2 είναι λύσεις της ανίσωσης 2x2 3x+1<0.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2 είναι λύσεις της ανίσωσης 2x2 3x+1<0."

Transcript

1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. α) Να βρείτε τις ρίζες της εξίσωσης x +0x=. x + 0x β) Να λύσετε την εξίσωση x. ίνεται η εξίσωση: x λx+(λ +λ )=0 (), λ R. α) Να προσδιορίσετε τον πραγµατικό αριθµό λ, ώστε η εξίσωση () να έχει ρίζες πραγµατικές. β) Να λύσετε την ανίσωση S P 0, όπου S και P είναι αντίστοιχα το άθροισµα και το γινόµενο των ριζών της εξίσωσης (). 3. ίνεται η εξίσωση x λx+4(λ )=0, µε λ R. α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγµατικές για κάθε λ R. γ) Αν x, x είναι οι ρίζες της παραπάνω εξίσωσης, τότε να βρείτε για ποια τιµή του λ ισχύει x +x =x x 4. ίνεται η εξίσωση x +λx+λ =0, µε λ R. α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγµατικές και άνισες για κάθε λ R. γ) Αν x, x είναι οι ρίζες της παραπάνω εξίσωσης, τότε να βρείτε για ποια τιµή του λ ισχύει x +x = x x. 5. α) Να λύσετε την εξίσωση x =3. β) Αν α, β µε α< β είναι οι ρίζες της εξίσωσης του ερωτήµατος (α), τότε να λύσετε την εξίσωση αx +βx+3=0. 6. ίνεται η εξίσωση λx=x+λ, µε λ R. α) Να αποδείξετε ότι η παραπάνω εξίσωση γράφεται ισοδύναµα (λ )x=(λ )(λ+), λ R. β) Να βρείτε τις τιµές του λ για τις οποίες η παραπάνω εξίσωση έχει ακριβώς µία λύση την οποία και να βρείτε. γ) Για ποια τιµή του λ η παραπάνω εξίσωση είναι ταυτότητα στο σύνολο των πραγµατικών αριθµών; Να αιτιολογήσετε την απάντησή σας. 7. ίνεται το τριώνυµο x 3x+. α) Να βρείτε τις ρίζες του. β) Να βρείτε τις τιµές του x R για τις οποίες x 3x+<0 3 γ) Να εξετάσετε αν οι αριθµοί και είναι λύσεις της ανίσωσης x 3x+<0. 8. α) Να λύσετε την εξίσωση x =3. β) Να σχηµατίσετε εξίσωση δευτέρου βαθµού µε ρίζες, τις ρίζες της εξίσωσης του α) ερωτήµατος. 9. Οι διαστάσεις (σε m) του πατώµατος του εργαστηρίου της πληροφορικής ενός σχολείου είναι x+ και x, µε x>0. α) Να γράψετε µε τη βοήθεια του x την περίµετρο και το εµβαδόν του πατώµατος. β) Αν το εµβαδόν του πατώµατος του εργαστηρίου είναι 90 m, να βρείτε τις διαστάσεις του.

2 0. ίνεται η εξίσωση x +λx+4(λ )=0 µε λ R. α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγµατικές για κάθε λr. γ) Αν x, x είναι οι ρίζες της παραπάνω εξίσωσης, τότε να βρείτε για ποια τιµή του λ ισχύει (x +x ) +x x +5=0.. ίνεται η εξίσωση (λ 9)x=λ 3λ, µε λ R (). α) Επιλέγοντας τρεις διαφορετικές πραγµατικές τιµές για το λ, να γράψετε τρεις εξισώσεις. β) Να προσδιορίσετε τις τιµές του λ R, ώστε η () να έχει µία και µοναδική λύση. γ) Να βρείτε την τιµή του λ R, ώστε η µοναδική λύση της () να ισούται µε 4.. ίνεται η εξίσωση (λ )x=(λ+)(λ+), µε λ R. α) Να λύσετε την εξίσωση για λ= και για λ=. β) Για ποιες τιµές του λ η εξίσωση έχει µοναδική λύση; Να αιτιολογήσετε την απάντησή. 3. ίνονται οι αριθµοί A= α) Να δείξετε ότι: i) Α+Β=. ii) A B= και B= 5 5 β) Να κατασκευάσετε µια εξίσωση ου βαθµού µε ρίζες τους αριθµούς Α και Β. 4. ίνεται το τριώνυµο x +λx 5, όπου λ R. α) Αν µια ρίζα του τριωνύµου είναι ο αριθµός x 0 =, να προσδιορίσετε την τιµή του λ. β) Για λ=3, να παραγοντοποιήσετε το τριώνυµο. 5. ίνεται το τριώνυµο x +5x. α) Να δείξετε ότι το τριώνυµο έχει δύο άνισες πραγµατικές ρίζες, x και x. β) Να βρείτε την τιµή των παραστάσεων: x +x, x x και +. x x γ) Να προσδιορίσετε µια εξίσωση ου βαθµού που έχει ρίζες τους αριθµούς 6. ίνεται το τριώνυµο x +( 3 )x+ 3. α) Να αποδείξετε ότι η διακρίνουσα του τριωνύµου είναι =( 3+ ). β) Να παραγοντοποιήσετε το τριώνυµο. x. x και 7. α) Να παραγοντοποιήσετε το τριώνυµο 3x x. x β) Να βρείτε τις τιµές του x για τις οποίες έχει νόηµα η παράσταση A(x)= 3x x και στη συνέχεια να την απλοποιήσετε. γ) Να λύσετε την εξίσωση A(x) =. 8. Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν α+β= και α β+αβ = 30. α) Να αποδείξετε ότι α β= 5. β) Να κατασκευάσετε εξίσωση δευτέρου βαθµού µε ρίζες τους αριθµούς α, β και να τους βρείτε.

3 9. ίνεται η εξίσωση x (λ )x+6=0, () µε παράµετρο λ R. α) Αν η παραπάνω εξίσωση έχει λύση το,να βρείτε το λ. β) Για λ= να λύσετε την εξίσωση (). 0. Θεωρούµε την εξίσωση x +x+λ =0, µε παράµετρο λ R. α) Να βρείτε για ποιες τιµές του λ η εξίσωση έχει πραγµατικές ρίζες. β) Στην περίπτωση που η εξίσωση έχει δυο ρίζες x, x, να προσδιορίσετε το λ ώστε να ισχύει x x (x +x )= ίνεται η παράσταση A= α) Να δείξετε ότι Α=4. β) Να λύσετε την εξίσωση x+α =.. ίνεται η εξίσωση λx (λ )x =0, µε παράµετρο λ 0. α) Να βρείτε την τιµή του λ για την οποία η εξίσωση έχει ρίζα τον αριθµό. β) Να αποδείξετε ότι η εξίσωση έχει πραγµατικές ρίζες για κάθε λ ίνεται η εξίσωση (λ+)x +λx+λ =0, µε παράµετρο λ. Να βρείτε τις τιµές του λ για τις οποίες: α) η εξίσωση έχει δυο ρίζες πραγµατικές και άνισες. β) το άθροισµα των ριζών της εξίσωσης είναι ίσο µε. 4. Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β=4 και α β+αβ =0. α) Να αποδείξετε ότι: α+β=5. β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β, και να τους βρείτε. 5. Έστω α, β πραγµατικοί αριθµοί µε α+β= και α 3 β+α β +αβ 3 =. α) Να αποδείξετε ότι: α β=. β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β και να τους βρείτε. 6. ίνεται η εξίσωση (α+3)x=α 9, µε παράµετρο α R. α) Να λύσετε την εξίσωση στις παρακάτω περιπτώσεις: i) όταν α=. ii) όταν α= 3. β) Να βρείτε τις τιµές του α, για τις οποίες η εξίσωση έχει µοναδική λύση και να προσδιορίσετε τη λύση αυτή. 7. ίνεται ορθογώνιο µε περίµετρο Π=0cm και εµβαδό E=4cm. α) Να κατασκευάσετε µία εξίσωση ου βαθµού που έχει ως ρίζες τα µήκη των πλευρών αυτού του ορθογωνίου. β) Να βρείτε τα µήκη των πλευρών του ορθογωνίου. 8. ίνονται δύο πραγµατικοί αριθµοί α,β, τέτοιοι ώστε α+β= και α +β =7. α) Με τη βοήθεια της ταυτότητας (α+β) =α +αβ+β, να δείξετε ότι α β= 64. β) Να κατασκευάσετε µια εξίσωση ου βαθµού που έχει ρίζες τους αριθµούς α, β.

