Razmena genetičkog materijala kod prokariota

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Razmena genetičkog materijala kod prokariota"

Transcript

1 Razmena genetičkog materijala kod prokariota

2 Mehanizmi razmene gena kod prokariota Prenošenje dela genetičkog materijala iz ćelije donora u ćeliju recipijenta konjugacijom transformacijom transdukcijom Rekombinacijom sa hromozomom recipijenta nastaje rekombinant

3 Rekombinacija Fundamentalan ćelijski proces odgovoran za fizičku razmenu genetičkog materijala između različitih genetičkih elemenata. homologa rekombinacija mesto-specifična ( site-specific ) rekombinacija ilegitimna rekombinacija

4 Homologa rekombinacija Fundamentalni biološki proces, uključuje RecA zavisnu razmenu homologih sekvenci DNK različitog porekla. Kod E.coli postoje dva glavna puta (RecBCD, RecF) sa najmanje 25 gena RecA protein se polimerizuje na ssdnk (5' 3' smer) i formira se nukleoproteinski filament koji ima afinitet za homologi segment dsdnk (invazija lanca) Prekid se formira u homologom segmentu na lancu iste polarnosti i lanci se unakrsno povezuju (Holidejeva struktura) Holidejeva struktura migrira i formiraju se heterodupleksi Holidejeva struktura se razdvaja na dva moguća načina

5 Detekcija rekombinanata Odaberemo donora i recipijenta tako da se razlikuju po svojstvu koje pratimo: Donor:Trp + (sintetiše triptofan) Recipijent:Trp - (ne sintetiše trp) Podloga: minimalni medijum (ukoliko zasejemo samo recipijente nakon transfera DNK, rastu samo rekombinanti koji su postali Trp + )

6 Konjugacija Transfer plazmida F plazmid (fertility factor)

7 Konjugacija transfer plazmida ili čitavog hromozoma

8 Konjugacija, transfer hromozoma Integracija F plazmida u hromozom može se desiti na većem broju mesta Kada se F plazmid integriše u hromozom formira se Hfr (High Frequency of Recombination) soj Konjugacijom sa Hfr sojem dolazi do prelaska hromozoma u ćeliju recipijenta Transfer kompletnog hromozoma domaćina (veoma redak) traje 100 min. Proces se može koristiti u mapiranju gena na hromozomu

9 Lederberg i Tejtum, 1946 Dejvis, 1950

10 Kako selektovati transkonjugante (rekombinante nastale procesom konjugacije)? Hfr donor: prototrof (thr +, leu + ), koristi laktozu (lac + ), osetljiv na antibiotik (npr. streptomicin) Recipijent: auksotrof, ne sintetiše (thr -, leu - ), ne koristi laktozu (lac - ), otporan na antibiotik streptomicin Selekcija rekombinanata: 1) MM +str+glukoza rastu rekombinanti koji su postali Thr + i Leu + 2 ) MM+str+laktoza (nema glukoze)+ thr+leu rastu rekombinanti koji su postali Lac + 3) MM+str+laktoza (nema glukoze) rastu rekombinanti koji su postali Thr + i Leu + i Lac +

11 Transdukcija Transfer gena iz donora u recipijenta pomoću virusa Generalizovana transdukcija prenos bilo kojeg fragmenta DNK donora u recipijenta. Efikasnost niska. Specijalizovana transdukcija prenos određenog dela DNK donora u recipijenta. Efikasnost može biti veoma visoka.

12 Generalizovana transdukcija (model P1 fag) Umesto virusne DNK u virusnu česticu se upakuje bilo koji fragment domaćinove DNK odgovarajuće veličine (virus postaje defektan, transdukujući fag)

13 Specijalizovana transdukcija (model λ fag) DNK umerenog virusa (profag) se pogrešno iseca iz hromozoma domaćina noseći deo svoje DNK i susedne gene domaćina

14 Otkriće transformacije, Grifit 1928 Streptococcus pneumoniae S ćelije sa kapsulom (kapsula je faktor patogenosti) R ćelije mutanti bez kapsule (nepatogene) Hemijska priroda transformišućeg principa molekul DNK (Averi, 1944)

15 Transformacija Indukcija kompetencije (prirodna - quorum sensing fenomen kod B. subtilis ili veštačka) Com proteini (regulišu quorum sensing odgovor, učestvuju u vezivanju DNK i formiranju pore za njen prolazak) Uzimanje slobodne DNK često uz degradaciju jednog lanca Integracija u hromozom recipijenta homologom rekombinacijom

16 Kompetencija (sposobnost transformacije) Sposobnost prihvatanja gole DNK Prirodna: Azotobacter, Bacillus, Haemophilus, Streptococcus, Neisseria, Thermus Veštačka: E. coli Indukovana elektroporacijom Indukovana termalnim šokom i Ca 2+ jonima Lakši ulaz cirkularne DNK (plazmida)

17 Rasprostranjenost razmene gena kod Bacteria Konjugacija: E. coli, enterične bakterije, Streptococcus, Staphylococcus Transdukcija: čest proces kod Bacteria, redak kod Archaea (metanogeni) Transformacija: Bacillus, Streptococcus, Acinetobacter, Haemophilus, Neisseria, Thermus (prirodno kompetentne)

18 Rasprostranjenost razmene gena kod Archaea Mnogo manje proučavana, pre svega zbog teže kultivacije (neophodnost gajenja na čvrstim podlogama i dobijanja pojedinačnih kolonija, manje selektivnih agenasa dostupno antibiotici novobiocin (inhibitor DNK žiraze, deluje u oba domena prokariota) ili neomicin (inhibitori sinteze proteina na prokariotskim ribozomima) Sva tri procesa dokazana i kod Archaea Konjugacija: Sulfolobus solfataricus slično kao kod bakterija, jednosmerni transfer DNK; kod nekih halofila dvosmerni transfer Transformacija: problem sticanja kompetencije: delovanjem dvovalentnih jona metala koji destabilišu glikoproteinske zidove Archaea Transdukcija: retka, dokazana kod Methanobacterium thermo autotrophicum

19 Transfer gena iskorišćen za eksperimente komplementacije Parcijalni diploid merodiploid (jedna kopija gena na hromozomu, druga na plazmidu ili fagnoj DNK): genetičkim inženjerstvom može da se ciljano konstruiše Ispitivanje da li su mutacije koje dovode do iste fenotipske promene na istom ili različitim genima exp. komplementacije (da li mutacije mogu da se dopunjuju) Mutacije koje se nalaze na istoj DNK cis forma, na različitim DNK trans forma Da li 2 mutacije u trans obliku mogu međusobno da komplementiraju i daju wt fenotip? Cis-trans sistem pojam cistrona

20 Tehnologija rekombinantne DNK - genetičko inženjerstvo Izučavanje gena van organizma za koji je karakterističan Skup in vitro tehnika kojima je omogućeno stvaranje himernih molekula DNK Kloniranje gena: Izolovanje gena iz organizma Prebacivanje u manje genome - vektore za kloniranje Ubacivanje u ćeliju domaćina Selekcija transformisanih ćelija i identifikacija klona koji sadrži željeni gen Amplifikacija gena u domaćinu ili ekspresija stranog proteina u domaćinu Primena u istraživanju ili komercijalnoj proizvodnji korisnih produkata

21 Restrikcione endonukleaze tipa II Najčešći tip kod bakterija Dimeri, seku dvolančanu DNK asimetrično na palindromskim sekvencama koje nisu modifikovane Dobijaju ime prema bakteriji iz koje su izolovane (EcoRI, HindIII, BsuRI, BamHI itd)..g AATTC...G AATTC....C TTAA G...CTTAA G.. GAATTC CTTAAG Produkuju molekule različite dužine sa jednolančanim komplementarnim krajevima (lepljivi krajevi, sticky ends )

22 Dobijanje himernih DNK molekula Tretiranje izolovane DNK restrikcionom endonukleazom Tretiranje izolovane DNK vektora istim enzimom Povezivanje molekula pomoću DNK ligaze Ubacivanje u ćeliju domaćina transformacijom

23 Osobine vektora za kloniranje Mali dobro okarakterisani DNK molekuli (po pravilu do 10 kbp) Autonomno se repliciraju u domaćinu i prenose u ćerke ćelije Imaju selektabilne genetičke markere Imaju jedno restrikciono mesto za pojedinu restrikcionu endonukleazu

24 Vektori za kloniranje Plazmidi, derivati prirodnih plazmida Virusi, uglavnom bakteriofagi Kozmidi Veštački hromozomi Ekpresioni vektori Šatl vektori

25 Plazmid pbr322 (E. coli i S. typhimurium): bla gen (enzim β-laktamaza) rezistencija na ampicilin tet gen (membranski protein, efluks antibiotika iz ćelije) rezistencija na tetraciklin U okviru gena tet restrikciono mesto BamH1 Plazmidni vektori Domaćin je osetljiv na oba antibiotika; uspešno kloniranje: ćelije nosioci kloniranog gena su amp R tet S

26 Plazmidni vektori puc plazmidi Ampicilinska rezistencija Restrikciona mesta različitih enzima polilinker sekvenca Deo lacz gena (kodira β- galaktozidazu) za α-fragment (ω-fragment sintetiše ćelija), u njemu je restrikciono mesto Selekcija ćelija sa kloniranim genom primenom Xgal (analog laktoze, supstrat za β- galaktozidazu, razgradnja daje plave kolonije)

27 Plazmidni vektori Ekspresioni vektori (kontrolisana sinteza rekombinantnog proteina) Vektori za studiranje ekspresije gena (sadrže reporter gene, npr. lacz) Kontrola transkripcije: gen se klonira iza jakog promotora, npr. lac ili trp promotor, ili hibrid ova dva tac i trc Kontrola translacije: ubaciti željeni gen iza mesta koje prepoznaju bakterijski ribozomi, rešiti problem introna eukariotskih gena (reverzna transkriptaza katalizuje mrnk cdnk, ona se klonira) i zameniti kodone onima koje prepoznaju trnk bakterijske ćelije u koju je gen ubačen) Ekspresioni vektor

28 λ vektori Fagni vektori λ litički vektor (geni odgovorni za lizogeni ciklus su zamenjeni kloniranim fragmentom) λ lizogeni vektor (ubacivanje kloniranog gena u hromozom E. coli, studiranje jedne kopije gena) M13 vektori ssdnk virus lako sekvenciranje Ima dsdnk oblik (replikativna forma) neophodan za kloniranje Inficirane ćelije se održavaju u životu, virus ih ne lizira, tako da mogu biti kontinuirani izvor klonirane DNK Intergenski prostor koji ne kodira proteine i koji se može zameniti stranom DNK je dovoljno veliki DNK se pakuje prolaskom kroz membranu, veličina fagne partikule nije fiksna, zavisi od veličine upakovanog fragmenta

29 Kozmidi (kombinacija plazmidnog vektora i cos mesta λ faga) pakovanje plazmidne DNK u glavu faga, klonirani fragmenti do kb Shuttle vektori (plazmidi koji sadrže ori i selektabilne markere karakteristične za dva domaćina, npr. E. coli i B. subtilis ili eukariotska ćelija) Artificial chromosome (veštački hromozomi, klonirani fragment do 1000 kb) Kozmidi (na bazi λ faga) PACs (na bazi P1 faga) BACs (na bazi bakterijskog hromozoma) YACs (na bazi hromozoma kvasca) HACs (na bazi humanog hromozoma)

30 Ćelije domaćini za kloniranje

31 Genske biblioteke Kolekcije rekombinantnih klonova koji sadrže sve gene nekog organizma Genska biblioteka kompletan genom cdnk biblioteka kodirajuće sekvence genoma Izolacija ukupne irnk iz ćelije (hibridizacijom polya repa sa polyt fragmentima na koloni) korišćenje reverzne transkriptaze sinteza cdnk Isecanje restrikcionim endonukleazama i kloniranje u vektor

32 Konstrukcija probe na osnovu irnk - cdnk

33 Identifikacija klona

34 Određivanje primarne strukture gena sekvenciranje DNK Metoda po Maksamu i Gilbertu (primena nukleaza) Sangerov metod - dideoksi metod (primena dideoksi analoga nukleotida i DNK polimeraze); Nobelova nagrada

35 Metoda Sangera Našla primenu i u sekvenciranju RNK molekula (isti princip, samo se koristi reverzna transkriptaza i dideoksi analozi ribonukleotida) Automatski sistemi za sekvenciranje (dideoksi metod, ali obeležavanje nije radioaktivitetom, već je svaki nukleotid obeležen različitom fluorescentnom bojom Sekvenciranje većih molekula i čitavih genoma strategija shotgun sequencing ((sekvenciranje nasumično isečenih fragmenata i rekonstrukcija celokupne sekvence na osnovu preklapanja sekvenci)

36 Konstrukcija probe na osnovu poznate sekvence aminokiselina

37 Sinteza DNK fragmenta (oligonukleotida) Sinteza probe ili prajmera za PCR reakciju Sinteza in vitro korišćenjem solid phase procedure (prvi nukleotid je vezan za čvrst nosač silika gel) U zavisnosti od željene sekvence, u reakcionu smešu se dodaje samo jedan odgovarajući nukleotid (hemizam reakcije komplikovan) Između svakog dodavanja vrši se ispiranje nevezanih nukleotida

38 Umnožavanje DNK (PCR reakcija) Lančana reakcija polimeraze (polymerase chain reaction) Mulis, 1993, Nobelova nagrada dsdnk templet, 2 in vitro sintetisana prajmera, Taq polimeraza (Thermus aquaticus) Ciklus: C razdvajanje lanaca 55 C vezivanje prajmera za jednolančane templete 70 C ekstenzija prajmera (sinteza DNK) Ponavljanje ciklusa puta

39 Primena kloniranja u genetici bakterija Dirigovana (site directed) mutageneza Inaktivacija specifičnog gena tehnika cassette mutagenesis)

40 Molekularna biotehnologija

41

42

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

1892. Ivanovski, filtrabilni uzročnik mozaične bolesti duvana Bejerink, potvrdio eksperimente Ivanovskog Lefler i Froš, filtrabilni

1892. Ivanovski, filtrabilni uzročnik mozaične bolesti duvana Bejerink, potvrdio eksperimente Ivanovskog Lefler i Froš, filtrabilni 1892. Ivanovski, filtrabilni uzročnik mozaične bolesti duvana 1898. Bejerink, potvrdio eksperimente Ivanovskog 1898. Lefler i Froš, filtrabilni uzročnik slinavke i šapa 1909. Landštajner i Poper, filtrabilni

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Rekombinacija DNK TRANSPOZICIJOM

Rekombinacija DNK TRANSPOZICIJOM Rekombinacija DNK TRANSPOZICIJOM Rekombinacija DNK transpozicijom Transpozicija je proces premeštanja specifičnih sekvenci molekula DNK (pokretnih genetičkih elemenata ili transpozona) sa jednog na drugo

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore OLIMPIJADA ZNANJA 2018.

Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore OLIMPIJADA ZNANJA 2018. Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore OLIMPIJADA ZNANJA 2018. Test iz Biologije za 4. razred srednje škole R J E Š E NJ A Podgorica, 05. 05. 2018. 1 1. Spojite navedene

Διαβάστε περισσότερα

Naziv virusa dobijen je iz latinskog jezika i označava otrov i druge škodljive supstance. Prvi put se spominje od godine u engleskom jeziku.

Naziv virusa dobijen je iz latinskog jezika i označava otrov i druge škodljive supstance. Prvi put se spominje od godine u engleskom jeziku. Virusi Naziv virusa dobijen je iz latinskog jezika i označava otrov i druge škodljive supstance Prvi put se spominje od 1392. godine u engleskom jeziku. Značenje supstanca koja prouzrokuje bolest infekcijom

Διαβάστε περισσότερα

Doc. dr Snežana Marković

Doc. dr Snežana Marković REPARACIJA DNK. REKOMBINACIJA DNK. Doc. dr Snežana Marković Institut za biologiju i ekologiju Prirodno-matematički fakultet Univerzitet u Kragujevcu REPARACIJA OŠTEĆENIH MOLEKULA DNK Mutacija svaka promena

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

REKOMBINACIJA MOLEKULA DNK

REKOMBINACIJA MOLEKULA DNK REKOMBINACIJA MOLEKULA DNK Fenomeni odgovorni za održavanje i ekspresiju genoma Svaki molekul DNK je rekombinovani molekul DNK Pojam rekombinacije Tridesete godine prošlog veka Mejoza (poslednja istraživanja

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Regulacija ekspresije gena kod prokariota

Regulacija ekspresije gena kod prokariota Regulacija ekspresije gena kod prokariota Bakterije Jednoćelijski organizmi koji nemaju jedro i druge organele. Geni u najvećem broju slučajeva ne poseduju introne i većina gena organizovana je u operone.

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom.

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. 1 Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. Pravilo 2. Svaki atribut entiteta postaje atribut relacione šeme pod istim imenom. Pravilo 3. Primarni ključ entiteta postaje

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

NIVOI ORGANIZACIJE I EKSPRESIJE GENOMA

NIVOI ORGANIZACIJE I EKSPRESIJE GENOMA NIVOI ORGANIZACIJE I EKSPRESIJE GENOMA ANIMACIJE!!! REPLIKACIJA https://www.youtube.com/watch?v=tnkwgcfphqw TRANSKRIPCIJA https://www.youtube.com/watch?v=jqiwwjqf5d0 TRANSKRIPCIJA I TRANSLACIJA https://www.youtube.com/watch?v=-k8y0atkkai

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Metode molekularne biologije

