2 = (x 2. (ϐʹ) x 3, 2x 2 + 3x = (x (γʹ) x 3, 2x = Z 5 [x] 20. Εστω f(x) = x Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Το πολυώνυµο f(x) έχει ακριβώς 10 ϱίζες στο Z 11. (ϐʹ) Το πολυώνυµο f(x) έχει ακριβώς 3 ϱίζες στο R. (γʹ) Το πολυώνυµο f(x) έχει ακριβώς 11 ϱίζες στο C. 21. Εστω R = Z Z Z. Να κυκλώσετε τις σωστές απαντήσεις : 5

6 (αʹ) Το ιδεώδες Z 2Z 5Z είναι µέγιστο. (ϐʹ) Το ιδεώδες Z Z 0 είναι µέγιστο. (γʹ) Το ιδεώδες Z 2Z Z είναι µέγιστο. 22. Ποιοι από τους παρακάτω δακτυλίους είναι ισόµορφοι µε τον C; Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) R[x]/ x (ϐʹ) Q[x]/ x (γʹ) R[x]/ x 2 + x Εστω R = Z[ 2]. Ποιες από τις παρακάτω προτάσεις είναι αληθείς στον R: (αʹ) 2 είναι πρώτο στοιχείο του R. (ϐʹ) 2 είναι ανάγωγο στοιχείο του R. (γʹ) 2 είναι µέγιστο ιδεώδες του R. 24. Εστω f(x) = 3x 6 +27x Σε ποιους από τους παρακάτω δακτυλίους, το αντίστοιχο κύριο ιδεώδες µε γεννήτορα το f(x) είναι µέγιστο ; (αʹ) Q[x] (ϐʹ) Z[x] (γʹ) C[x] 25. Εστω R = Z[ 6]. Ποιες από τις παρακάτω προτάσεις είναι αληθείς στον R; Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Το στοιχείο είναι πρώτο αφού 10 = (2 + 6)(2 6). (ϐʹ) Ο δακτύλιος R είναι περιοχή κυρίων ιδεωδών. (γʹ) Z R και εποµένως R περιοχή µοναδικής παραγοντοποίησης. 26. Εστω R = Z[x]/(x 2 + 1). Ποιες από τις παρακάτω προτάσεις είναι αληθείς ; Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Το σώµα κλασµάτων του R είναι ισόµορφο µε το ίδιο το R. (ϐʹ) Το σώµα κλασµάτων του R είναι ισόµορφο µε το C. 6

7 (γʹ) Το σώµα κλασµάτων του R είναι ισόµορφο µε το Q[i]. (δʹ) Το σώµα κλασµάτων του R είναι ισόµορφο µε το Q[1/x]/[x 2 + 1]. 27. Εστω ω = e 2πi/7 και φ : Z[x] Z[ω], f(x) f(ω). Ποιες από τις πα- ϱακάτω προτάσεις είναι αληθείς ; Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Z[ω] = Z[x], (ϐʹ) ker φ = x 7 1 (γʹ) ker φ = x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 (δʹ) ker φ είναι πρώτο ιδεώδες του Z[x]. 28. Εστω f(x) = 4x Ποιες από τις παρακάτω προτάσεις είναι αληθεις ; Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) f(x) είναι ανάγωγο στο Z[x] (ϐʹ) f(x) είναι ανάγωγο στο Q[x] (γʹ) f(x) είναι ανάγωγο στο R[x] 29. Εστω R = k[x, y], I = x + y. Να κυκλώσετε τις σωστές απαντήσεις ; Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) I είναι πρώτο ιδεώδες. (ϐʹ) R/I = k[x] (γʹ) I είναι µέγιστο ιδεώδες 30. Εστω R = Z 2 [x], I = x 3 +x Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) R/I είναι σώµα. (ϐʹ) R/I είναι ακεραία περιοχή αλλά όχι σώµα. (γʹ) R/I έχει ακριβώς 6 στοιχεία. 31. Εστω R = Z 5 [x], f(x) = x 2 + 2x + 1. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) f(x) είναι ανάγωγο στον R. (ϐʹ) Οι ανάγωγοι παράγοντες του f(x) είναι 2x + 2 και 3x

8 (γʹ) Οι ανάγωγοι παράγοντες του f(x) είναι 6(x + 1) και x Εστω S ένας δακτύλιος που περιέχει τον Z. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) S είναι ακεραία περιοχή. (ϐʹ) Αν p Z είναι πρώτος στον Z τότε p πρώτος στον S. (γʹ) Αν p ανάγωγο στον Z και δεν είναι αντιστρέψιµος στον S τότε p ανάγωγο στον S. 33. Εστω R = Z 3 [x], I = x Αποφασίστε ποιες από τις παρακάτω προτάσεις είναι αληθείς. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Ο δακτύλιος R/I έχει 9 στοιχεία. (ϐʹ) Ο δακτύλιος R/I είναι ακεραία περιοχή. (γʹ) x I είναι διαιρέτης του µηδενός στον R. (δʹ) Αν a R/I, a 0 τότε 12a = 0. (εʹ) (2x + I)(x 2 + I) = 2 + I. 34. Αποφασίστε ποιες από από τις παρακάτω προτάσεις είναι αληθείς. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Z[2i] = Z[1 + 2i] (ϐʹ) 5 είναι πρώτο στο Z[2i] (γʹ) 5 είναι ανάγωγο στο Z[2i] (δʹ) 5 είναι αντιστρέψιµο στο Z[2i] (εʹ) Το σώµα κλασµάτων του Z[2i] είναι το Q[i]. 35. Εστω R ο δακτύλιος των 2 2 πινάκων µε στοιχεία από το Z 3 και έστω I το σύνολο των πινάκων (a ij ) όπου a 11 = a 12 = a 22 = 0. Αποφασίστε ποιες από από τις παρακάτω προτάσεις είναι αληθείς. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Το σύνολο I είναι ιδεώδες του R. (ϐʹ) Η πράξη (A + I) + (B + I) = (A + B) + I είναι καλά ορισµένη. 8

9 (γʹ) Η πράξη (A + I) (B + I) = (A B) + I είναι καλά ορισµένη. (δʹ) I = Z 3 ως δακτύλιοι. (εʹ) ο R είναι ακεραία περιοχή. 36. Εστω I = x 2 + x + 2, J = x + 1 στον Z 5 [x]. Αποφασίστε ποιες από από τις παρακάτω προτάσεις είναι αληθείς. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Ο δακτύλιος Z 5 [x] είναι περιοχή κυρίων ιδεωδών. (ϐʹ) Ο δακτύλιος Z 5 [x] είναι περιοχή µοναδικής παραγοντοποίησης. (γʹ) I + J = J (δʹ) I J = 0. (εʹ) J είναι µέγιστο ιδεώδες. 37. Εστω K, σώµα, K = 32. Αποφασίστε ποιες από τις παρακάτω προτάσεις είναι αληθείς. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Η εξίσωση x 31 1 έχει ακριβώς 31 λύσεις στο K. (ϐʹ) Η χαρακτηριστική του K είναι 32. (γʹ) Αν φ : K C οµοµορφισµός δακτυλίων, τότε φ(a) = 1 a 0. (δʹ) Z 2 K (εʹ) Z 32 = K. 38. Εστω R = Z 5 Z 3 µε πρόσθεση και πολλαπλασιασµό ανά συντεταγ- µένη. Αποφασίστε ποιες από από τις παρακάτω προτάσεις είναι αληθείς. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Το µηδενικό ιδεώδες είναι πρώτο. (ϐʹ) Το µηδενικό ιδεώδες είναι µέγιστο. (γʹ) Ο οµοµορφισµός φ : Z R, a (a, a) είναι µονοµορφισµός. (δʹ) Ο οµοµορφισµός φ : Z R, a (a, a) είναι επιµορφισµός. (εʹ) Το στοιχείο (2, 2) είναι αντιστρέψιµο. 39. Εστω R = Z 8 [x]. Αποφασίστε ποιες από από τις παρακάτω προτάσεις είναι αληθείς. Να κυκλώσετε τις σωστές απαντήσεις : 9

10 (αʹ) Το σύνολο όλων των πολυωνύµων µε σταθερό όρο 0 είναι ιδεώδες του R. (ϐʹ) Το σύνολο όλων των πολυωνύµων µε ϐαθµό 2 είναι ιδεώδες του R. (γʹ) Το ιδεώδες 4 είναι πρώτο ιδεώδες του R. (δʹ) Το ιδεώδες x + 5, x + 6 είναι µέγιστο ιδεώδες του R. (εʹ) Το πολυώνυµο 3x είναι ανάγωγο στο R. 40. Εστω ω = e 2πi/8 και φ : Z[x] Z[ω], f(x) f(ω). Ποιές από τις πα- ϱακάτω προτάσεις είναι αληθείς. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Z[ω] = Z[i], (ϐʹ) ker φ = x (γʹ) ker φ είναι µέγιστο ιδεώδες του Z[x]. (δʹ) ω γνήσιο ιδεώδες του Z[ω] (εʹ) Z[i]/ i = Z. 41. Εστω R = Z 5 Z 7 µε πρόσθεση και πολλαπλασιασµό ανά συντεταγ- µένη. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Ο δακτύλιος R είναι ακεραία περιοχή. (ϐʹ) {(2k, 3t) : k, t N} είναι ιδεώδες του R. 42. Εστω R = k[x, y], I = x 2 + xy, y, J = I + x. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) R είναι περιοχή κυρίων ιδεωδών. (ϐʹ) R είναι περιοχή µοναδικής παραγοντοποίησης. (γʹ) Το ιδεώδες I είναι πρώτο. (δʹ) Το ιδεώδες J είναι µέγιστο. 43. Εστω ω = e 2πi/11, R 1 = Q[ω]. Να κυκλώσετε τις σωστές απαντήσεις : (1) Το πολυώνυµο f(x) = x 11 1 έχει ακριβώς 11 ανάγωγους παράγοντες στο C[x]. 10

11 (1) Το πολυώνυµο f(x) = x 11 1 έχει ακριβώς 5 ανάγωγους πα- ϱάγοντες στον R[x]. (1) Το πολυώνυµο f(x) = x 11 1 έχει τουλάχιστον 8 ανάγωγους παράγοντες στον R 1 [x]. 44. Εστω φ 1 : Z Q, φ 1 (m) = m/5, ενώ φ 2 : Q Z, φ 2 (m/n) = 0. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Η συνάρτηση φ 1 είναι οµοµορφισµός δακτυλιων. (ϐʹ) Η συνάρτηση φ 2 είναι οµοµορφισµός δακτυλιων. (γʹ) Υπάρχει ισοµορφισµός ανάµεσα στους δακτυλίους Z και Q. 45. Εστω R ο δακτύλιος των 2 2 πινάκων µε στοιχεία από το Z 2. Να κυκλώσετε τις σωστές απαντήσεις : (αʹ) Ο δακτύλιος R είναι αντιµεταθετικός. (ϐʹ) Το µοναδικό γνήσιο ιδεώδες του R είναι το µηδενικό. 2 Προβλήµατα Θεωρίας 1. (αʹ) Εστω F σώµα και I ένα µη µηδενικό ιδεώδες του F [x]. Εστω ότι 0 f(x) I είναι ελαχίστου ϐαθµού ανάµεσα σε όλα τα µη µηδενικά στοιχεία του I. Να αποδείξετε ότι I = f(x). (ϐʹ) Εστω J = {f(x) Q[x] : f(3) = 0}. Να αποδείξετε ότι J = x 3 και ότι J είναι µέγιστο ιδεώδες του S. (γʹ) Να ϐρείτε ένα πρώτο ιδεώδες του Q[x] που να περιέχει το x Εστω R = Q[x] Q µε πρόσθεση και πολλαπλασιασµό ανά συντεταγ- µένη. (αʹ) Να αποδείξετε ότι ο δακτύλιος R δεν είναι ακεραία περιοχή. (ϐʹ) Εστω J = x 3 {0}. Να αποδείξετε ότι J είναι ιδεώδες του R. (γʹ) Να αποδείξετε ότι φ : R Q, (g(x), c) c είναι οµοµορφισµός δακτυλίων και να ϐρείτε ker φ. 11

12 (δʹ) Να ϐρείτε ψ : R Q Q έτσι ώστε ker ψ = J. (εʹ) Να ϐρείτε ένα µέγιστο ιδεώδες του R που να περιέχει το J. (ϛʹ) Να εξετάσετε αν J είναι πρώτο ιδεώδες του R. 3. Εστω ω = e 2πi/8. Να τοποθετήσετε το στοιχείο ω στο µιγαδικό επίπεδο. Στη συνέχεια να δείξετε ότι ω είναι ϱίζα του g(x) = x 8 1 C. Τέλος να ϐρείτε τους ανάγωγους παράγοντες του g(x) στους α) C[x], ϐ) R[x] γ) Q[x]. 4. Εστω R αντιµεταθετικός δακτύλιος και J ιδεώδες του R. Να αποδείξετε ότι αν R/J είναι σώµα τότε J είναι µέγιστο. 5. Να αποδείξετε ότι οι δακτύλιοι Q[x]/ x 2 5 και Q[ 5] είναι ισόµορφοι. 6. Να αποδείξετε ότι x + 5, y είναι µέγιστο ιδεώδες στο C[x, y]. 7. Εστω το ιδεώδες I = x 2 + x + 1 του Z 2 [x]. Να δείξετε ότι R = Z 2 [x]/i έχει ακριβώς 4 στοιχεία. Να δείξετε ότι R είναι σώµα και έχει χαρακτηριστική 2. Να ϐρείτε το αντίστροφο του x I στον R. Να ϐρείτε το σώµα κλασµάτων του R. 12

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2

Διαβάστε περισσότερα

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Αλγεβρικές οµές ΙΙ 1. Εστω ότι R Z 3 [x]. Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες 30 λεπτά (αʹ) Να αποδείξετε ότι ο R είναι περιοχή

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ομομορφισμοί και Πηλικοδάκτυλιοι Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 14 Ο Π Ιδιαιτέρως, αν τα f(x), g(x) είναι σχετικώς

Διαβάστε περισσότερα

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι:

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: n N {0}, ( ) + n = = n + ( ) και ( ) + ( ) = (**) Ονομάζουμε επικεφαλής συντελεστή ενός μη μηδενικού πολυωνύμου f, τον συντελεστή f(i)

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ιδεώδη και Περιοχές κυρίων Ιδεωδών Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0},

Διαβάστε περισσότερα

< a 42 >=< a 54 > < a 28 >=< a 36 >

< a 42 >=< a 54 > < a 28 >=< a 36 > Ασκήσεις Βασικής Άλγεβρας και Λύσεις τους 4 Δεκεμβρίου 2013 1 Ασκήσεις και Λύσεις. 2013-14 1. (αʹ Εστω m, n δύο φυσικοί αριθμοί, τέτοιοι ώστε M K (m, n + 5 = MK (m + 5, n = 1. Αποδείξτε ότι MK (mn, m +

Διαβάστε περισσότερα

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k =

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k = ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2016 Χρήστος Α. Αθανασιάδης Συμβολίζουμε με Z m το δακτύλιο των ακεραίων modulo m, με ā Z m την κλάση (mod m) του a Z και με M n (R) το δακτύλιο

Διαβάστε περισσότερα

= s 2m 1 + s 1 m 2 s 1 s 2

= s 2m 1 + s 1 m 2 s 1 s 2 ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 203 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη κ.

Διαβάστε περισσότερα

Άλγεβρα Ι(Μ) Λύσεις Ασκήσεων-Φυλλαδίο 9

Άλγεβρα Ι(Μ) Λύσεις Ασκήσεων-Φυλλαδίο 9 140/140 Άλγεβρα Ι(Μ) Λύσεις Ασκήσεων-Φυλλαδίο 9 Τσάνγκο Ιωσήφ 24 Απριλίου 2017 1. Εχω ότι R δακτύλιος, S υποδακτύλιος και I ιδεώδες του R. (Σχόλιο:Το πλήθος των απαντήσεων μου είναι ίδιο με αυτό των ερωτήσεων,

Διαβάστε περισσότερα

Αλγεβρικές Δομές Ι. 1 Ομάδα I

Αλγεβρικές Δομές Ι. 1 Ομάδα I Αλγεβρικές Δομές Ι 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω G μια προσθετική ομάδα S ένα μη κενό σύνολο και M(S G το σύνολο όλων των συναρτήσεων f : S G. Δείξτε ότι το σύνολο M(S G είναι ομάδα με πράξη την πρόσθεση

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i) 6 Δακτύλιοι και Πρότυπα 016-17 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Περιοχές κυρίων ιδεωδών. 1. Θεωρούμε το δακτύλιο [ i]. a. Βρείτε ένα d [ i] με ( a, b) d, όπου a (4 i) (1 i), b 16 1 i.

Διαβάστε περισσότερα

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z). Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα ΠΑΡΑΡΤΗΜΑ Αʹ Στοιχεία από την Άλγεβρα Στο Παράρτημα αυτό, το οποίο παρατίθεται για να συμβάλει στην αυτοδυναμία του βιβλίου, ο αναγνώστης θα μπορεί να προστρέχει για αρωγή σε έννοιες και αποτελέσματα που

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 17 Ιανουαρίου 2014

Α Δ Ι. Παρασκευή 17 Ιανουαρίου 2014 Α Δ Ι Α - Φ 10 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 17 Ιανουαρίου

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

Νίκος Μαρμαρίδης. Σημειώσεις στη. Θεωρία Δακτυλίων

Νίκος Μαρμαρίδης. Σημειώσεις στη. Θεωρία Δακτυλίων Νίκος Μαρμαρίδης Σημειώσεις στη Θεωρία Δακτυλίων Ιωάννινα 2014 Περιεχόμενα 1 Αρχικές Έννοιες Δακτυλίων 1 1.1 Δακτύλιοι................................... 1 1.2 Ομομορφισμοί Δακτυλίων..........................

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση

Διαβάστε περισσότερα

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ Σηµειώσεις, Άνοιξη 2016 (σε εξέλιξη) Χαρά Χαραλαµπους Τµήµα Μαθηµατικών, ΑΠΘ Περιεχόµενα Κεφάλαιο 1: 3 1.1 Απαρχές της Αντιµεταθετικής Άλγεβρας...................

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 24 Ιανουαρίου 2014

Α Δ Ι. Παρασκευή 24 Ιανουαρίου 2014 Α Δ Ι Α - Φ 11 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 24 Ιανουαρίου

Διαβάστε περισσότερα

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι. Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

Ε Μέχρι 31 Μαρτίου 2015.

Ε Μέχρι 31 Μαρτίου 2015. Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες

Διαβάστε περισσότερα

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών Κεφάλαιο 1 Προκαταρκτικές Έννοιες 1.1 Δακτύλιοι,

Διαβάστε περισσότερα

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014 Α Δ Ι Α - Φ 9 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Δευτέρα 13 Ιανουαρίου

Διαβάστε περισσότερα

a b b < a > < b > < a >.

a b b < a > < b > < a >. Θεωρια Δακτυλιων και Modules Εαρινο Εξαμηνο 2016 17 Διάλεξη 1 Ενότητα 1. Επανάληψη: Προσθετικές ομάδες, δακτύλιοι, αντιμεταθετικοί δακτύλιοι, δακτύλιοι με μοναδιαίο στοιχείο, παραδείγματα. Συμφωνήσαμε

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a)

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a) 11 Δακτύλιοι και Πρότυπα 2016-17 Ασκήσεις 3 Η ύλη των ασκήσεων αυτών είναι η Ενότητα3, Ελεύθερα πρότυπα Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος 1 Δείξτε ότι το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

Κεφάλαιο 2. Σώµατα και ϐαθµοί επεκτάσεων. 2.1 Αλγεβρικά στοιχεία πάνω από ένα σώµα.

Κεφάλαιο 2. Σώµατα και ϐαθµοί επεκτάσεων. 2.1 Αλγεβρικά στοιχεία πάνω από ένα σώµα. Κεφάλαιο 2 Σώµατα και ϐαθµοί επεκτάσεων Στο κεφάλαιο αυτό µελετούµε τις επεκτάσεις σωµάτων. Ιδιαίτερα σηµαντικό εργαλείο για τη µελέτη µας αυτή είναι τα πολυώνυµα, έτσι ϑα εφαρµόσουµε το περιεχόµενο του

Διαβάστε περισσότερα

a pn 1 = 1 a pn = a a pn a = 0,

a pn 1 = 1 a pn = a a pn a = 0, Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 14 Ιανουαρίου 2015 Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 60

Διαβάστε περισσότερα

irr Q,b (x) = x 3 2, irr Q,ω (x) = x 2 + x + 1 irr (Q(ω),b) (x) = irr (Q,b) (x) = x 3 2,

irr Q,b (x) = x 3 2, irr Q,ω (x) = x 2 + x + 1 irr (Q(ω),b) (x) = irr (Q,b) (x) = x 3 2, Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 13 Δεκεμβρίου 2014 Περιεχόμενα 3 Μεταθέσεις και ομάδες Galois 41 3.1 Οι ρίζες

Διαβάστε περισσότερα

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Α Δ Ι Ε Υ Μ Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 28 Ι 2014 Το παρόν κείμενο

Διαβάστε περισσότερα

ΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ. Χαρά Χαραλάµπους

ΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ. Χαρά Χαραλάµπους ΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ Σηµειώσεις (σε εξέλιξη) Χαρά Χαραλάµπους Τµήµα Μαθηµατικών, ΑΠΘ Χ. Χαραλάµπους, Εισαγωγή στην Αντιµεταθετική Άλγεβρα ΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ Σηµειώσεις

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

Θεωρια ακτυλιων. Ασκησεις

Θεωρια ακτυλιων. Ασκησεις Θεωρια ακτυλιων Ασκησεις Ακαδηµαϊκο Ετος 2015-2016 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/ringtheory/ringtheory2015/ringtheory2015.html 4 εκεµβρίου 2015 2 Περιεχόµενα

Διαβάστε περισσότερα

(a, b) (c, d) = (a + c, b + d) (a, b) (c, d) = (ac, ad + bc)

(a, b) (c, d) = (a + c, b + d) (a, b) (c, d) = (ac, ad + bc) ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ Χειμερινό Εξάμηνο 2016 Ασκήσεις 1. Δείξτε ότι ο a 1 διαιρεί τον a n 1 για κάθε a Z και κάθε n N. 2. Δίνονται οι ακέραιοι a = 126 και b = 434. (α Υπολογίστε το µκδ(a, b. (β Βρείτε x, y Z

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

Θεωρια ακτυλιων. Ασκησεις

Θεωρια ακτυλιων. Ασκησεις Θεωρια ακτυλιων Ασκησεις Ακαδηµαϊκο Ετος 2016-2017 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/ringtheory/ringtheory2016/ringtheory2016.html 15 Φεβρουαρίου 2017 2 Περιεχόµενα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 2 2

Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 2 2 Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 11 Νοεμβρίου 2014 Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 2

Διαβάστε περισσότερα

Κεφάλαιο 5. Κυκλοτοµικά πολυώνυµα. 5.1 Ρίζες της µονάδας. char F = p και ο p δεν διαιρεί τον n.

Κεφάλαιο 5. Κυκλοτοµικά πολυώνυµα. 5.1 Ρίζες της µονάδας. char F = p και ο p δεν διαιρεί τον n. Κεφάλαιο 5 Κυκλοτοµικά πολυώνυµα Σε αυτό το κεφάλαιο εφαρµόζουµε τη ϑεωρία Galois, όπως αυτή αναπτύχθηκε στο Κεφάλαιο 3, για τα πολυώνυµα x n 1 και x n a. Επίσης εξετάζουµε τις κυκλοτοµικές, τις κυκλικές

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

ακτύλιοι Πολυωνύµων και Σώµατα Κλασµάτων

ακτύλιοι Πολυωνύµων και Σώµατα Κλασµάτων Κεφάλαιο 9 ακτύλιοι Πολυωνύµων και Σώµατα Κλασµάτων Στο παρόν Κεφάλαιο ϑα µελετήσουµε διεξοδικότερα τις ϐασικές ιδιότητες του δακτυλίου πολυωνύµων, κυ- ϱίως µιας µεταβλητής, µε στοιχεία από έναν µεταθετικό

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 11

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 11 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 11 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 26 Μαίου 2016 Ασκηση 1. Να

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος Αλγεβρικες οµες Ι Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html 22

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 12 Ο Δ Π Μ δακτύλιο με τις πράξεις τού R και

Διαβάστε περισσότερα

Το μόνο, ίσως, μειονέκτημά τους είναι ότι το μήκος τους υπόκειται σε περιορισμό από το πλήθος των στοιχείων του σώματος επί του οποίου ορίζονται.

Το μόνο, ίσως, μειονέκτημά τους είναι ότι το μήκος τους υπόκειται σε περιορισμό από το πλήθος των στοιχείων του σώματος επί του οποίου ορίζονται. ΚΕΦΑΛΑΙΟ 5 Κώδικες Reed-Solomo και συναφείς κώδικες To 1959 o Hocqueghe και, ανεξάρτητα, το 1960 οι Bose Ray-Chaudhuri επινόησαν μια κατηγορία κωδίκων τους λεγόμενους BCH κώδικες. Οι κώδικες αυτοί είναι

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler

Διαβάστε περισσότερα

Κεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο

Κεφάλαιο 8. Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα. 8.1 Το γενικό πολυώνυµο Κεφάλαιο 8 Το γενικό πολυώνυµο και το αντίστροφο πρόβληµα Σε αυτό το κεφάλαιο αρχικά αποδεικνύουµε ότι υπάρχει επέκταση σωµάτων µε οµάδα Galois την S n. Για το σκοπό αυτό εξετάζουµε τα συµµετρικά πολυώνυµα.

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Σεπτεµβρίου ακαδηµαϊκού έτους 29-2 Τρίτη, 3 Αυγούστου 2 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις

Διαβάστε περισσότερα

Περιεχόμενα Εισαγωγή στα πεπερασμένα σώματα

Περιεχόμενα Εισαγωγή στα πεπερασμένα σώματα Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 3 1.1 Μάθημα 1..................................... 3 1.1.1 Στοιχεία αλγεβρικής θεωρίας....................... 4 1.2 Μάθημα 2.....................................

Διαβάστε περισσότερα

Πρώτα και Μεγιστοτικά Ιδεώδη

Πρώτα και Μεγιστοτικά Ιδεώδη Κεφάλαιο 10 Πρώτα και Μεγιστοτικά Ιδεώδη Στο παρόν Κεφάλαιο ϑα µελετήσουµε ειδικούς τύπους ιδεωδών σε έναν δακτύλιο και την επίδραση που έχουν οι επιπλέον ιδιότητες τις οποίες ικανοποιούν τα ιδεώδη αυτά

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ............................................

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R)

Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R) Α Δ Ι Α - Φ 8 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 20 Δεκεμβρίου

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013 Α Δ Ι Α - Φ 7 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 13 Δεκεμβρίου

Διαβάστε περισσότερα

Απλές επεκτάσεις και Αλγεβρικές Θήκες

Απλές επεκτάσεις και Αλγεβρικές Θήκες Κεφάλαιο 7 Απλές επεκτάσεις και Αλγεβρικές Θήκες Στο κεφάλαιο αυτό εξετάζουµε τις απλές επεκτάσεις σωµάτων και τις συγκρίνουµε µε τις επεκτάσεις Galois. Επίσης εξετάζουµε τις αλγεβρικά κλειστές επεκτάσεις

Διαβάστε περισσότερα

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ Η θεωρία αριθμών και οι αλγεβρικές δομές τα τελευταία χρόνια χρησιμοποιούνται όλο και περισσότερο στην κρυπτολογία. Αριθμο-θεωρητικοί αλγόριθμοι χρησιμοποιούνται σήμερα

Διαβάστε περισσότερα

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας Δώδεκα Αποδείξεις του Θεμελιώδους Θεωρήματος της Άλγεβρας Mία εκδοχή της αρχικής απόδειξης του Gauss f ( z) = T ( z) + iu ( z) T = r cos φ + Ar 1 cos(( 1) φ + α) + + L cosλ U = r si φ + Ar 1 si(( 1) φ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi06/asi06.html Πέµπτη Απριλίου 06 Ασκηση. Θεωρούµε τα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Θεωρία Sylow Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 2 Θεωρία Sylow 21 Τα Θεωρήματα Sylow Ορισμός 211 Μια ομάδα (G, ) τάξης p α, όπου

Διαβάστε περισσότερα

Παράρτημα Αʹ. Ασκησεις. Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός.

Παράρτημα Αʹ. Ασκησεις. Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός. Παράρτημα Αʹ Ασκησεις Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός. Άσκηση 1. Συμβατικά στην περιοχή του ηλεκτρομαγνητικού ϕάσματος μακρινό υπέρυθρο (far infrared, FIR) έχουμε μήκος

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα. Δακτύλιοι και Πρότυπα 0-7 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα Βρείτε τη ρητή κανονική μορφή και μια κανονική μορφή Jorda του M( ) 0 0 Έστω

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής: Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση

Διαβάστε περισσότερα

ακτύλιοι Πολυωνύµων και Σώµατα Κλασµάτων

ακτύλιοι Πολυωνύµων και Σώµατα Κλασµάτων Κεφάλαιο 8 ακτύλιοι Πολυωνύµων και Σώµατα Κλασµάτων 8.1 Συνοπτική Θεωρία Η παρούσα ενότητα είναι αφιερωµένη στην υπενθύµιση ϐασικών εννοιών και αποτελεσµάτων από την ϑεωρία πολυωνύµων µιας ή περισσότερων

Διαβάστε περισσότερα

Πρόλογος 3. Εισαγωγή 7

Πρόλογος 3. Εισαγωγή 7 Πρόλογος Η σύγχρονη Άλγεβρα είναι ένα σημαντικό και ουσιαστικό κομμάτι της μαθηματικής εκπαίδευσης σε όλα τα πανεπιστήμια του κόσμου. Αυτό δεν οφείλεται μόνο στο γεγονός ότι πολλοί άλλοι κλάδοι των μαθηματικών,

Διαβάστε περισσότερα

Θεµελιώδες Θεώρηµα της Θεωρίας Galois

Θεµελιώδες Θεώρηµα της Θεωρίας Galois Κεφάλαιο 3 Θεµελιώδες Θεώρηµα της Θεωρίας Galois Στο κεφάλαιο αυτό εξετάζουµε λεπτοµερέστερα τις οµάδες Galois και µελετάµε τις επεκτάσεις ισοµορφισµών σωµάτων. Στη συνέχεια ορίζουµε τις επεκτάσεις Galois

Διαβάστε περισσότερα

Στο εδάφιο αυτό ϑα περιγράψουµε τα τρία ϐασικά ϑέµατα που ϑα µας απασχολήσουν σε αυτό το κείµενο :

Στο εδάφιο αυτό ϑα περιγράψουµε τα τρία ϐασικά ϑέµατα που ϑα µας απασχολήσουν σε αυτό το κείµενο : Κεφάλαιο 1 Βασικές Εννοιες Στο Κεφάλαιο αυτό δίνουµε τις απαραίτητες προκαταρτικές γνώσεις από τη ϑεωρία πολυωνύµων και τη ϑεωρία σωµάτων που απαιτούνται για τα επόµενα κύρια κεφάλαια. Στο Εδάφιο 1.1 παρουσιάζουµε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi07/asi07.html Παρασκευή 9 Μαίου 07 Για κάθε µετάθεση

Διαβάστε περισσότερα

Σώμα του Hilbert, Μιγαδικός Πολλαπλασιασμός και το Jugendtraum του Kronecker

Σώμα του Hilbert, Μιγαδικός Πολλαπλασιασμός και το Jugendtraum του Kronecker Σώμα του Hilbert, Μιγαδικός Πολλαπλασιασμός και το Jugendtraum του Kronecker Aλ ϵξανδρoς Γ. Γαλανάκης (alexandros.galanakis@gmail.com) Επιβλέπων καθηγητής: Iωάννης A. Aντ ωνιάδης Πτυχιακή εργασία Τμήμα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου 2016

Διαβάστε περισσότερα

Εισαγωγή. Herman Weyl

Εισαγωγή. Herman Weyl Εισαγωγή Όσο σηµαντικές και αν είναι οι γενικές έννοιες και προτάσεις που απορρέουν από το σύγχρονο πάθος για αξιωµατική θεµελίωση και γενίκευση, είµαι όµως πεπεισµένος ότι τα ειδικά προβλήµατα µε όλη

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Ορισµός Ονοµάζουµε ακέραιο πολυώνυµο του x κάθε έκφραση της µορφής : α ν x ν + α ν-1 x ν-1 + α ν-2 x ν-2 + +α 1 x + α 0 όπου α ν, α ν-1, α ν-2,, α 1, α 0 C και

Διαβάστε περισσότερα

LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2)

LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Σημάτων Άσκηση 3η Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ο κεφάλαιο: Πραγματικοί αριθμοί ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 014 Περιεχόµενα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. Πολυωνυμικοί-Κυκλικοί Κώδικες. 3.1 Πολυωνυμικοί κώδικες

ΚΕΦΑΛΑΙΟ 3. Πολυωνυμικοί-Κυκλικοί Κώδικες. 3.1 Πολυωνυμικοί κώδικες ΚΕΦΑΛΑΙΟ 3 Πολυωνυμικοί-Κυκλικοί Κώδικες Στα προηγούμενα ασχοληθήκαμε με τους γραμμικούς κώδικες και είδαμε πώς η δομή ενός γραμμικού κώδικα, ως διανυσματικού χώρου, καθιστά τις διαδικασίες κωδικοποίησης

Διαβάστε περισσότερα

ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα

ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα Κεφάλαιο 7 ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα Στο παρόν Κεφάλαιο ϑα µελετήσουµε την ϑεµελιώδη έννοια του δακτυλίου, ϑα αναπτύξουµε τις ϐασικές ιδιότητες δακτυλίων και ϑα αναλύσουµε µια σειρά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Είδαµε στο προηγούµενο κεφάλαιο ότι κάθε ηµιαπλός δακτύλιος είναι δακτύλιος του Art. Επειδή υπάρχουν παραδείγµατα δακτυλίων του Art που δεν είναι ηµιαπλοί, πχ Z 2, > 1, τίθεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-Art ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες *

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017

Διαβάστε περισσότερα

ακτύλιοι Κυρίων Ιδεωδών και Περιοχές Μονοσήµαντης Ανάλυσης

ακτύλιοι Κυρίων Ιδεωδών και Περιοχές Μονοσήµαντης Ανάλυσης Κεφάλαιο 10 ακτύλιοι Κυρίων Ιδεωδών και Περιοχές Μονοσήµαντης Ανάλυσης 10.1 Συνοπτική Θεωρία Η παρούσα ενότητα είναι αφιερωµένη στην υπενθύµιση ϐασικών εννοιών και αποτελεσµάτων από τη ϑεωρία περιοχών

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η Γραμμική Άλγεβρα είναι ένα σημαντικό συστατικό στο πρόγραμμα σπουδών, όχι μόνο των Μαθηματικών, αλλά και άλλων τμημάτων, όπως είναι το τμήμα Φυσικής, Χημείας, των τμημάτων του Πολυτεχνείου,

Διαβάστε περισσότερα

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια.

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια. Κεφάαιο Πρότυπα Στο κεφάαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύιο που θα παίξει σηµαντικό ρόο στα επόµενα κεφάαια Στις σηµειώσεις αυτές όοι οι δακτύιοι περιέχουν µοναδιαίο στοιχείο

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4)

Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4) Πορίσματα της Κανονικής Μορφής Smh (συμπλήρωμα για την Ενότητα 4 Θα δείξουμε εδώ ότι από την κανονική μορφή Smh πινάκων πάνω από περιοχή κυρίων ιδεωδών R, έπονται τα εξής Το Θεώρημα Βάσεων Το Θεώρημα Ανάλυσης

Διαβάστε περισσότερα