4 9. ίνονται οι αριθµοί: Α= 3 7 και Β= α) Να δείξετε ότι: A+ B = 3 και Α Β= β) Να κατασκευάσετε µια εξίσωση ου βαθµού που έχει ρίζες τους αριθµούς Α, Β. 30. ίνεται η εξίσωση (λ+)x +λx+λ =0, µε παράµετρο λ. α) Να βρείτε τις τιµές του λ για τις οποίες η εξίσωση έχει δυο ρίζες πραγµατικές και άνισες. β) Αν x, x είναι οι ρίζες της παραπάνω εξίσωσης να βρείτε το λ ώστε x x = ίνεται το τριώνυµο x κx, µε κ R. α) Να αποδείξετε ότι 0 για κάθε κ R, όπου η διακρίνουσα του τριωνύµου. β) Αν x, x είναι οι ρίζες της εξίσωσης x 3x =0 () τότε: i) Να βρείτε το άθροισµα S=x +x και το γινόµενο P=x x των ριζών της (). ii) Να κατασκευάσετε εξίσωση ου βαθµού που να έχει ρίζες ρ, ρ, όπου ρ =x και ρ =x. 3. ίνεται η εξίσωση x (λ )x+λ+5=0 (), µε παράµετρο λ R. α) Να δείξετε ότι η διακρίνουσα της εξίσωσης () είναι =4λ λ 6. β) Να βρείτε τις τιµές του λ R, ώστε η εξίσωση να έχει δύο ρίζες πραγµατικές και άνισες. γ) Αν η εξίσωση () έχει ρίζες τους αριθµούς x, x και d(x,x ) είναι η απόσταση των x, x στον άξονα των πραγµατικών αριθµών, να βρείτε για ποιες τιµές του λ ισχύει d(x,x )= ίνεται η εξίσωση (λ+)x +(λ+3)x+λ =0 (), µε παράµετρο λ. α) Να δείξετε ότι η διακρίνουσα της εξίσωσης () είναι =λ+5. β) Να βρείτε τις τιµές του λ, ώστε η εξίσωση () να έχει δύο ρίζες πραγµατικές και άνισες. γ) Να εκφράσετε ως συνάρτηση του λ το άθροισµα των ριζών S=x +x και το γινόµενο των ριζών P=x x. δ) Να εξετάσετε αν υπάρχει τιµή του λ ώστε για τις ρίζες x, x της εξίσωσης () να ισχύει η σχέση (x +x ) +( x x +3) = ίνεται η εξίσωση (8 λ)x (λ )x+=0, () µε παράµετρο λ R. α) Να βρεθεί η τιµή του λ ώστε η εξίσωση () να είναι ου βαθµού. β) Αν η εξίσωση () είναι ου βαθµού, να βρείτε τις τιµές του λ ώστε αυτή να έχει µια ρίζα διπλή, την οποία και να προσδιορίσετε. γ) Αν η εξίσωση έχει µια ρίζα διπλή, να προσδιορίσετε τις τιµές του λ (αν υπάρχουν) ώστε το τριώνυµο (8 λ)x (λ )+ να είναι µη αρνητικό για κάθε x πραγµατικό αριθµό. 35. Τέσσερις αθλητές, ο Αργύρης, ο Βασίλης, ο Γιώργος και ο ηµήτρης τερµάτισαν σε έναν αγώνα δρόµου µε αντίστοιχους χρόνους (σε λεπτά) t A, t B, t Γ και t, για τους οποίους t + t ισχύουν οι σχέσεις t A <t B, t Γ = A B και ta t = tβ t. 3 t + t α) i) Να δείξετε ότι: t = A B. ii) Να βρείτε τη σειρά µε την οποία τερµάτισαν οι αθλητές. Να αιτιολογήσετε την απάντησή σας. β) ίνεται επιπλέον ότι ισχύει: t Α +t Β =6 και t Α t Β =8.

5 i) Να γράψετε µία εξίσωση ου βαθµού που έχει ρίζες τους αριθµούς t A και t B ii) Να βρείτε τους χρόνους τερµατισµού των τεσσάρων αθλητών. 36. ίνεται η εξίσωση (λ λ)x (λ )x+λ =0, () µε παράµετρο λ R. α) Να βρεθούν οι τιµές του λ R, για τις οποίες η () είναι εξίσωση ου βαθµού. β) Να αποδείξετε ότι για τις τιµές του λ R που βρήκατε στο (α) ερώτηµα η () παίρνει τη µορφή λx (λ+)x+=0 γ) Να αποδείξετε ότι για τις τιµές του λ R που βρήκατε στο (α) ερώτηµα η () έχει δυο ρίζες πραγµατικές και άνισες. δ) Να προσδιορίσετε τις ρίζες της (), αν αυτή είναι ου βαθµού. 37. ίνεται η εξίσωση λx +(λ )x+λ =0, () µε παράµετρο λ R. α) Να λύσετε την εξίσωση όταν λ=0. β) Έστω λ 0. i. Να αποδείξετε ότι η εξίσωση () έχει ρίζες πραγµατικές και άνισες, τις οποίες στη συνέχεια να βρείτε. ii. Αν x = και x = + λ είναι οι δυο ρίζες της εξίσωσης (), να προσδιορίσετε τις τιµές του λ, για τις οποίες ισχύει x x >. 38. ίνεται το τριώνυµο x (α+)x+4, α R. α) Να αποδείξετε ότι η διακρίνουσα του τριωνύµου είναι =(α ) 6. β) Να βρείτε για ποιες τιµές του α το τριώνυµο έχει ρίζες πραγµατικές και άνισες. γ) Έστω ότι το τριώνυµο έχει δυο ρίζες, x και x. i) Να βρείτε το άθροισµα S=x +x, το γινόµενο P=x x των ριζών του. ii) Να αποδείξετε ότι: d(x,) d(x,)= ίνεται η εξίσωση x λx+λ =0, µε παράµετρο λ R. α) Να δείξετε ότι για κάθε λ R η εξίσωση έχει δυο άνισες ρίζες. β) Να βρείτε τις ρίζες της εξίσωσης, για κάθε λ R. γ) Να βρείτε για ποιες τιµές του πραγµατικού αριθµού λ, οι δυο άνισες ρίζες της εξίσωσης ανήκουν στο διάστηµα (,4). 40. ίνεται η εξίσωση x λx+4λ+5=0, µε παράµετρο λ R. α) Να αποδείξετε ότι αν λ=5 η εξίσωση έχει µια ρίζα διπλή. β) Να εξετάσετε αν υπάρχει και άλλη τιµή του λ ώστε η εξίσωση να έχει διπλή ρίζα. γ) Να βρείτε τις τιµές του λ ώστε η εξίσωση να έχει δύο ρίζες άνισες. δ) Αν λ 4λ 5 = 4λ λ +5 να δείξετε ότι η εξίσωση δεν έχει ρίζες. 4. ίνεται η εξίσωση x 4x+ λ =0 () µε παράµετρο λ R. α) Να αποδείξετε ότι, για οποιαδήποτε τιµή του λ R, η () έχει δύο ρίζες άνισες. β) Αν x και x είναι οι ρίζες της εξίσωσης () τότε: i) Να βρείτε το S=x +x. ii) Να βρείτε το P=x x ως συνάρτηση του πραγµατικού αριθµού λ. γ) Αν η µία ρίζα της εξίσωσης () είναι ο αριθµός + 3 τότε: i) να αποδείξετε ότι η άλλη ρίζα της εξίσωσης () είναι ο αριθµός 3, ii) να βρείτε το λ.

6 4. α) Να βρείτε το πρόσηµο του τριωνύµου x 5x+6 για τις διάφορες τιµές του x R. β) ίνεται η εξίσωση 4 x +( λ)x+λ =0. () µε παράµετρο λ. i) Να αποδείξετε ότι, για κάθε λ (,) (3,+ ), η εξίσωση () έχει δύο ρίζες άνισες. ii) Να βρείτε τις τιµές του λ R για τις οποίες οι ρίζες της () είναι οµόσηµοι αριθµοί. 43. ίνεται η εξίσωση x x+(λ λ )=0, µε παράµετρο λ R. () α) Να βρείτε τη διακρίνουσα της εξίσωσης και να αποδείξετε ότι η εξίσωση έχει ρίζες πραγµατικές για κάθε λ R. β) Για ποια τιµή του λ η εξίσωση () έχει δύο ρίζες ίσες; γ) Να αποδείξετε ότι η παράσταση A=, όπου S, P το άθροισµα και το γινόµενο των S P ριζών της εξίσωσης () αντίστοιχα, έχει νόηµα πραγµατικού αριθµού για κάθε πραγµατικό αριθµό λ. 44. ίνεται το τριώνυµο λx (λ +)x+λ, λ R {0}. α) Να βρείτε τη διακρίνουσα του τριωνύµου και να αποδείξετε ότι το τριώνυµο έχει ρίζες πραγµατικές για κάθε λ R {0}. β) Αν x, x είναι οι ρίζες του τριωνύµου, να εκφράσετε το άθροισµα S=x +x συναρτήσει του λ 0 και να βρείτε την τιµή του γινοµένου P=x x των ριζών. γ) Αν λ<0, τότε: i) το παραπάνω τριώνυµο έχει ρίζες θετικές ή αρνητικές; Να αιτιολογήσετε την απάντησή σας. ii) να αποδείξετε ότι x +x x x, όπου x, x είναι οι ρίζες του παραπάνω τριωνύµου. 45. ίνεται το τριώνυµο f(x)=λx (λ +)x+λ, µε λ>0. α) Να βρείτε τη διακρίνουσα του τριωνύµου και να αποδείξετε ότι το τριώνυµο έχει ρίζες θετικές για κάθε λ>0. β) Αν οι ρίζες του τριωνύµου είναι τα µήκη των πλευρών ενός ορθογωνίου παραλληλογράµµου, τότε: i) να βρείτε το εµβαδόν του ορθογωνίου. ii) να βρείτε την περίµετρο Π του ορθογωνίου ως συνάρτηση του λ και να αποδείξετε ότι Π 4 για κάθε λ>0. iii) για την τιµή του λ που η περίµετρος γίνεται ελάχιστη, δηλαδή ίση µε 4, τι συµπεραίνετε για το ορθογώνιο; Να αιτιολογήσετε την απάντησή σας. 46. α) ίνεται η διτετράγωνη εξίσωση x 4 7x +=0. Να δείξετε ότι η εξίσωση αυτή έχει τέσσερις διαφορετικές πραγµατικές ρίζες, τις οποίες και να προσδιορίσετε. β) Γενικεύοντας το παράδειγµα του προηγούµενου ερωτήµατος, θεωρούµε τη διτετράγωνη εξίσωση x 4 +βx +γ=0 () µε παραµέτρους β, γ R. Να δείξετε ότι Αν β<0, γ>0 και β 4γ>0, τότε η εξίσωση () έχει τέσσερις διαφορετικές πραγµατικές ρίζες. 47. ίνεται η εξίσωση αx 5x+α=0, µε παράµετρο α 0. α) Να αποδείξετε ότι αν α 5, τότε η εξίσωση έχει ρίζες πραγµατικούς αριθµούς που είναι αντίστροφοι µεταξύ τους. β) Να βρείτε τις λύσεις της εξίσωσης, όταν α=.

7 γ) Να λύσετε την εξίσωση x+ 5 x+ + = 0. x x 48. ίνεται η εξίσωση (x ) =λ(4x 3), µε παράµετρο λ R. α) Να γράψετε την εξίσωση στη µορφή αx +βx+γ=0, α 0. β) Να βρείτε για ποιες τιµές του λ η εξίσωση έχει ρίζες πραγµατικές και άνισες. γ) Αν x, x είναι οι ρίζες της εξίσωσης, στην περίπτωση που έχει ρίζες πραγµατικές και άνισες, τότε: i) να υπολογίσετε τα S=x +x και P=x x. ii) να αποδείξετε ότι η παράσταση Α=(4x 3)(4x 3) είναι ανεξάρτητη του λ, δηλαδή σταθερή. 49. ίνεται η εξίσωση x λx ( λ +5)=0 () µε παράµετρο λ R. α) Να βρείτε τη διακρίνουσα της εξίσωσης (). β) Να αποδείξετε ότι η εξίσωση () έχει δυο ρίζες πραγµατικές και άνισες για κάθε λ R. γ) Αν x, x είναι οι δύο ρίζες της εξίσωσης (), να βρεθούν οι τιµές του λ R για τις οποίες ισχύει: (x )(x )= α) Να λύσετε την εξίσωση x 3x 4=0 () β) ίνονται οι οµόσηµοι αριθµοί α, β για τους οποίους ισχύει: α 3αβ 4β =0. i) Να αποδείξετε ότι ο αριθµός α β είναι λύση της εξίσωσης (). ii) Να αιτιολογήσετε γιατί ο α είναι τετραπλάσιος του β. 5. ίνεται η εξίσωση x x+λ λ = 0, µε παράµετρο λ R () α) Να βρείτε τη διακρίνουσα της εξίσωσης και να αποδείξετε ότι η εξίσωση έχει ρίζες πραγµατικές για κάθε λ R. β) Για ποια τιµή του λ η εξίσωση () έχει δύο ρίζες ίσες; γ) Αν x, x είναι οι ρίζες της παραπάνω εξίσωσης (), τότε να βρείτε για ποιες τιµές του λ ισχύει 0<d(x,x )<. 5. ίνεται η εξίσωση x x+(λ λ )=0, µε παράµετρο λ R () α) Να βρείτε τη διακρίνουσα της εξίσωσης και να αποδείξετε ότι η εξίσωση έχει ρίζες πραγµατικές για κάθε λ R. β) Για ποια τιµή του λ η εξίσωση () έχει δύο ρίζες ίσες; γ) Αν λ και x, x είναι οι ρίζες της παραπάνω εξίσωσης (), τότε να βρείτε για ποιες τιµές του λ ισχύει d(x,x )= d(x, x ). 53. ίνεται το τριώνυµο λx (λ +)x+λ, λ R {0}. α) Να βρείτε τη διακρίνουσα του τριωνύµου και να αποδείξετε ότι το τριώνυµο έχει ρίζες πραγµατικές για κάθε λ R {0}. β) Για ποιες τιµές του λ το παραπάνω τριώνυµο έχει δύο ρίζες ίσες; γ) Να βρείτε την τιµή του λ 0, ώστε f(x) 0, για κάθε x R.

8 54. ίνεται η εξίσωση x βx+γ=0 µε β, γ πραγµατικούς αριθµούς. Αν η παραπάνω εξίσωση έχει δύο ρίζες άνισες για τις οποίες ισχύει x +x =4, τότε: α) Να βρείτε τις δυνατές τιµές του β. β) Να αποδείξετε ότι γ<4. γ) ίνεται επιπλέον η εξίσωση x β x+3=0 (). Να εξετάσετε για ποια από τις τιµές του β που βρήκατε στο (α) ερώτηµα, η εξίσωση () δεν έχει πραγµατικές ρίζες. 55. ίνεται η εξίσωση x λx+=0 () µε παράµετρο λ R. α) Να βρείτε για ποιες τιµές του λ η εξίσωση () έχει ρίζες πραγµατικές και άνισες. β) Να αποδείξετε ότι αν ο αριθµός ρ είναι ρίζα της εξίσωσης (), τότε και ο αριθµός ρ είναι επίσης ρίζα της εξίσωσης. γ) Για λ>, να αποδείξετε ότι: i) Οι ρίζες x, x της εξίσωσης () είναι αριθµοί θετικοί. ii) x +4x ίνεται το τριώνυµο αx +βx+γ, α 0 µε ρίζες τους αριθµούς και. α) Χρησιµοποιώντας τους τύπους για το άθροισµα S και το γινόµενο P των ριζών του τριωνύµου, να αποδείξετε ότι: γ=α και β= 3α. β) Αν επιπλέον γνωρίζουµε ότι το τριώνυµο παίρνει θετικές τιµές για κάθε x (, ), τότε: i) να αποδείξετε ότι α<0. ii) να λύσετε την ανίσωση γx +βx+α< ίνεται η εξίσωση αβx (α +β )x+αβ=0 όπου α, β δύο θετικοί αριθµοί. α) Να δείξετε ότι η διακρίνουσα της εξίσωσης είναι =(α β ). β) Να βρείτε τη σχέση µεταξύ των αριθµών α, β, ώστε η εξίσωση να έχει δυο ρίζες άνισες, τις οποίες να προσδιορίσετε, ως συνάρτηση των α, β. γ) Αν οι ρίζες της εξίσωσης είναι x = α β και x = β α, τότε να αποδείξετε ότι (+x )(+x) ίνεται η εξίσωση λx +(λ )x+λ =0, µε παράµετρο λ R {0}. α) Να δείξετε ότι η διακρίνουσα της εξίσωσης είναι ανεξάρτητη του λ, δηλαδή σταθερή. β) Να προσδιορίσετε τις ρίζες της εξίσωσης συναρτήσει του λ. γ) Να βρείτε για ποιες τιµές του λ η απόσταση των ριζών της εξίσωσης στον άξονα των πραγµατικών αριθµών είναι ίση µε. 59. ίνεται το τριώνυµο λx (λ +)x+λ, λ R {0} α) Να βρείτε τη διακρίνουσα του τριωνύµου και να αποδείξετε ότι το τριώνυµο έχει ρίζες πραγµατικές για κάθε λ R {0} β) Αν x, x είναι οι ρίζες του τριωνύµου, να εκφράσετε το άθροισµα S=x +x συναρτήσει του λ 0 και να βρείτε την τιµή του γινοµένου P= x x των ριζών. γ) Αν λ>0, το παραπάνω τριώνυµο έχει ρίζες θετικές ή αρνητικές; Να αιτιολογήσετε την απάντησή σας. δ) Για κάθε λ>0, αν x, x είναι οι ρίζες του παραπάνω τριωνύµου. να αποδείξετε ότι x+ x x x.

9 60. ίνεται το τριώνυµο λx (λ +)x+λ, λ R {0}. α) Να βρείτε τη διακρίνουσα του τριωνύµου και να αποδείξετε ότι το τριώνυµο έχει ρίζες πραγµατικές για κάθε λ R {0}. β) Αν x, x είναι οι ρίζες του τριωνύµου, να εκφράσετε το άθροισµα S=x +x συναρτήσει του λ 0 και να βρείτε την τιµή του γινοµένου P=x x των ριζών. γ) Αν λ>0 το παραπάνω τριώνυµο έχει ρίζες θετικές ή αρνητικές; Να αιτιολογήσετε την απάντησή σας. δ) Αν 0<λ και x, x είναι οι ρίζες του παραπάνω τριωνύµου, τότε να συγκρίνετε τους x+ x αριθµούς και. 6. ίνεται η εξίσωση x +λx 36=0 () µε παράµετρο λ R. α) Να δείξετε ότι, για κάθε τιµή του λ, η εξίσωση () έχει δύο ρίζες πραγµατικές και άνισες. β) Υποθέτουµε τώρα ότι µία από τις ρίζες της εξίσωσης () είναι ο αριθµός ρ. i) Να δείξετε ότι ο αριθµός ρ είναι ρίζα της εξίσωσης x λx 36=0. ii) Να δείξετε ότι: ρ 0 και ο αριθµός ρ είναι ρίζα της εξίσωσης 36x +λx+=0. 6. α) ίνεται η διτετράγωνη εξίσωση x 4 8x 9=0. Να δείξετε ότι η εξίσωση αυτή έχει δύο µόνο πραγµατικές ρίζες, τις οποίες και να προσδιορίσετε. β) Γενικεύοντας το παράδειγµα του προηγούµενου ερωτήµατος, θεωρούµε τη διτετράγωνη εξίσωση x 4 +βx +γ=0 () µε παραµέτρους β,γ R. Να δείξετε ότι αν γ<0 τότε: i) β 4γ>0 ii) η εξίσωση () έχει δύο µόνο διαφορετικές πραγµατικές ρίζες. 63. α) ίνεται ορθογώνιο παραλληλόγραµµο µε περίµετρο Π=34cm και διαγώνιο δ=3cm i) Να δείξετε ότι το εµβαδόν του ορθογωνίου είναι E=60cm. ii) Να κατασκευάσετε µια εξίσωση ου βαθµού που να έχει ρίζες τα µήκη των πλευρών του ορθογωνίου. iii) Να βρείτε τα µήκη των πλευρών του ορθογωνίου. β) Να εξετάσετε αν υπάρχει ορθογώνιο παραλληλόγραµµο µε εµβαδόν 40cm και διαγώνιο 8cm. 64. ίνονται οι εξισώσεις x 3x+=0 () και x 4 3x +=0 (). α) Να βρείτε τις ρίζες της εξίσωσης (). β) Να βρείτε τις ρίζες της εξίσωσης (). γ) Να βρείτε τριώνυµο της µορφής x +βx+γ που οι ρίζες του να είναι κάποιες από τις ρίζες της εξίσωσης () και επιπλέον, για κάθε αρνητικό αριθµό x, να έχει θετική τιµή. 65. α) ίνεται η διτετράγωνη εξίσωση x 4 9x +0=0. Nα δείξετε ότι η εξίσωση αυτή έχει τέσσερις διαφορετικές πραγµατικές ρίζες, τις οποίες και να προσδιορίσετε. β) Να κατασκευάσετε µία διτετράγωνη εξίσωση της µορφής x 4 +βx +γ=0, η οποία να έχει δύο µόνο διαφορετικές πραγµατικές ρίζες. Να αποδείξετε τον ισχυρισµό σας λύνοντας την εξίσωση που κατασκευάσατε.

10 66. Στην Α τάξη ενός Λυκείου της Καρδίτσας η σύµβουλος των µαθηµατικών πρόκειται να πραγµατοποιήσει µια δραστηριότητα. Επειδή όµως δεν γνωρίζει το πλήθος των µαθητών της τάξης, συµβουλεύεται το Γυµναστή του σχολείου, που στοιχίζει τους µαθητές για τις παρελάσεις και εκείνος της απαντά µε ένα πρόβληµα: «Μπορώ να τοποθετήσω όλους τους µαθητές σε x σειρές µε x µαθητές σε κάθε σειρά. Αν όµως θελήσω να τους τοποθετήσω σε x+3 σειρές µε x 3 µαθητές σε κάθε σειρά, θα µου λείπει ένας µαθητής». α) Να βρείτε την τιµή του x β) Να αποδείξετε η Α' τάξη έχει 90 µαθητές. γ) Η σύµβουλος σκοπεύει να µοιράσει τους παραπάνω 90 µαθητές σε ν οµάδες εργασίας, ώστε στην πρώτη οµάδα να πάνε µαθητές και σε κάθε επόµενη οµάδα να πηγαίνουν παραπάνω κάθε φορά. Να βρείτε την τιµή του ν, δηλαδή πόσες οµάδες εργασίας θα δηµιουργηθούν. 67. ίνεται η εξίσωση x 5λx =0, µε παράµετρο λ R. α) Να αποδείξετε ότι, για κάθε λ R, η εξίσωση έχει δύο ρίζες πραγµατικές και άνισες. β) Αν x, x είναι οι ρίζες της παραπάνω εξίσωσης, τότε: i) Να προσδιορίσετε τις τιµές του λ R, για τις οποίες ισχύει (x +x ) 8 7(x x ) 4 =0. ii) Για λ=, να βρείτε την τιµή της παράστασης: x x 3x +4 3x + x x. 68. ίνεται ορθογώνιο παραλληλόγραµµο µε µήκη πλευρών α, β και εµβαδόν Ε, τέτοια ώστε οι αριθµοί α, Ε, β, µε τη σειρά που δίνονται να είναι διαδοχικοί όροι γεωµετρικής προόδου. α) Να αποδείξετε ότι Ε=. β) Αν α+β=0 τότε: i) Να κατασκευάσετε µια εξίσωση ου βαθµού µε ρίζες τα µήκη α, β ii) Να βρείτε τα µήκη α, β. 69. ίνεται το τριώνυµο x 6x+λ 7, όπου λ R. α) Να βρείτε τις τιµές του λ για τις οποίες το τριώνυµο έχει πραγµατικές ρίζες. β) i) Αν x, x είναι οι ρίζες του τριωνύµου, να βρείτε την τιµή του αθροίσµατος S=x +x των ριζών και να εκφράσετε συναρτήσει του λ το γινόµενο P=x x των ριζών. ii) Να δείξετε ότι, για κάθε λ µε 7<λ<6, το τριώνυµο έχει δύο άνισες οµόσηµες ρίζες. Ποιο είναι τότε το πρόσηµο των ριζών; Να αιτιολογήσετε την απάντησή σας. γ) i) Να βρείτε τις τιµές του λ για τις οποίες η εξίσωση x 6 x +λ=7 () έχει τέσσερις διαφορετικές πραγµατικές ρίζες. ii) Έχει η εξίσωση () για λ= 3 0 τέσσερις διαφορετικές πραγµατικές ρίζες; Να αιτιολογήσετε την απάντησή σας. 70. Τα σπίτια τεσσάρων µαθητών, της Άννας, του Βαγγέλη, του Γιώργου και της ήµητρας βρίσκονται πάνω σε έναν ευθύγραµµο δρόµο, ο οποίος ξεκινάει από το σχολείο τους. Οι αποστάσεις των τεσσάρων σπιτιών από το σχολείο, s A, s B, s Γ, και s αντίστοιχα, s + 3s ικανοποιούν τις σχέσεις: s A <s B, s Γ = A B και s s A = s s B. 4 Στον παρακάτω άξονα, το σχολείο βρίσκεται στο σηµείο Ο και τα σηµεία Α, Β, παριστάνουν τις θέσεις των σπιτιών της Άννας και του Βαγγέλη αντίστοιχα. α) Να τοποθετήσετε πάνω στον άξονα τα σηµεία Γ και, που παριστάνουν τις θέσεις των σπιτιών του Γιώργου και της ήµητρας. Να αιτιολογήσετε την απάντησή σας. β) Αν επιπλέον, οι τιµές των αποστάσεων s A, s B σε Km ικανοποιούν τις σχέσεις s A +s B =,4 και s A s B =0,45 τότε: i) Να κατασκευάσετε µια εξίσωση ου βαθµού που να έχει ρίζες τους αριθµούς s A, s B ii) Να υπολογίσετε τις αποστάσεις s A, s B, s Γ και s.

11 7. ίνεται η εξίσωση x x+λ=0, µε παράµετρο λ<. α) Να αποδείξετε ότι η εξίσωση έχει δύο ρίζες x, x διαφορετικές µεταξύ τους. β) Να δείξετε ότι x +x =. γ) Αν για τις ρίζες x, x ισχύει επιπλέον x = x +, τότε: i) Να δείξετε ότι x x =4. ii) Να προσδιορίσετε τις ρίζες x, x και η τιµή του λ. 7. ίνονται η εξίσωση αx (α )x α=0, µε παράµετρο α 0. α) Να αποδείξετε ότι η διακρίνουσα της εξίσωσης είναι =(α+). β) Να αποδείξετε ότι οι ρίζες της εξίσωσης είναι: p =α και p = α. γ) Να βρεθούν οι τιµές του α ώστε p p =. 73. α) Να λύσετε τις εξισώσεις 3x 4x+8=0 ()και 8x 4x+3=0 (). β) Ένας µαθητής παρατήρησε ότι οι ρίζες της εξίσωσης () είναι οι αντίστροφοι των ριζών της εξίσωσης () και ισχυρίστηκε ότι το ίδιο θα ισχύει για οποιοδήποτε ζευγάρι εξισώσεων της µορφής :αx +βx+γ=0 (3) και γx +βx+α=0 (4), µε α γ 0. Αποδείξτε τον ισχυρισµό του µαθητή, δείχνοντας ότι: Αν ο αριθµός p είναι ρίζα της εξίσωσης (3) και α γ 0, τότε: i) ρ 0 και ii) o p επαληθεύει την εξίσωση (4). 74. ίνονται οι παραστάσεις Α= + x x και Β= x x, x R. α) Να δείξετε ότι ορίζονται ταυτόχρονα για x και x 0. β) Να βρείτε το x ώστε Α=Β. (x= ) x 75. α) Να βρείτε για ποιες τιµές του x η παράσταση Π= + έχει νόηµα πραγµατικού x x x αριθµού. β) Για τις τιµές του x που βρήκατε στο α) ερώτηµα, να λύσετε την εξίσωση x + x x x = Το πάτωµα του εργαστήριου της πληροφορικής ενός σχολείου είναι σχήµατος ορθογωνίου µε διαστάσεις (x+) µέτρα και x µέτρα. α) Να γράψετε µε τη βοήθεια του x την περίµετρο και το εµβαδόν του πατώµατος. β) Αν το εµβαδόν του πατώµατος του εργαστηρίου είναι 90 τετραγωνικά µέτρα, να βρείτε τις διαστάσεις του.

6. α) Να λύσετε την εξίσωση 2x 1 =3. β) Αν α, β με α< β είναι οι ρίζες της εξίσωσης του ερωτήματος (α), τότε να λύσετε την εξίσωση αx 2 +βx+3=0.

6. α) Να λύσετε την εξίσωση 2x 1 =3. β) Αν α, β με α< β είναι οι ρίζες της εξίσωσης του ερωτήματος (α), τότε να λύσετε την εξίσωση αx 2 +βx+3=0. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. Δίνεται η εξίσωση λx=x+λ, με λr. α) Να αποδείξετε ότι η παραπάνω εξίσωση γράφεται ισοδύναμα (λ )x=(λ )(λ+), λr. β) Να βρείτε τις τιμές του λ για τις οποίες η παραπάνω εξίσωση

Διαβάστε περισσότερα

Εξισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

Εξισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 / Εξισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 0 / 0 6 εκδόσεις Ασκήσεις Πιθανότητες Τράπεζα θεμάτων. Δίνεται η

Διαβάστε περισσότερα

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος. . Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω

Διαβάστε περισσότερα

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ

Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ τράπεζαθεμάτων θέμαδεύτεροκαιτέταρτο Επιμέλεια: ΕμμανουήλΚ.Σκαλίδης ΑντώνηςΚ.Αποστόλου ΚόμβοςΑτσιποπούλου014-15 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΙΘΑΝΟΤΗΤΕΣ 1. Ένα κουτί περιέχει 5 άσπρες,

Διαβάστε περισσότερα

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 / Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88

Διαβάστε περισσότερα

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 3. Ασκήσεις: -5 Θεωρία ως και την 3.3 Ασκήσεις: 6-8 Άσκηση Δίνεται η παράσταση: A= 3 5 +

Διαβάστε περισσότερα

( f( )) ( f( )) 0. f( ) f( ) 0 θέτουμε αντίστοιχα. ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ. 2. Μορφή 0 με 0. Λύση: Λύση: 3. Μορφή Λύση: Βρίσκουμε,,

( f( )) ( f( )) 0. f( ) f( ) 0 θέτουμε αντίστοιχα. ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ. 2. Μορφή 0 με 0. Λύση: Λύση: 3. Μορφή Λύση: Βρίσκουμε,, ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ. Μορφή 0 με 0. Λύση: 0 ( ) 0 0 ή 0... Μορφή 0 με 0 Λύση: 0.. Μορφή 0 με 0 Λύση: Βρίσκουμε,, και τη διακρίνουσα 4 Αν 0 (ή, ετερόσημοι) η εξίσωση έχει δύο ρίζες πραγματικές και άνισες

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Σε μια ομάδα που αποτελείται από 7 άνδρες και 3 γυναίκες, 4 από τους άνδρες και από τις γυναίκες παίζουν σκάκι. Επιλέγουμε τυχαία ένα από τα άτομα αυτά.

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1- 3. Εξισώσεις ου Βαθμού 3. Η εξίσωση 3.3 Εξισώσεις ου Βαθμού Διδακτικό υλικό Άλγεβρας Α Λυκείου (Κεφάλαιο 3 ο ) Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς ρωτήσεις αντικειμενικού τύπουθέμα Α- Εξεταστέα ύλη

Διαβάστε περισσότερα

Οι εκφωνήσεις των ασκήσεων της Τράπεζας θεμάτων στην Άλγεβρα Α ΓΕΛ ανά ενότητα

Οι εκφωνήσεις των ασκήσεων της Τράπεζας θεμάτων στην Άλγεβρα Α ΓΕΛ ανά ενότητα Οι εκφωνήσεις των ασκήσεων της Τράπεζας θεμάτων στην Άλγεβρα Α ΓΕΛ ανά ενότητα Ιούνιος 04 . Έννοια της πιθανότητας GI_A_ALG 497 Ένα τηλεοπτικό παιχνίδι παίζεται µε ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι

Διαβάστε περισσότερα

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α). 1.: Έννοια της Πιθανότητας Κεφάλαιο 1ο: Πιθανότητες ΑΣΚΗΣΗ 1 (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

ΘΕΜΑ 2. 1 x < 4. (Μονάδες 9) 2. α) Να λύσετε την ανίσωση: β) Να λύσετε την ανίσωση: x (Μονάδες 9)

ΘΕΜΑ 2. 1 x < 4. (Μονάδες 9) 2. α) Να λύσετε την ανίσωση: β) Να λύσετε την ανίσωση: x (Μονάδες 9) α) Να λύσετε την ανίσωση: 1 x < 4. (Μονάδες 9) 2 β) Να λύσετε την ανίσωση: x+ 5 3. (Μονάδες 9) γ) Να βρείτε τις κοινές λύσεις των ανισώσεων των ερωτημάτων (α) και (β) με χρήση του άξονα των πραγματικών

Διαβάστε περισσότερα

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω. ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άσκηση 1 Από τους µαθητές ενός Λυκείου, το 25% συµµετέχει στη οµάδα, το 30% συµµετέχει στη θεατρική οµάδα ποδοσφαίρου και το 15% των µαθητών

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ 4ο Λύκειο Περιστερίου Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν ααννάά εεννόόττηητταα ΑΛΓΕΒΡΑ

Διαβάστε περισσότερα

β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε R. Μονάδες 8 γ) Αν x

β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε R. Μονάδες 8 γ) Αν x ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ ΕΤΟΣ 06-7 Εξισώσεις Β βαθμού Α Λυκείου Τριών Ιεραρχών την Δευτέρα κι ευκαιρία να τους τιμήσουμε λύνοντας μερικές ασκησούλες άλγεβρας Αρχίστε από τις,,3,4,5,6,8,3,4,5,6,7,8,9,0,

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 4 ο (141)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 4 ο (141) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα 4 ο (141) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

B =, όπου ο x είναι πραγματικός αριθμός. x x α) Να αποδείξετε ότι για να ορίζονται ταυτόχρονα οι παραστάσεις Α, Β πρέπει: x 1 και x 0.

B =, όπου ο x είναι πραγματικός αριθμός. x x α) Να αποδείξετε ότι για να ορίζονται ταυτόχρονα οι παραστάσεις Α, Β πρέπει: x 1 και x 0. 1 Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 16. Επιλέγουμε μια μπάλα στην τύχη. Δίνονται τα παρακάτω

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση

Διαβάστε περισσότερα

Εκφωνήσεις θεμάτων Άλγεβρας Τράπεζας θεμάτων ανά ενότητα. 2ο θέμα

Εκφωνήσεις θεμάτων Άλγεβρας Τράπεζας θεμάτων ανά ενότητα. 2ο θέμα .497 Πιιθαννότητεεςς ο θέμα Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και γυναίκες: η Ειρήνη (Ε)

Διαβάστε περισσότερα

Τ ρ α π ε ζ α Θ ε μ α τ ω ν

Τ ρ α π ε ζ α Θ ε μ α τ ω ν Τ ρ α π ε ζ α Θ ε μ α τ ω ν Α λ γ ε β ρ α Α Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Α Λ υ κ ε ι ο υ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Π ι θ α ν ο τ η τ ε ς 868 936 064 073 080

Διαβάστε περισσότερα

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις ΘΕΜΑ 2 Δίνονται οι συναρτήσεις (, x R 3 f ( x) = x και g x) = x α) Να δείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων f, g τέμνονται σε τρία σημεία τα οποία και να βρείτε. (Μονάδες 13) β) Αν Α, Ο,

Διαβάστε περισσότερα

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις: 1 Παρατηρήσεις Προβλήματα είχαν οι ασκήσεις: Απόλυτες τιμές:.504(δεν χρειάζεται το α

Διαβάστε περισσότερα

) = 0. Λύσεις/Ρίζες της εξίσωσης. Ακριβώς δύο άνισες πραγματικές λύσεις, τις: Η εξίσωση δεν έχει πραγματικές λύσεις

) = 0. Λύσεις/Ρίζες της εξίσωσης. Ακριβώς δύο άνισες πραγματικές λύσεις, τις: Η εξίσωση δεν έχει πραγματικές λύσεις 4. Εξισώσεις 2ου βαθμού αx 2 + βx + γ = 0, α 0 α, β, γ παράμετροι και x η μεταβλητή Αν ρ ρίζα/λύση της εξίσωσης, τότε αρ 2 + βρ + γ = 0 Αν ρ 1, ρ 2 ρίζες/λύσεις της εξίσωσης, τότε το τριώνυμο γράφεται

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και γυναίκες:

Διαβάστε περισσότερα

ΘΕΜΑ 4. . Αν για την τετμημένη x του σημείου M ισχύει:, τότε να δείξετε ότι το σημείο αυτό βρίσκεται κάτω από την. , με παράμετρο α 0.

ΘΕΜΑ 4. . Αν για την τετμημένη x του σημείου M ισχύει:, τότε να δείξετε ότι το σημείο αυτό βρίσκεται κάτω από την. , με παράμετρο α 0. ΘΕΜΑ 4 ΘΕΜΑ Δίνονται η συνάρτηση f x x x, x α) Να αποδείξετε ότι η γραφική παράσταση της συνάρτησης f δεν τέμνει τον άξονα xx. β) Να βρείτε τις τετμημένες των σημείων της ευθεία ψ x 3. (Μονάδες 0) γ) Έστω

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις : ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0

Διαβάστε περισσότερα

(Μονάδες 10) γ) Αν η εξίσωση (1) έχει ρίζες τους αριθμούς x 1, x 2 και d x 1,

(Μονάδες 10) γ) Αν η εξίσωση (1) έχει ρίζες τους αριθμούς x 1, x 2 και d x 1, Σε ένα τμήμα της Α Λυκείου κάποιοι μαθητές παρακολουθούν μαθήματα Αγγλικών και κάποιοι Γαλλικών. Η πιθανότητα ένας μαθητής να μην παρακολουθεί Γαλλικά είναι 0,8. Η πιθανότητα ένας μαθητής να παρακολουθεί

Διαβάστε περισσότερα

= και g ( x) = x +, x R. Δίνονται η συνάρτηση ( ) α) Να αποδείξετε ότι η γραφική παράσταση C

= και g ( x) = x +, x R. Δίνονται η συνάρτηση ( ) α) Να αποδείξετε ότι η γραφική παράσταση C ΘΕΜΑ Δίνονται η συνάρτηση ( ) ΘΕΜΑ 4 f x = x + x +, x R. α) Να αποδείξετε ότι η γραφική παράσταση C f της συνάρτησης f δεν τέμνει τον άξονα xx. (Μονάδες 5) β) Να βρείτε τις τετμημένες των σημείων της Cfπου

Διαβάστε περισσότερα

γ) Να εξετάσετε αν οι λύσεις της εξίσωσης του (α) ερωτήματος είναι και λύσεις της ανίσωσης του (β) ερωτήματος.

γ) Να εξετάσετε αν οι λύσεις της εξίσωσης του (α) ερωτήματος είναι και λύσεις της ανίσωσης του (β) ερωτήματος. α) Να λύσετε την εξίσωση: x+ 1 x+ 1+ 4 = 3 5 2 3 (Μονάδες 9) β) Nα λύσετε την ανίσωση: - x 2 +2x +3 0 (Μονάδες 9) γ) Να εξετάσετε αν οι λύσεις της εξίσωσης του (α) ερωτήματος είναι και λύσεις της ανίσωσης

Διαβάστε περισσότερα

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις: ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ Στέλιιος Μιιχαήλογλου-Δημήτρης Πατσιιμάς Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τράπεζα Θεμάτων (Θέμα 4ο) Κεφ. 1 ο Πιθανότητες

ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τράπεζα Θεμάτων (Θέμα 4ο) Κεφ. 1 ο Πιθανότητες Κεφ. 1 ο Πιθανότητες 1 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ 1. (1868) Σε ένα τμήμα της Α Λυκείου κάποιοι μαθητές παρακολουθούν μαθήματα Αγγλικών και κάποιοι Γαλλικών. Η πιθανότητα ένας μαθητής να μην παρακολουθεί Γαλλικά

Διαβάστε περισσότερα

[ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] ΤΟ 2 ο ΘΕΜΑ

[ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] ΤΟ 2 ο ΘΕΜΑ [ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΠΙΘΑΝΟΤΗΤΕΣ ΤΟ ο ΘΕΜΑ Άσκηση 1 Από τους μαθητές ενός Λυκείου, το 5% συμμετέχει στη ομάδα, το 30% συμμετέχει στη θεατρική ομάδα ποδοσφαίρου και το 15%

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

ΘΕΜΑ 4. για να κάψει 360 θερμίδες είναι: f( x)

ΘΕΜΑ 4. για να κάψει 360 θερμίδες είναι: f( x) Ένας αθλητής κολυμπάει ύπτιο και καίει 9 θερμίδες το λεπτό, ενώ όταν κολυμπάει πεταλούδα καίει 12 θερμίδες το λεπτό. Ο αθλητής θέλει, κολυμπώντας, να κάψει 360 θερμίδες. α) Αν ο αθλητής θέλει να κολυμπήσει

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3() ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών

Διαβάστε περισσότερα

ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Αν έχω τριώνυμο της μορφής :,. Υπολογίζω την Διακρίνουσα 4 Αν Δ> τότε η εξίσωση έχει άνισες ρίζες έστω Ομόσημο του α Ετερόσημο του α, τότε: Ομόσημο του α Αν Δ= τότε η εξίσωση έχει διπλή

Διαβάστε περισσότερα

( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x

( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x ΜΟΡΦΕΣ ΤΡΙΩΝΥΜΟΥ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Τριώνυµο λέγεται ένα πολυώνυµο της µορφής : f x = αx + βx+ γ, όπου α, β, γ R µε α. ( ) ιακρίνουσα και ρίζες του τριωνύµου f( x) = αx + βx+ γ λέγεται η διακρίνουσα και

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους

Άλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους οι πράξεις και οι ιδιότητές τους Μερικές ακόμη ταυτότητες (επιπλέον από τις αξιοσημείωτες που βρίσκονται στο σχολικό βιβλίο) ) Διαφορά δυνάμεων με ίδιο εκθέτη: ειδικά αν ο εκθέτης ν είναι άρτιος υπάρχει

Διαβάστε περισσότερα

Τράπεζα Θεμάτων. Άλγεβρα Α Λυκείου. Το 4 ο Θέμα

Τράπεζα Θεμάτων. Άλγεβρα Α Λυκείου. Το 4 ο Θέμα Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Το 4 ο Θέμα Επιμέλεια: Γιάνναρος Β. Μιχάλης-Μαθηματικός Άσκηση 1 Σε ένα τμήμα της Α Λυκείου κάποιοι μαθητές παρακολουθούν μαθήματα Αγγλικών και κάποιοι Γαλλικών. Η πιθανότητα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου Θέμα Α. Αν x, x οι ρίζες της δευτεροβάθμιας εξίσωσης αx +βx+γ=, α να αποδείξετε ότι S P. (6 μονάδες) Β. Ελέγξατε αν κάθε μία από τις παρακάτω σχέσεις είναι σωστή

Διαβάστε περισσότερα

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις: ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ Στέλιιος Μιιχαήλογλου-Δημήτρης Πατσιιμάς Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1

Διαβάστε περισσότερα

Σας εύχομαι καλή μελέτη και επιτυχία.

Σας εύχομαι καλή μελέτη και επιτυχία. ΠΡΟΛΟΓΟΣ Το βιβλίο αυτό αποτελεί συνέχεια του Α τεύχους και απευθύνεται κυρίως στους μαθητές της Α Λυκείου, αλλά και στους καθηγητές που διδάσκουν το μάθημα «Άλγεβρα και στοιχεία πιθανοτήτων» της Α Λυκείου.

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

Α ΛYKEIOY ΆΛΓΕΒΡΑ Άλγεβρα. Μίλτος Παπαγρηγοράκης Χανιά

Α ΛYKEIOY ΆΛΓΕΒΡΑ Άλγεβρα. Μίλτος Παπαγρηγοράκης Χανιά Άλγεβρα Α ΛYKEIOY ΆΛΓΕΒΡΑ 09-00 Μίλτος Παπαγρηγοράκης Χανιά Ταξη: Α Γενικού Λυκείου Άλγεβρα Έκδοση 907 Η συλλογή αυτή διανέμεται δωρεάν σε ψηφιακή μορφή μέσω διαδικτύου προορίζεται για σχολική χρήση και

Διαβάστε περισσότερα

B= πραγματοποιείται τουλάχιστον ένα από τα ενδεχόμενα Α και Β ii) B = πραγματοποιούνται ταυτόχρονα τα ενδεχόμενα Β και Γ iii)

B= πραγματοποιείται τουλάχιστον ένα από τα ενδεχόμενα Α και Β ii) B = πραγματοποιούνται ταυτόχρονα τα ενδεχόμενα Β και Γ iii) Πιθανότητες.3096. α) Αν Α,Β,Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης που αποτελείται από απλά ισοπίθανα ενδεχόμενα, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα: i) A B ii)

Διαβάστε περισσότερα

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0 1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:

Διαβάστε περισσότερα

β=0 Η εξίσωση (λ-2)χ=2λ-4 για λ=2 είναι αδύνατη. Σ Λ Αν η εξίσωση αχ+β=0 έχει δύο διαφορετικές λύσεις τότε είναι αόριστη. Σ Λ

β=0 Η εξίσωση (λ-2)χ=2λ-4 για λ=2 είναι αδύνατη. Σ Λ Αν η εξίσωση αχ+β=0 έχει δύο διαφορετικές λύσεις τότε είναι αόριστη. Σ Λ 3. ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ 3. ΕΞΙΣΩΣΕΙΣ α 0 Η εξίσωση έχει μία μοναδική λύση την x= - αx+β=0 α=0 β 0 β=0 Η εξίσωση είναι αδύνατη, δηλαδή δεν έχει λύση. Η εξίσωση είναι αόριστη ή ταυτότητα, δηλαδή επαληθεύεται

Διαβάστε περισσότερα

Τάξη A Μάθημα: Άλγεβρα

Τάξη A Μάθημα: Άλγεβρα Τάξη A Μάθημα: Άλγεβρα Ερωτήσεις Θεωρίας Θέματα Εξετάσεων Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Α. Θεωρία - Αποδείξεις.. Σελ. Β. Θεωρία-Ορισμοί. Σελ.16 Γ. Ερωτήσεις Σωστού Λάθους...

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης. Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0%. Να βρείτε: i. Το πλήθος των μαθητών

Διαβάστε περισσότερα

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας . Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α. Να βρείτε το πεδίο ορισμού της. x x x x β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο Δίνεται η συνάρτηση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού 108 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθµό, να υπολογιστεί

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Άλγεβρα Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Άλγεβρα Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Άλγεβρα Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

ΘΕΜΑ 4. Δίνεται η εξίσωση. α) Να βρείτε την τιμή του λ ώστε η εξίσωση να είναι 1 ου βαθμού. (Μονάδες 5)

ΘΕΜΑ 4. Δίνεται η εξίσωση. α) Να βρείτε την τιμή του λ ώστε η εξίσωση να είναι 1 ου βαθμού. (Μονάδες 5) Δίνεται η εξίσωση (8-λ)x 2-2(λ-2)x+1=0, με παράμετρο λ R. α) Να βρείτε την τιμή του λ ώστε η εξίσωση να είναι 1 ου βαθμού. (Μονάδες 5) β) Αν η εξίσωση είναι 2 ου βαθμού, να βρείτε τις τιμές του λ ώστε

Διαβάστε περισσότερα

Ασκήσεις Άλγεβρας Α Λυκείου 2 oυ και 3 oυ Κεφαλαίου 1

Ασκήσεις Άλγεβρας Α Λυκείου 2 oυ και 3 oυ Κεφαλαίου 1 Ασκήσεις Άλγεβρας Α Λυκείου oυ και 3 oυ Κεφαλαίου έµης Απόστολος, Ζάχος Ιωάννης, Κατσαργύρης Βασίλειος, Κόσυβας Γεώργιος, Λυγάτσικας Ζήνων Πειραµατικό Γενικό Λύκειο Βαρβακείου Σχολής Οκτώβριος 004 Νοεµβρίου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,

Διαβάστε περισσότερα

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114 1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ ΘΕΜΑ 1 Ο Δίνεται η συνάρτηση f ( x) x ( 1) x 3 με 0 Γ1. Να λυθεί η εξίσωση f ( x) 0 για λ = -1 Γ. Για λ=3, να λυθεί η ανίσωση f ( x) 0 Γ3. Να αποδείξετε ότι στην

Διαβάστε περισσότερα

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α Να βρείτε το πεδίο ορισμού της x x x x β Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν γ Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο x x f ( x), να δείξετε

Διαβάστε περισσότερα

Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1

Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1 Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1 Εξίσωση πρώτου βαθμού ή πρωτοβάθμια εξίσωση με άγνωστο x ονομάζεται κάθε εξίσωση της μορφής

Διαβάστε περισσότερα

Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς

Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς Μεθοδική Επανάληψη www.askisopolis.gr Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς Ε. Σύνολα i. Τι είναι το σύνολο; ii. Ποιοι είναι οι βασικοί τρόποι παράστασης συνόλων και τι γνωρίζετε γι αυτούς; iii. Πότε

Διαβάστε περισσότερα

x y z xy yz zx, να αποδείξετε ότι x=y=z.

x y z xy yz zx, να αποδείξετε ότι x=y=z. ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α. ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 4 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 4 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 4 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 4.1 Ασκήσεις: 1-12 Θεωρία ως και την 4.2 Ασκήσεις: 13-25 Άσκηση 1 α) Να λύσετε την ανίσωση

Διαβάστε περισσότερα

Τράπεζα Θεμάτων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Επιμέλεια Σταύρος Κόλλιας

Τράπεζα Θεμάτων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Επιμέλεια Σταύρος Κόλλιας Τράπεζα Θεμάτων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Επιμέλεια Σταύρος Κόλλιας Έκδοση. Θέμα 7958: Το τελευταίο κλάσμα (στην ανισότητα) από 3 έγινε 3. ΘΕΜΑ - 474 Κόλλιας Σταύρος - Κόρινθος Θεωρούμε την ακολουθία ( α ν ) των

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Άσκηση 1102 Δίνονται δύο ενδεχόμενα ενός δειγματικού χώρου Ω και οι πιθανότητες α) Να υπολογίσετε την (Μονάδες 9) β) i) Να υπολογίσετε με διάγραμμα Venn και να γράψετε στη γλώσσα των συνόλων το ενδεχόμενο:

Διαβάστε περισσότερα

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( ) α. Να βρείτε το πεδίο ορισμού της. β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο f ( ), να δείξετε ότι αβ+=0.

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

Τράπεζα Θεμάτων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Επιμέλεια Σταύρος Κόλλιας

Τράπεζα Θεμάτων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Επιμέλεια Σταύρος Κόλλιας Τράπεζα Θεμάτων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Επιμέλεια Σταύρος Κόλλιας ΘΕΜΑ 474 Θεωρούμε την ακολουθία των θετικών περιττών αριθμών:, 3, 5, 7, α) Να αιτιολογήσετε γιατί η είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ.

ΠΡΟΛΟΓΟΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ. ΠΡΟΛΟΓΟΣ Το παρόν τεύχος δημιουργήθηκε για να διευκολύνει τους μαθητές στην ΆΜΕΣΗ κατανόηση των απαιτήσεων των ΠΡΟΑΓΩΓΙΚΏΝ ΕΞΕΤΑΣΕΩΝ της Α Λυκείου δίνοντας τους τις εκφωνήσεις μαζί με τις λύσεις (ΘΕΜΑΤΑ

Διαβάστε περισσότερα

f (x) = x2 5x + 6 x 3 S 2 P 2 0

f (x) = x2 5x + 6 x 3 S 2 P 2 0 Η ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ Α ΛΥΚΕΙΟΥ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΟ ΘΕΜΑ Β 1. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,... (αʹ) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί wwwaskisopolisgr Άλγεβρα Α Λυκείου Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ 006-08 Δίνεται ότι και y Πραγματικοί αριθμοί α) i Να βρεθούν τα όρια μεταξύ των οποίων περιέχεται το ii Να βρεθούν τα όρια μεταξύ

Διαβάστε περισσότερα

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 014 ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο είναι ένα τμήμα μιας προσωπικής

Διαβάστε περισσότερα

με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2

με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2 Άσκηση 75 Σε έναν οργανισμό, αρχικά υπάρχουν 04800 βακτήρια. Μετά από 1 ώρα υπάρχουν 10400 βακτήρια, μετά από ώρες 5100 βακτήρια, και γενικά ο αριθμός των βακτηρίων υποδιπλασιάζεται κάθε μια ώρα. α) Πόσα

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 5 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι _ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +

Διαβάστε περισσότερα