Metode molekularne biologije Metode molekularne biologije Metode za analizu hromozoma Hromozom χρώμα (hroma) - boja i σώμα (soma) telo Sposobnost bojenja hromozoma je bila osnov na kojoj su se bazirale pionirske metode za analizu

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Molekularna biologija prokariota

Molekularna biologija prokariota Molekularna biologija prokariota I Molekularne osnove procesa: Čuvanja i prenošenja genetičke informacije u ćeliji Regulacije metabolizma - ekonomičnost ćelije i brzo prilagođavanje na uslove sredine -

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Molekularna biologija prokariota

Molekularna biologija prokariota Molekularna biologija prokariota II Molekularne osnove procesa: Mehanizama reparacije oštećenja na molekulu DNK kod prokariota Reparacija DNK Od vitalnog je značaja očuvati integritet nasledne informacije

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Biohemija nukleinskih kiselina. Genetska informacija

Biohemija nukleinskih kiselina. Genetska informacija Biohemija nukleinskih kiselina Genetska informacija deoksiribonukleinske kiseline (DNK) ribonukleinske kiseline (RNK) DNK je nosilac naslednih informacija u ćeliji, dok RNK učestvuju u prenošenju tih informacija

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

METABIBAΣH ΓONI IΩN ΣE BAKTHPIA BAKTHPIAKH ΣYZEYΞH

METABIBAΣH ΓONI IΩN ΣE BAKTHPIA BAKTHPIAKH ΣYZEYΞH Προκαρυωτικοί οργανισµοί = βακτήρια, κυανοβακτήρια. - µονοκύτταροι - κυκλικό χρωµόσωµα, που δεν περικλείεται µέσα σε πυρηνική µεµβράνη. - απλοειδείς - δεν σχηµατίζουν ζυγώτες - δεν εκτελούν µείωση. - προσβάλλονται

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

Geni in regulacija njihovega prepisa

Geni in regulacija njihovega prepisa Geni in regulacija njihovega prepisa regulacija encimske aktivnosti indukcija in represija pozitivna in negativna kontrola, atenuacija globalna kontrola dvokomponentni sistemi pogovor bakterij Regulacija

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Genetska kontrola sinteze bjelančevina. Povijesni PaJaMo pokus Jacob-Monod model sinteze bjelančevina u prokariota

Genetska kontrola sinteze bjelančevina. Povijesni PaJaMo pokus Jacob-Monod model sinteze bjelančevina u prokariota Genetska kontrola sinteze bjelančevina Još prije otkrića genetskog koda bilo je jasno da moraju postojati načini kontroliranja broja i vrste bjelančevina koje se proizvode u stanici. Kod šumskog drveća

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

transkripcija Matrica i enzimi Transkripcija Sličnosti između replikacije i transkripcije Razlike između replikacije i transkripcije

transkripcija Matrica i enzimi Transkripcija Sličnosti između replikacije i transkripcije Razlike između replikacije i transkripcije Transkripcija Sinteza RNK molekula. DNK lanac služi kao matrica za sintezu RNK. Transkripcija Tip RNK molekula Ribozomalna RNK (rrnk) Male RNK (trnk; snrnk; 5S rrnk; scrnk; mirnk ) Informaciona RNK (irnk

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

BANKA PITANJA IZ BIOLOGIJE. proteini. 3. Koji se deo složenog enzima hemijski menja u toku reakcije: 4. Apoenzim i koenzim zajedno čine:

BANKA PITANJA IZ BIOLOGIJE. proteini. 3. Koji se deo složenog enzima hemijski menja u toku reakcije: 4. Apoenzim i koenzim zajedno čine: BANKA PITANJA IZ BIOLOGIJE citologija proteini 1. α-heliks je pojam koje se odnosi na strukturu proteina. 2. Broj polipeptidnih lanaca kod složenih proteina definiše: 3. Koji se deo složenog enzima hemijski

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Doc. dr Snežana Marković

Doc. dr Snežana Marković REPLIKACIJA Doc. dr Snežana Marković Institut za biologiju i ekologiju Prirodno-matematički fakultet Univerzitet u Kragujevcu REPLIKACIJA DNK Semikonzervativan proces Eksperimenti Mezelsona i Stala 1957.g.

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Replikacija DNK. Replikacija DNK 3/9/2014. Kako se DNK umožava?

Replikacija DNK. Replikacija DNK 3/9/2014. Kako se DNK umožava? Replikacija DNK Replikacija DNK I. Opšte karakteristike replikacije: A. Semikonzervativni proces B. Replikacioni početak C. Bidirekcioni D. Semidiskontinuirani II. Identifikacija proteina i enzima replikacije

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα