3. Reguli si conventii de stil pentru exprimarea unitatilor de masura

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3. Reguli si conventii de stil pentru exprimarea unitatilor de masura"

Transcript

1 Reguli si conventii de stil pentru exprimarea unitatilor de masura 3. Reguli si conventii de stil pentru exprimarea unitatilor de masura 3.1. Reguli si conventii de stil pentru simbolurile unitatilor SI Urmatoarele opt subcapitole sunt dedicate prezentarii regulilor si conventiilor de stil utilizate la scrierea, tiparirea si utilizarea simbolurilor unitatilor de masura Formatul caracterelor Simbolurile unitatilor sunt tiparite utilizând stilul roman (vertical) indiferent de tipul textului care-l înconjoara (paragraful 6.2) Majuscule Toate simbolurile unitatilor de masura sunt tiparite utilizând literele mici (minuscule), cu exceptia: simbolul sau prima litera a simbolului unitatii de masura va fi majuscula pentru unitatile ale caror nume provine de la numele unei persoane; în unele state, simbolul litrului se noteaza prin L (vezi paragraful 2.1.1). Exemple: s (secunda) kg (kilogram) rad (radian) A (amper) Hz (hertz) Wb (weber) Pluralul Asupra simbolurilor unitatilor de masura nu se rasfrâng regulile gramaticale de formare a pluralului si la plural ele ramân nemodificate. Exemple: l = 1 m sau l = 65 m Nota: în acest caz litera l reprezinta simbolul cantitativ pentru lungime (regulile si conventiile pentru exprimarea marimilor sunt prezentate în capitolul 4). 28

2 SI. Ghid de utilizare Punctuatia Simbolurile unitatilor nu sunt urmate de punct, cu exceptia cazurilor când ele se afla la sfârsitul propozitiei. Exemple: Lungimea constituie 24 m. sau si nu Este de 24 m lungime. Este de 24 m. lungime Simbolurile unitatilor obtinute prin multiplicare Simbolurile pentru unitatile formate prin multiplicarea (înmultirea) altor unitati sunt prezentate printr-un punct (la o jumatate din înaltimea caracterului) sau spatiu între simbolurile utilizate. Pentru a evita unele situatii confuze, în prezentarea simbolurilor unitatilor, se prefera utilizarea punctului. Exemple: V s sau V s Nota: 1. Utilizarea punctului sau a spatiului între simboluri este stric necesara. De exemplu, m s -1 este simbolul pentru unitatea metru pe secunda, pe când ms -1 este unitatea echivalenta a valorii 10 3 s -1 în care se utilizeaza prefixul m mili (paragraful 3.2.3). 2. În recomandarile ISO [6] se sugereaza ca în cazurile când spatiul între simboluri este utilizat la formarea multiplilor el poate fi omis, daca aceasta simplificare nu genereaza confuzii. Aceasta posibilitate poate fi evidentiata la utilizarea simbolului kwh si nu kw h sau kw h, cum ar fi logic, pentru kilowatt ora. Însa pentru a exclude diversele confuzii posibile, în continuare, se va insista asupra utilizarii punctului sau a spatiului între simbolurile implicate în diverse operatii de multiplicare. 29

3 Reguli si conventii de stil pentru exprimarea unitatilor de masura Simbolurile unitatilor obtinute prin derivare Simbolurile pentru unitatile formate prin derivarea (împartirea) altor unitati de masura sunt prezentate prin intermediul unei bare înclinate /, unei linii orizontale sau a exponentilor negativi. m Exemple: m/s, s, sau m s -1 Totusi, pentru evitarea ambiguitatilor, bara înclinata nu trebuie sa se repete în aceeasi expresie, cu exceptia cazurilor când vor fi utilizate parantezele. Exemple: m/s 2 sau m s -2, si nu m/s/s m kg/(s 3 A) sau m kg s -3 A -1 si nu m kg/s 3 /A În acelasi timp, exponentii negativi se recomanda a fi utilizati în cazurile mai complicate, când evitarea lor este problematica Utilizarea concomitenta a simbolurilor si denumirilor de unitati Simbolurile unitatilor de masura nu pot fi utilizate împreuna cu denumirile unitatilor (vezi par. 5.4 si 5.7). Exemple: C/kg, C kg -1, sau coulomb pe kilogram si nu coulomb/kg, coulomb pe kg, C/ kilogram, coulomb kg -1, C pe kg, coulomb/kilogram Abrevierea simbolurilor si denumirilor de unitati Deoarece, în general, unitatile de masura SI sunt recunoscute si acceptate pe plan international, este interzisa abrevierea simbolurilor sau a denumirilor sale. De exemplu, este inadmisibila utilizarea simbolurilor sec (pentru s sau secunda), mm patr. (pentru mm 2 sau milimetru patrat), cc (pentru cm 3 sau centimetru cub), lit (pentru l sau litru), mps (pentru m/s sau metru pe secunda) etc. 30

4 SI. Ghid de utilizare Cu toate ca marimile, de regula, sunt exprimate utilizând cifrele si simbolurile unitatilor (paragraful 4.6), din anumite motive reprezentarea unitatii poate fi mai comoda utilizând denumirea acesteia si nu simbolul ei. În acest caz, denumirea unitatii trebuie scrisa în forma completa Reguli si conventii de stil pentru prefixele SI Urmatoarele opt subcapitole sunt dedicate prezentarii regulilor si conventiilor de stil utilizate la scrierea si utilizarea prefixelor utilizate în SI Formatul caracterelor Simbolurile prefixelor unitatilor SI sunt tiparite utilizând stilul roman (vertical), fara a lasa spatii libere între simbolul prefixului si simbolul unitatii. Exemple: MΩ (megaohm), µm (micrometru) PHz (petahert) Majuscule Simbolurile prefixelor? (yotta), Z (zeta), E (exa), P (peta), T (teta), G (giga) si M (mega) sunt tiparite cu caractere majuscule în timp ce celelalte prefixe SI sunt tiparite cu caractere minuscule (vezi tabelul 6) Insepararea prefixului de unitate Grupul de simboluri, format din simbolul prefixului adaugat la simbolul unitatii constituie un simbol nou inseparabil (formând multiplul sau submultiplul unitatii de masura). Acest nou simbol poate fi ridicat la putere (pozitiva sau negativa) si poate fi combinat cu alte simboluri pentru formarea unor simboluri de unitati compuse. Prefixele sunt, de asemenea, inseparabile fata de denumirile unitatilor la care sunt adaugate. Astfel, de exemplu, milimetrul, micropascalul si meganewtonul reprezinta un singur cuvânt. 31

5 Reguli si conventii de stil pentru exprimarea unitatilor de masura Exemple: 5,8 cm 3 = 5,8 (cm) 3 = 5,8 (10-2 m) 3 = 5, m 3 1 cm -1 = 1 (cm) -1 = 1 (10-2 m) -1 = 10 2 m µs -1 = 3000 (µs) -1 = 3000 (10-6 s) -1 = s -1 = s -1 1 V/cm = (1 V)/(10-2 m) = 10-2 V/m Prefixe compuse Simbolurile prefixelor compuse, reprezinta simbolurile prefixelor formate prin juxtapunere (alaturare) a doua sau mai multe simboluri ale prefixelor - actiune interzisa. Exemplu: ns (nano secunda) si nu mµs (milimicrosecunda) Utilizarea prefixelor multiple Într-o unitate de masura derivata formata prin divizare, utilizarea unui simbol de prefix (sau a unui prefix) concomitent la numarator si la numitor este nedorita, deoarece aceasta poate duce la confuzii. Astfel, de exemplu, notatia 10 kv/mm este acceptabila, însa este preferata notatia 10 MV/m, deoarece ea contine doar un prefix care este plasat în numarator. Aceeasi regula se extinde si asupra unitatilor derivate formate prin multiplicare, folosirea a mai multor simboluri de prefix (sau a mai multor prefixe) poate duce la confuzii. Astfel, de exemplu, notatia 10 MV ms este acceptabila însa se considera preferabila utilizarea notatiei 10 kv s. Nota: Recomandarile de mai sus nu sunt valabile în cazul unitatilor derivate din kilogram. De exemplu, notatia 0,25 mmol/g nu poate fi considerata mai preferata decât notatia 0,25 mol/kg Neacceptarea prefixelor izolate Prefixele simbolurilor nu pot fi utilizate izolat si astfel nu pot fi atasate cifrei 1 simbolului pentru unitatea unu. În acelasi context, 32

6 SI. Ghid de utilizare prefixele nu pot fi atasate denumirii unitatii unu, adica cuvântului unu (paragraful 4.10). Exemplu: valoarea densitatii atomului de Pl este de /m 3 si nu valoarea densitatii atomului de Pl este de 5 M/m Prefixe si kilogramul Din motive istorice, denumirea kilogram pentru unitatea SI fundamentala a masei contine cuvântul kilo, care este si prefixul SI pentru Astfel, deoarece prefixele compuse nu sunt acceptate (paragraful 3.2.4), simbolurile multiplilor zecimali si submultiplilor unitatii de masa sunt formati prin atasarea simbolurilor prefixelor SI la simbolul g, iar denumirea unui astfel de multiplu sau submultiplu se formeaza prin adaugarea prefixului SI la cuvântul gram. Exemplu: 10-6 kg = 1 mg (1 miligram) si nu 10-6 kg = 1 µkg (1 microkilogram) Prefixe ale gradului Celsius si ale unitatilor acceptate de a fi utilizate în SI Simbolurile prefixelor pot fi utilizate împreuna cu simbolul C, precum si cu denumirea unitatii de temperatura grad Celsius. De exemplu, este permisa notatia 24 m C (24 miligrade Celsius). Totusi, pentru a evita diverse situatii confuze, simbolurile prefixelor nu se folosesc împreuna cu simbolurile (si denumirile) unitatilor referitoare la timp: min - minut, h - ora, d - zi; nici cu simbolurile (si denumirile) cu privire la unghi: - grad, ' - minut si '' - secunda (vezi tabelul 8). Prefixele mai pot fi folosite împreuna cu simbolurile si denumirile unitatilor l - litru, t - tona, ev - electronvoltul si u - masa atomica unificata (vezi tabelele 7 si 8). Însa, cu toate ca submultiplii litrului cum ar fi ml - mililitrul si dl - decilitrul sunt pe larg utilizate, aceasta 33

7 Reguli si conventii de stil pentru exprimarea unitatilor de masura nu se refera la toti multiplii litrului, cum ar fi kl - kilolitrul si Ml megalitrul a caror utilizare nu este recomandata. Acelasi lucru se întâmpla si în cazul multiplilor tonei, cum ar fi kt (kilotona) a carei utilizare este admisa si practicata, si submultiplul acesteia mt (militona) unitate ce este echivalenta cu un kilogram (kg) a carei utilizare nu este recomandata. Exemple de utilizare a prefixelor cu unitatile ev si u: 54 MeV (54 megaelectronvolti) si 23 nu (23 nanomasa atomica unificata). 34

8 SI. Ghid de utilizare 4. Reguli si conventii de stil pentru exprimarea marimilor 4.1. Valoarea si expresia numerica a marimii Valoarea cantitativa, a unei marimi fizice, este marimea exprimata prin produsul unui numar (valoarea sa numerica) si a unitatii sale de masura. Exemplificând, valoarea cantitativa a unei marimii fizice A poate fi scrisa ca A = {A} [A], unde {A} reprezinta valoarea numerica a lui A iar [A] reprezinta unitatea de masura în care se exprima aceasta marime. De aici, rezulta ca valoarea numerica poate fi exprimata ca {A} = A / [A] Spatierea dintre valorile numerice si simbolurile unitatilor În expresia ce exprima valoarea cantitativa a unei marimi fizice, simbolul unitatii este plasat dupa valoarea numerica si este distantat de un spatiu între valoarea numerica si simbolul unitatii. Unica exceptie de la aceasta regula este valabila în cazul simbolurilor unitatilor grad, minut si secunda, precum si în cazul simbolurilor pentru unghiul plan:, si (vezi tabelul 8); în aceste cazuri nu se lasa spatii între valoarea numerica si simbolul unitatii. Exemplu: α = Nota: α este simbol cantitativ pentru unghiul plan. Aceasta regula (a spatierii) se respecta si în cazul simbolului C pentru gradul Celsius, care este precedat de un spatiu liber si exprima valoarea temperaturii Celsius. Exemplu: t = 30,2 C si nu t = 30,2 C sau t=30,2 C 35

9 Reguli si conventii de stil pentru exprimarea marimilor 4.3. Exprimarea cantitativa a unei marimi Valoarea cantitativa a unei marimi este exprimata folosind o singura unitate de masura. Exemplu: l = 10,234 m si nu l = 10m 23cm 4mm Nota: Exprimarea valorica a intervalelor de timp si a unghiurilor plane face exceptie la aceasta regula. Totusi, este preferabil de a diviza gradele fractionale. Astfel, mai degraba ar trebui sa se scrie 31,20 decât 31 12, exceptie facând asa domenii ca cartografia si astronomia Atasarea informatiilor suplimentare la unitatile de masura În cazul prezentarii valorii cantitative a unei marimi, se interzice atasarea unor litere sau a altor caractere la simbolul unitatii de masura. Aceasta necesitate poate aparea în cazul dorintei de a furniza unele informatii suplimentare ce vor descrie marimea sau vor prezenta conditiile ei de masurare. În schimb, aceste litere sau diversele caractere pot fi atasate la marime. Exemplu: U min = 100 V si nu U = 100 V min Nota: U este simbolul cantitativ ce exprima diferenta de potential Combinarea unitatilor de masura cu informatiile suplimentare În cazul existentii unei valori cantitative a unei marimi, orice informatie suplimentara ce tine de aceasta marime sau de conditiile sale de masurare trebuie prezentata într-un astfel de mod, încât ele sa nu fie asociate cu unitatea respectiva. Altfel spus, valorile marimilor trebuie definite astfel încât ele sa poata fi exprimate numai în unitati acceptate (vezi si paragraful 4.10). 36

10 SI. Ghid de utilizare Exemplu: continutul de Pb este 5 ng/l si nu 5 ng Pb/l sau 5ng plumb pe litru sensibilitatea moleculelor de NO 3 si nu sensibilitatea este este cm -3 molecule NO 3 /cm 3 intensitatea de emisie a si nu intensitatea de emisie neutronilor este s -1 este n/s 4.6. Utilizarea simbolurilor si numerelor împreuna cu denumirile acestora În aceasta lucrare se încearca reglamentarea elementelor cheie ale întocmirii documentelor stiintifice sau tehnice, în particular prezentarea rezultatelor masurarilor si valorile cantitative ale marimilor masurate. Aceasta va face posibila întelegerea documentului de catre persoanele neavizate în domeniu, inclusiv de catre cititorii cu cunostinte slabe ale limbii în care este prezentat documentul. Astfel, pentru a promova întelegerea informatiei cantitative în general, precum si întelegerea ei de catre persoanele neavizate în particular, valorile cantitative ale marimilor trebuie exprimate în unitati reciproc acceptabile, folosind: simbolurile (cifrele) arabe pentru numere si nu denumirile numerelor arabe; simbolurile unitatilor si nu denumirile unitatilor. Exemple: înaltimea cladirii este de 10 m si nu înaltimea cladirii este de zece metri. temperatura de 20 C a fost mentinuta timp de 5 min si nu temperatura de 20 grade Celsius a fost mentinuta timp de 5 minute 37

11 Reguli si conventii de stil pentru exprimarea marimilor Nota: 1. Daca cititorul caruia îi este adresata lucrarea este mai putin familiarizat cu simbolurile unor unitati particulare, atunci la prima utilizare ele ar trebui definite. 2. Deoarece utilizarea denumirilor numerelor arabe împreuna cu un simbol al unitatii poate cauza confuzii, astfel de combinatii trebuie strict evitate. De exemplu, nu se va scrie lungimea pistei este patruzeci m Claritatea în scrierea valorilor marimilor cantitative Valoarea cantitativa a unei marimi este exprimata ca produsul unui numar si a unitatii sale de masura (vezi paragraful 4.1). Astfel, pentru a evita posibilele confuzii, este necesar ca valorile cantitative sa fie scrise în asa mod încât interpretarea lor sa fie univoca, sa fie clar carui simbol al unitatii îi apartine valoarea numerica. În acelasi context, se mai recomanda ca expresia pâna la sa se utilizeze numai la specificarea gamei (intervalului) valorilor. Exemple: 43 mm 43 mm 14 mm si nu mm 312 nm pâna la 533 nm sau (312 pâna la 533) nm si nu 312 pâna la 533 nm 0 C pâna la 80 C sau (0 pâna la 80) C si nu 0 C 80 C 5 V pâna la 10 V sau (5 pâna la 10) V si nu 5 10 V (5,2; 6,4; 7,6; 8,8; 10,0) khz si nu 5,2; 6,4; 7,6; 8,8; 10,0 khz 84,5 m ± 0,2 m sau (84,5 ± 0,2) m si nu 84,5 ± 0,2 m sau 84,5 m ± 0,2 45 s 6 s = 39 s sau (45 6) s = 39 s si nu 45 6 s = 39 s 38

12 SI. Ghid de utilizare 4.8. Simboluri solitare Simbolurile unitatilor de masura nu se folosesc niciodata solitare, adica fara specificarea valorii numerice sau a simbolului cantitativ. Exemple: în 10 km sunt 10 4 mm si nu în 10 km sunt mai multi mm se vinde la metru patrat si nu se vinde la m 2 Sunt permise utilizarea expresiilor de genul t/ C, E/(V/m), p/mpa etc Selectarea prefixelor SI Selectarea si alegerea multiplilor si submultiplilor zecimali ai unei unitati, destinate exprimarii unei valori (marimi) cantitative, respectiv alegerea unui prefix SI este determinata de câtiva factori: necesitatea indicarii celor mai semnificative cifre din numar; necesitatea utilizarii valorilor numerice usor de înteles; experienta în domenii specifice ale stiintei si tehnicii. Deseori se recomanda, pentru a simplifica întelegerea, ca prefixele sa fie alese astfel încât valorile numerice sa fie cuprinse între 0,1 si În aceasta situatie se vor modifica numai simbolurile prefixelor, care reprezinta cifra 10 ridicata la o putere multipla lui 3. Exemple: 5, Hz poate fi scris ca Hz = 57 MHz 0, g poate fi scris ca 7, g = 7,43 mg 5129 W poate fi scris ca 5, W = 5,129 kw 8, m poate fi scris ca m = 82 nm Totusi, nu întotdeauna marimile permit respectarea recomandarilor de mai sus, respectarea carora nu este obligatorie. În diverse tabele cu valori se recomanda utilizarea unui singur prefix, chiar daca unele din valorile numerice nu se încadreaza în domeniul 0, De exemplu, se prefera utilizarea expresiei marimea piesei este de 39

13 Reguli si conventii de stil pentru exprimarea marimilor 20mm 5 mm 0,03 mm si nicidecum a expresiei marimea piesei este de 2 cm 5 mm 3 µm. În unele tipuri de desene tehnice este primita exprimarea tuturor dimensiunilor în milimetre. Acesta este un exemplu de utilizare a prefixelor bazat pe experienta acumulata în unele domenii specifice ale stiintei si tehnicii Marimi adimensionale Unele marimi, de exemplu indicele de refractie, permeabilitatea relativa etc, sunt definite ca raportul dintre doua marimi reciproc comparabile si astfel au dimensiunea (unitatea de masura) unu. Unitatea coerenta SI pentru o astfel de marime este raportul dintre doua unitati SI identice, care este exprimata prin cifra 1. În acelasi timp, cifra 1 nu apare în expresia marimii de dimensiunea unu. De exemplu, valoarea indicelui de refractie dintr-un mediu dat este exprimata ca n = 1,51 1 = 1,51. Din alt punct de vedere, unele marimi adimensionale (egale cu unu) au simboluri si denumiri speciale care pot fi utilizate în functie de împrejurari. Unghiul plan si unghiul solid (vezi tabelul 3), pentru care unitatile SI sunt radianul (rad) si respectiv steradianul (sr), sunt exemple clasice ale unor astfel de marimi Multiplii si submultiplii unitatii unu Deoarece prefixele simbolurilor nu pot fi atasate unitatii (cifrei) unu (vezi par ), este recomandat ca puterile lui 10 sa exprime multiplii si submultiplii zecimali ai unitatii de masurare. Exemplu: µ r = 1, si nu µ r = 1,2 µ Nota: µ r este simbolul cantitativ pentru permiabilitatea relativa. 40

14 SI. Ghid de utilizare Procentul - % În acord cu [6] se considera acceptabil de a folosi simbolul % (procent) pentru numarul 0,01 si, astfel, de a exprima cu ajutorul lui o marime cantitativa cu valoarea unu. La folosirea acestui simbol este lasat spatiu între el si numarul pe care-l multiplica. În acord cu paragraful 4.6, este necesar de a folosi simbolul % si nu cuvântul procent. Exemple: x B = 0,0025 = 0,25 % si nu x B = 0,25 procente. Deoarece simbolul % reprezinta pur si simplu un numar, nu este recomandat de a-i atasa informatii suplimentare (vezi paragraful 4.4). Deaceea, trebuie evitata folosirea expresiilor de tip procentaj de greutate, procentaj de masa, procentaj de volum sau procentaj dintr-o cantitate de substanta. Similar, trebuie sa se evite si scrierea simbolului procentual, de exemplu: % (m/m), % (din greutate), % (V/V), % din volum sau % (mol/mol). În astfel de cazuri se prefera de a folosi formularile de tipul: fractia masei este 0,10 sau fractia masei e de 10 %, w B = 0,10 sau w B = 10 % etc. În acelasi context, deoarece simbolul % reprezinta pur si simplu numarul 0,01, este incorect de a scrie, de exemplu: unde rezistentele R 1 si R 2 difera cu 0,05 % sau valoarea rezistentei R 1 depaseste valoarea rezistentei R 2 cu 0,05 %. În acest caz, ar trebui sa se utilizeze formularea unde R 1 = R 2 (1 + 0,05 %) sau sa se defineasca marimea? utilizând relatia? = (R 1 R 2 ) / R 2 si sa se scrie unde? = 0,05 % ppm, ppb si ppt Aceste simboluri fac parte din termenii limbii engleze, abrevieri pentru: parte din milion ppm, parte din bilion ppb si parte din 41

15 Reguli si conventii de stil pentru exprimarea marimilor trilion ppt. Aceste notatii nu sunt acceptate pentru a fi utilizate în SI, pentru exprimarea marimilor cantitative. Exemple ale înlocuirii notatiilor ppm, ppb si ppt sunt prezentate în continuare. Exemple: 5,0 µl/l sau 5, V si nu 5,0 ppm V 9,3 nm/m sau 9, l si nu 9,3 ppb l 8 ps/s sau t si nu 8 ppt t unde: V volum, l lungime si t timp Cifre romane Este inacceptabil de a folosi cifrele romane pentru a exprima valorile marimilor cantitative. Numai în cazuri exceptionale, pot fi folosite cifrele C, M si MM pentru substituirea numerelor 10 2, 10 3 si respectiv

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

5. Reguli si conventii ortografice pentru denumiri de unitati

5. Reguli si conventii ortografice pentru denumiri de unitati Reguli si conventii ortografice pentru denumiri de unitati 5. Reguli si conventii ortografice pentru denumiri de unitati În urmatoarele 6 subcapitole sunt prezentate reguli si conventii stilistice referitoare

Διαβάστε περισσότερα

1. Unitati si prefixe SI

1. Unitati si prefixe SI 1. Unitati si prefixe SI Unitati si prefixe SI Se numeste unitate de masura o marime particulara a unei marimi fizice, definita si adoptata prin conventie, cu care sunt comparate alte marimi de aceeasi

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

UNITĂŢI Ţ DE MĂSURĂ. Măsurarea mărimilor fizice. Exprimare în unităţile de măsură potrivite (mărimi adimensionale)

UNITĂŢI Ţ DE MĂSURĂ. Măsurarea mărimilor fizice. Exprimare în unităţile de măsură potrivite (mărimi adimensionale) PARTEA I BIOFIZICA MOLECULARĂ 2 CURSUL 1 Sisteme de unităţiţ de măsură. Atomi şi molecule. UNITĂŢI Ţ DE MĂSURĂ Măsurarea mărimilor fizice Exprimare în unităţile de măsură potrivite (mărimi adimensionale)

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

2 Mărimi, unități de măsură și relații de conversie

2 Mărimi, unități de măsură și relații de conversie 2 Mărimi, unități de măsură și relații de conversie Lucrarea de laborator prezintă principalele mărimi, unități de măsură și relațiile de conversie a acestora utilizate în termotehnică și în studiul ciclurilor

Διαβάστε περισσότερα

NOȚIUNI GENERALE DE METROLOGIE

NOȚIUNI GENERALE DE METROLOGIE Definiţia măsurării NOȚIUNI GENERALE DE METROLOGIE MĂSURÁRE, s.f., Acţiunea de a măsura; determinare a valorii unei mărimi; măsură, măsurătoare. Măsurare directă = măsurarea efectuată prin compararea nemijlocită

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Capitolul COTAREA DESENELOR TEHNICE LECŢIA 21

Capitolul COTAREA DESENELOR TEHNICE LECŢIA 21 Capitolul COTAREA DESENELOR TEHNICE LECŢIA 21! 21.1. Generalităţi.! 21.2. Elementele cotării.! 21.3. Aplicaţii.! 21.1. Generalităţi! Dimensiunea este o caracteristică geometrică liniară sau unghiulară,care

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

CAPITOLUL 1 MĂRIMI FIZICE ȘI UNITĂȚI DE MĂSURĂ

CAPITOLUL 1 MĂRIMI FIZICE ȘI UNITĂȚI DE MĂSURĂ CAPITOLUL 1 MĂRIMI FIZICE ȘI UNITĂȚI DE MĂSURĂ Sir William Thomson-lord Kelvin (1824-1907) menționa:" Atunci când putem măsura mărimea despre care vorbim și o putem exprima printr-un număr, atunci noi

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

SEMINAR FIZICA SEM 2. Unitati de masura.sisteme de referinta. Vectori.Operatori

SEMINAR FIZICA SEM 2. Unitati de masura.sisteme de referinta. Vectori.Operatori SEMINAR FIZICA SEM 2 Unitati de masura.sisteme de referinta. Vectori.Operatori SISTEME DE UNITĂŢI. SISTEMUL INTERNAŢIONAL DE UNITĂŢI (SI) Mărimi fundamentale Unităţi de măsură Sistemul de unităţi Lungimea

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

UnităŃile de măsură pentru tensiune, curent şi rezistenńă

UnităŃile de măsură pentru tensiune, curent şi rezistenńă Curentul Un circuit electric este format atunci când este construit un drum prin care electronii se pot deplasa continuu. Această mişcare continuă de electroni prin firele unui circuit poartă numele curent,

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Laborator biofizică. Noţiuni introductive

Laborator biofizică. Noţiuni introductive Laborator biofizică Noţiuni introductive Mărimi fizice Mărimile fizice caracterizează proprietăţile fizice ale materiei (de exemplu: masa, densitatea), starea materiei (vâscozitatea, fluiditatea), mişcarea

Διαβάστε περισσότερα

Ecuatii trigonometrice

Ecuatii trigonometrice Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

Capitolul 14. Asamblari prin pene

Capitolul 14. Asamblari prin pene Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE

2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE 2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE CONDENSATOARELOR 2.2. MARCAREA CONDENSATOARELOR MARCARE

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

2CP Electropompe centrifugale cu turbina dubla

2CP Electropompe centrifugale cu turbina dubla 2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc = GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1 2. Circuite logice 2.2. Diagrame Karnaugh Copyright Paul GASNER Diagrame Karnaugh Tehnică de simplificare a unei expresii în sumă minimă de produse (minimal sum of products MSP): Există un număr minim

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

TERMOCUPLURI TEHNICE

TERMOCUPLURI TEHNICE TERMOCUPLURI TEHNICE Termocuplurile (în comandă se poate folosi prescurtarea TC") sunt traductoare de temperatură care transformă variaţia de temperatură a mediului măsurat, în variaţie de tensiune termoelectromotoare

Διαβάστε περισσότερα

TEST GRILĂ DE VERIFICARE A CUNOŞTINŢELOR LA MATEMATICĂ-FIZICĂ VARIANTA 1 MATEMATICĂ

TEST GRILĂ DE VERIFICARE A CUNOŞTINŢELOR LA MATEMATICĂ-FIZICĂ VARIANTA 1 MATEMATICĂ ROMÂNIA MINISTERUL APĂRĂRII NAŢIONALE ŞCOALA MILITARĂ DE MAIŞTRI MILITARI ŞI SUBOFIŢERI A FORŢELOR TERESTRE BASARAB I Concurs de admitere la Programul de studii postliceale cu durata de 2 ani (pentru formarea

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.5.ARENE

Capitolul 2 - HIDROCARBURI 2.5.ARENE Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale POSDRU/156/1.2/G/138821 Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educaţiaşiformareaprofesionalăînsprijinulcreşteriieconomiceşidezvoltăriisocietăţiibazatepecunoaştere

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

SIGURANŢE CILINDRICE

SIGURANŢE CILINDRICE SIGURANŢE CILINDRICE SIGURANŢE CILINDRICE CH Curent nominal Caracteristici de declanşare 1-100A gg, am Aplicaţie: Siguranţele cilindrice reprezintă cea mai sigură protecţie a circuitelor electrice de control

Διαβάστε περισσότερα

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα