Међународни систем јединица, повратак основним начелима?

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Међународни систем јединица, повратак основним начелима?"

Transcript

1 Међународни систем јединица, повратак основним начелима? ПЕТАР М. БОШЊАКОВИЋ, Високa школa електротехнике Стручни рад и рачунарства, Београд UDC: DOI: /tehnika B Циљ овог рада је да прикаже мерења и метрологију са становишта система мерних јединица. Метрологија је једна од првих области у којој је успостављена шира међународна сарадња. Данас постоји низ међународних организација чији крајњи циљ је успостављање и одржавање мерног јединства у свету. Основу за то представља међународно прихваћен систем мерних јединица (SI). У раду је дат сажет историјат развоја важећег и приказана концепција новог система јединица, чије усвајање се очекује године. Кључне речи: Међународни систем јединица, основна мерна јединица, физичка константа, дефиниције основних мерних јединица 1. УВОД Метрологија је наука која се бави мерењима, обухватајући све њихове теоријске и практичне аспекте, без обзира на област науке или технике на коју се односе, односно у којој се примењују. За лаике, мерење је "сасвим обична" активност. У процесу производње, у трговини и саобраћају људи употребљавају разноврсна мерна средства, не размишљајући притом о начину на који она остварују своју намену, а још мање о теоријским претпоставкама које су учиниле могућим њихову израду и коришћење. Лакоћа са којом се савремени мерни уређаји користе успешно прикрива сложеност мерне технике и њеног историјског развоја. Само понекад, додуше, непознавање принципа мерења, или својстава мерног средства, доводи до грешке или неспоразума. Обични људи свакодневно користе податке о времену, температури, маси, дужини или брзини; најчешће без праве представе о суштини поступка којим су ти подаци добијени. Иако у свести савременог човека постоји веома јасна представа о значају мерења, које је "за науку оно што је крв за људско биће", практичан значај ове активности као да остаје у сенци, међу стварима о којима се не размишља. Мерења прате савременог човека од самог рођења, па кроз цео живот. Адреса аутора: Петар Бошњаковић, Високa школa електротехнике и рачунарства, Београд, Војводе Степе 283 Рад примљен: Рад прихваћен: Сваком новорођенчету, одмах после рођења, мере се дужина, тежина, пулс и температура. Податак да се у развијеним земљама свакодневно обавља више од стотину релевантних мерења "по глави становника", делује као претеривање, као и процена да, просечно, трошкови мерења учествују са више од 10% у цени производа на тржишту. Број мерних средстава у свету расте све већом брзином. Сматра се да мерења и операције повезане са њима доприносе бруто националном доходку индустријски развијених земаља са око 4% [1]. 2. ОСНОВНИ ПОЈМОВИ Под називом величина у мерној техници се подразумева мерљива величина (measurable quantity), која представља својство појаве, тела или супстанције које може да се квалитативно разликује и квантитативно да одреди [2]. Скуп величина између којих постоје дефинисани односи представља систем величина (system of quantities). Основна величина (base quantity) једног система је једна од величина у систему величина која је одабрана као функционално независна. Теоријски је могуће све физичке величине свести на две основне: простор и време [3], али такав приступ нема много присталица. Међународно прихваћен систем величина (International System of Quantities, ISQ) заснива се на седам основних физичких величина. То су дужина, маса, време, електрична струја, светлосна јачина, апсолутна ( термодинамичка) температура и количина супстанције. ISQ је санкционисан међународним стандардима ISO/IEC [4]. 636 TEHNIKA KVALITET IMS, STANDARDIZACIJA I METROLOGIJA 16 (2016)

2 Посебну врсту физичких величина представљају константе. То су физичке величине за које се сматра да су по својој природи универзалне и непромењиве са временом. Таква је, на пример, гравитациона константа која фигурише у Њутновом закону гравитације. Болцманова константа, којом се повезују температура и енергија, заправо успоставља везу између макроскопске и микроскопске физике. Макроскопска величина, температура извесне количине идеалног гаса, доводи се у везу са енергијом његових микрочестица. Планкова константа описује својство дискретизације енергије светлосног зрачења. Авогадрова константа представља однос броја елементарних јединки (честица) и одговарајуће количине супстанце. Фундаменталне физичке константе представљају полазну основу за размевање закона природе и систематизацију људских знања о природи. Физичка величина може да се представи бројем и референцом. У општем случају, референца може да буде мерна јединица, мерна процедура или њихова комбинација. Бројевна (нумеричка) вредност појединачне физичке величине одређује њену великост (интензитет) у поређењу са другим величинама исте физичке природе. Изабрана, тачно одређена, појединачна величина, са којом се друге величине исте врсте пореде, да би се квантитативно одредиле у односу на ту величину, представља јединицу мере (measurement unit). У начелу, мерне јединице могу бити произвољно одређене. Практично, оне треба да буде погодне за остваривање и подесне за свакодневну употребу. То се постиже ако имају пригодне вредности и одређене су величинама датим у природи, независно од човека, а дефинисане тако да се могу остварити у свакој лабораторији снабдевеној одговарајућим мерним уређајима. На међународном нивоу, мерне јединице се договором дефинишу и усвајају. 3. ИСТОРИЈА МЕЂУНАРОДНОГ СИСТЕМА ЈЕДИНИЦА Почеци науке о мерењу допиру до самих почетака настанка цивилизације. Људи од давнина мере величине које су им потребне за обављање процеса производње, односно размене материјалних добара. Да би резултати појединих мерења могли да се пореде неопходно је да буду дефинисане одговарајуће јединице. Првобитне јединице мере за дужину су биле антропометријске: прст, шака, лакат, хват,... Притом су раличите јединице коришћене за исту физичку величину, зависно од великости или сврхе мерења. Дужина, на пример, мерила се прстима и шакама, али и корацима, миљама и данима (хода). Већ у првим државним заједницама утврђиванe су материјализоване прамере чији су оригинали чувани као светиње у храмовима, као што је, на пример, Асирски кубит за који се процењује да је стар преко четири и по миленијума. Тако је било хиљадама година. Са циљем остваривања мерног јединства у оквирима неке људске заједнице, великост неке конкретне појединачне ствари проглашавана је за основну меру одређене физичке величине, као што је то био случај са дужином која представља растојање од врха носа до врха палца испружене леве руке краља Хенрија I, која је, почетком дванаестог века, проглашена за меру дужине у Енглеској. Метални штап израђен на основу ове дефиниције, био је озакоњен као краљевска мера за дужину yard. Одржао се у употреби и до данас, иако је његова величина (вред - ност) много пута редефинисана. Историја мерних јединица је, на неки начин, историја цивилизације. Њихове су промене пратиле друштвене промене, а развој био спрегнут са променама технологије, али и навика. Сматра се да је питање потребе за унификацијом мерења први, у модерној Европи, поставио фламански математичар и физичар Стевин (Simon Stevin) још крајем шеснаестог века. Он је разрадио декадни (десетични) систем бројева (чија је основа десет), примењујући га при конструкцији фортификационих објеката. Скоро век касније оснивач Краљевског научног друштва у Лондону, бискуп Вилкинс (John Wilkins), предложио је увођење декадног систем мера у Енглеској, али безуспешно. Сличан покушај није успео ни у Русији средином осамнаестог века. Иако је овај систем веома погодан за изражавање веома малих и веома великих бројева, као и свих бројева између, његово прихватање било је споро. Тек крајем осамнаестог века нова друштвена класа, у настојању да унапреди своје пословање, сагледала је неопходност постојања јединствених мерних јединица. Француска револуција је, између осталог, увела увела нов систем мера, заснован на јединици дужине као основној. Названа је метар (фр. mètre од грч. метрон, што значи мера ), па отуда и назив "Метарски систем мера. Нови систем почивао је на декадном систему бројева и био научно заснован. У томе се крила његова снага. Он је био везан за величине дефинисане у природи, независно од човека. Јединица за дужину утврђенa je као десетомилиони деo лука Земљиног меридијана, од пола до екватора. Јединице површине и запремине биле су дефинисане као квадрат односно куб јединице дужине. Јединица за време дефинисана је као део средњег сунчевог дана, а јединица за тежину као тежина кубног дециметра воде на температури када је њена густина највећа (4ºC). Никада ништа веће и једноставније, повезаније у свим TEHNIKA KVALITET IMS, STANDARDIZACIJA I METROLOGIJA 16 (2016) 637

3 својим деловима, није изашло из људске руке рекао је Антоан Лавоазје (Antoine Lavoisier) поводом легализације дефиниција метра и килограма. Креатори метарског система настојали су да он буде неутралан у највећој могућој мери, независан од неких националних, локалних или историјских околности, тако да може да буде прихваћен свуда у свету. Назив метар, као и назив целих бројева (декадни), потиче из грчког, а назив делова бројева (децимале) преузет је из латинског језика. На основу мерења спроведих у последњој деценији осамнаестог века израђене су прамере јединице дужине и јединице масе, које су смештене у француски државни архив. Законом из године ови прототипови јединица мере за дужину и масу су и званично легализовани као "дефинитивне мере" познате као "архивски метар" и "архивски килограм". Тиме је, међутим, напуштена научна идеја водиља установљавања Метарског система мера, да општа, непроменљива својства природе одређују основне јединице. Као и некад, практичне мерне јединице су били артефакти који се чувају у одговарајућој институцији. Немачки математичар и астроном Гаус ( Karl Friedrich Gauss) показао је (1832) да је за квантитативно одређивање појава у механици довољно изабрати јединице мере за три независне величине. Систем јединица у којем су јединице свих његових величина дефинисане искључиво помоћу јединица основних механичких величина (дужине, масе и времена), назван је апсолутни систем. Закон који је пола века раније открио француски војни инжењер Кулон (Charles de Coulomb) омогућио је успостављање везе између електричних и механичких величина. Томе се придавала велика важност, јер се сматрало да је могуће механичко објашњење свих физичких појава. Веровало се да је тај број од три димензије дат од саме природе, да се у димензионим обрасцима налази скривена механичка природа електричних величина. Овакав приступ био је, тада, омиљен у теоријској физици, али никада није прихваћен у електротехници јер полазне претпоставке доводе до необичних димензионих израза. На пример, димензија индуктивности је иста као и димензија капацитивности, а обе, по својој природи представљају дужину. Метрологија је једна од првих области у којој је успостављена широка међудржавна сарадња. Међународном конвенцијом о метру, коју су дипломатски представници седамнаест држава потписали у Паризу године основана је међународна организација за тегове и мере чији је основни задатак установљавање, ширење и усавршавање међународно прихваћеног система јединица, са циљем успостављањa и одржавањa мерног јединства у свету. Проблем реализације овог договора, и усвајања јединственог система јединица, решаван је веома дуго. Требало је објединити ставове научника, али и инжењера и државника. Основан је Међународни биро за тегове и мере (BIPM), са седиштем у Севру крај Париза. Његова мисија је да остварује и промовише глобалну поредљивост мерења обезбеђујући складан ( кохерентни) међународни систем јединица за потребе науке, индустрије и трговине, са циљем унапређења квалитета живота и животне средине [5]. У саставу ове установе формирана је и прва метролошка лабораторија. Потом је уследило и оснивање одговарајућих националних лабораторија у Немачкој, Енглеској и Сједињеним Америчким Државама. За најзначајније електричне величине на првом Међународном електротехничком конгресу године, усвојене су практичне јединице које су добиле називе према знаменитим научницима (ом, волт, кулон и ампер). И у електротехници, складност система јединица жртвована је практичним циљевима. Међународне јединице за електричну струју, отпорност и електрични напон биле су засноване на одговарајућим артефактима [6]. На првој Генералној конференцији за тегове и мере (CGPM), одржаној године, утврђени су прототипови (прамере) метра и килограма који су предати на чување Међународном бироу за тегове и мере. Заједно са астрономском секундом, као јединицом за време, на овај начин дефинисан је тродимензионални систем механичких јединица (метар-килограм-секунд, МКS). Италијански физичар, инжењер електротехнике Ђорђи (Giovani Giorgi) предложио је још године да се механички систем јединица допуни електромагнетском јединицом и тако образује складан четвородимензионални систем у којем се све изведене јединице могу изразити као производ степенованих основних јединица. Такав систем је прихваћен од стране Међународног комитета за тегове и мере тек године, као електротехнички MKSA систем. Тада је усвојена и дефиниција ампера која и данас важи. Веза између електричних и механичких јединица заснива се на теоријски изведеној једначини којом је одређена сила која делује између два паралелна проводника која се налазе у вакууму на јединичном међусобном растојању, кроз које протиче стална електрична струја. Струјна вага, којом се остварује јединица овако дефинисане величине, представља деликатан мерни систем чија је израда сложена, а примена захтева много времена. Због тога су примарни еталони електричне струје, изведени према 638 TEHNIKA KVALITET IMS, STANDARDIZACIJA I METROLOGIJA 16 (2016)

4 дефиницији одговарајуће јединице, остварени само у невеликом броју метролошких лабораторија у свету. На иницијативу националних лабораторија Француске, Немачке, Велике Британије и Сједињених Америчких Држава, а на основу мерења која су представници ових лабораторија извршили године, материјализован је интернационални ом, у облику средње вредности групе жичаних отпорника вредности 1 ом, као и јединица електромоторне силе (напона), интернационални волт, помоћу средње вредности групе електрохемијских извора сталног напона (Вестонов е ћелије). Тако је започела ера прецизних мерења електромагнетских величина. Одлука о успостављању јединственог система јединица на међународном нивоу донета је на деветој Генералној конференцији године. Скуп основних јединица међународног система је утврђен године Усвојено је шест основних мерних јединица: за дужину (метар), масу (килограм), време (секунд), електричну струју (ампер), термодинамичку температуру (келвин) и јачину светлости (кандела). Када су тачнија мерења показала да при ротацији Земље око сопствене осе постоје неке неправилности, првобитна дефиниција секунде, ослоњена на трајање дана, замењена је (1956) дефиницијом у односу на изабрано трајање Земљиног обртања око Сунца (тропска година 1900). Пресудан корак на путу остваривања међународног јединства у области метрологије учињен је године када је једанаеста Генерална конференција и формално усвајила Међународни систем јединица (Le Système international d' unités, SI). То је рационалам систем, за сваку величину постоји само једна мерна јединица. Приликом његовог усвајања, дефиниција метра, заснована на међународном прототипу, замењена је дефиницијом која је заснована на таласној дужини електромагнетског зрачења које емитује криптон 86. Ова промена је била нужна да би се побољшала тачност са којом се дефиниција метра остварује. Развој атомских и молекуларних осцилатора, код којих се прелазак између два енергијска нивоа атома или молекула може остварити са високом тачношћу, допринео је да се већ године астрономска дефиниција секунде замени дефиницијом чију основу представља атомска физика. Енергија система као што су атом и молекул може да има само дискретне вредности. Ако се, на неки начин, такав систем побуди и доведе у више енергијско стање, он спонтано прелази у стање ниже енергије емитовањем електромагнетског зрачења чија је учестаност ν одређена формулом: ΔW h, h je Планкова константа, a ΔW промена енергије. Ово својство, да атом може да прима и предаје енергију само у квантима, користи се данас за остваривање осцилаторног система у којем атом има улогу резонатора који одређује учестаност осциловања. На основу везе између учестаности и периода овог осциловања: Т 1, одређена је мерна јединице за време. На тринаестој Генералној конференцији године, јединица термодинамичке температуре, келвин, дефинисан је као 1/273,16 део термодинамичке температуре тројне тачке воде. Након опширне дискусије физичара и хемичара, четрнаеста Генерална конференција је године усвојила јединицу за количину супстанције (мол) као седму основну јединицу међународног система SI. Мол је дефинисан као количина супстанције система који садржи толико елементарних јединки колико има атома у 0,012 килограма угљеника 12. Елементарне јединке могу да буду атоми, молекули, јони, електрони или друге честице или одређене скупине тих честица. Кандела је године редефинисана као јачина светлости у одређеном правцу, извора који емитује монохроматско (једнобојно) зрачење одређене учестаности и одређене снаге зрачења. Са циљем да се омогући прецизније практично остваривање метра, дефиницијом која је усвојена године, јединица за дужину је исказана у односу на јединицу времена и усвојену тачну вредност брзине светлости у вакууму. Везе између основних јединица SI система приказане су на слици 1. Слика 1 - Везе између основних јединица важећег SI система TEHNIKA KVALITET IMS, STANDARDIZACIJA I METROLOGIJA 16 (2016) 639

5 Иако постављен на темељима идеје стварања мерног система који је намењен за сва времена, за све народе ( A tous les temps, a tous les peuples ), међународни систем јединица још увек није опште прихваћен. На први поглед, избор мерних јединица је нешто чему се приступа без емоција. Ипак, није тако. Велика Британија је прихватила SI, али без настојања да у потпуности замени уобичајене јединице Империјалног система јединица ( British units). Слична ситуација је у Канади. Три земље у свету: Мианмар (Бурма), Либерија и Сједињене Aмеричке Државе, нису ни формално прихватиле овај систем, упркос проблемима које примена мерних јединица ван SI доноси. Еклатантан пример је пад космичке сонде Mars Climate Orbiter, лансиране са циљем да прати климатске промене на Марсу. Уместо да уђе у стабилну орбиту, пала је 23. септембра године на његову површину јер је пришла сувише близу. Истрага је утврдила да је до отказа дошло због коришћења различитих система јединица. При развоју софтвера коришћен је британски систем јединица, док је тим који је тај софтвер користио за вођење летилице користио SI јединице [7]. 4. КОНЦЕПЦИЈА НОВОГ СИСТЕМА ЈЕДИНИЦА Научни приступ подразумева да се при дефинисању основних мерних јединица користе појединачне величине које представљају својства природе која су непроменљива при транслацијама у времену и простору, чак и у астрономским размерама. Оригиналне дефиниције јединица за дужину и масу, метар и килограм, који потичу из 18. века, као и много старија јединица за време, секунда, дате су на основу димензија Земље и њеног периода ротације, али, као што је већ шкотски физичар Максвел ( James Clerk Maxwell) приметио (1870), нису праве инваријанте. "Својства наше планете могу да се промене, а она ће и даље бити наша планета, али ако се својства атома промене он више неће бити исти атом" [8]. Он је предложио да се као најуниверзалнији еталон дужине узме таласна дужина светлости коју, на пример, даје натријум, а као универззалну јединицу за време период осциловања таласа ове светлости [9]. У то време, међутим, постојећа технологија и стање науке нису дозволили да се такав став успешно примени. Међународна прототип килограма, проглашен године, ваљано је остваривао своју функцију више од стотину година, иако није повезан са физичким константама. Ипак, захваљујући новим научним и техничким достигнућима, технолошком развоју и потребама савременог друштва, његове уочене промене не могу се више занемаривати [10], а захтеви науке у погледу тачности сваким даном постају све већи. Немачки физичар Макс Планк (Max Planck), зачетник квантне физике, предложио је године апсолутни систем са четири основне јединице које представљају природне константе: гравитациона константа γ, Болцманова константа k, Планкова константа h и брзина светлости c. То је само један од система природних јединица, заснованих на универзалним физичким константама. Његово је обележје да се не темељи на својствима било којег прототипа, предмета, или честица (као што су наелектрисање, маса, или дужина), већ само на својствима вакуума. Могући су и други системи природних јединица [8] што, на неки начин, отежава усвајање новог међународно санкционисаног система. Једно је сигурно, остварује се оно што је одавно било неизбежно [11], квантна метрологија постаје основа за дефинисање система мерних јединица. Научни приступ је премиса добро заснованог система јединица. При његовом међународном усвајању потребно је, међутим, водити рачуна и о другим поставкама. Практичне реализације дефиниција основних и изведених јединице треба да буду лако доступне људима у свим областима науке и технике. Једино на тај начин може се постићи да се и у сложеним подухватима, у којима се обједињују истраживања извршена у у различитим областима и различитим земљама (као што су, на пример, студије глобалних климатских промена) користе усаглашени подаци. Због тога је веома важно да се основне теоријске поставке система мерења изучавају у току образовног процеса младих. Да би се то постигло потребно је да дефиниције основних јединица буду разумљиве учесницима у свим дисциплинама образовања. Са напретком науке овај захтев је све теже постићи. Притом, при избору нових дефиницаја, важно је да се обезбеди континуитет. Нова дефиниција исте јединице треба да буде у складу са претходно важећом дефиницијом унутар мерне несигурности са којом је ова била остварена. Усвајање дефиниције метра засноване на таласној дужини светлости било је први корак ка формалном установљавању приридног система јединица. Потом је уследило дефинисање секунде на основу учестаности зрачења атома цезијума при његовом прелазу у основно стање. Следећи корак била је редефиниција метра којом је он исказан у односу на секунду и усвојену тачну вредност брзине светлости у вакууму. У постојећем систему мерних јединица само две од седам основних јединица дефинисане су на основу правих инваријантних величина. Јединица за температуру, келвин, 640 TEHNIKA KVALITET IMS, STANDARDIZACIJA I METROLOGIJA 16 (2016)

6 заснована је на одређеном термодинамичком стању воде, које представља непроменљиво својство природе. Међутим, одговарајућа температура значајно зависи од садржаја примеса и изотопског састава узорка воде. То компликује и ограничава тачност са којом ова дефиниција може да буде остварена. Дефиниције осталих основних величина имају још израженије слабости. Међународни прототип килограма (IPK) је најслабија карика у ланцу. Он је још увек дефинисан као материјализована прамера. Познато је да се његова маса мења током времена, али се не може прецизно рећи колико ће то бити у будућности. Притом, отежавајућу околност представља и чињеница да се дефиниције ампера, мола и канделе ослањају на килограм. Због тога је дефиниција килограма кључни проблем за унапређење Међународног система јединица. На двадесетпетој Генералној конференцији за тегове и мере, одржаној године, закључено је да је дошао тренутак да основне јединице SI могу да буду дефинисане на основу природних константи или својстава атома. Притом, седам основних величина важећег система и њихове јединице остају исте, али ће њихове јединице бити дефинисане у односу на бројевне вредности фундаменталних физичких константи. Изабрано је седам таквих константи. То су: Планкова константа h, елементарно наелектрисање е, Болцманова константа k, Авогадрова константа NA, учестаност зрачења атома цезијума које одговара прелазу између два хиперфина нивоа основног стања Δν(133Cs), брзина светлости у вакууму c, светлосна ефикасност монохроматског зрачења одређене учестаности, Kcd. Фиксирана нумеричка вредност учестаности зрачења одређене врсте атома биће и даље основа за дефиницију јединице за време. Само ће услови под којима се врши мерење бити строжије дефинисани. Фиксирана нумеричка вредност брзине светлости у вакууму, заједно са дефиницијом јединице за време представља основу за дефиницију јединице за дужину. Килограм ће наставити да буде јединица за масу, али ће његова вредност бити одређена фиксираном бројевном вредношћу Планкове константе h и дефиницијама секунде и метра. Наиме, по својој физичкој природи Планкова константа представља квант дејства (action) чија јединица, изражена у основним јединицама је kg m 2 s -1. Пошто су метар и секунда дефинисани, фиксирањем нумеричке вредности за Планкову константу биће дефинисана и јединица килограм. Слика 2 - Везе између основних јединица новог SI система Јединица за наелектрисање (кулон), изражена у основним јединицама, једнака је A s. На основу фиксиране нумеричке вредности елементарног наелектрисања биће дефинисана јединица за електричну струју. То ће омогућити лакше остварење примарног еталона јединице електричне струје. Јединица за температуру биће одређена у односу на тачну фиксирану нумеричку вредност Болцманове константе изражену у основним јединицама (s 2 m 2 kg K 1 = J K 1 ). На тај начин, дефиниција келвина биће, уместо тројне тачке воде, ослоњена на дефиниције секунде, метра и килограма. Јединица за количину супстанције биће изражена у односу на тачну фиксирану нумеричку вредност Авогадрове константе, исказану у јединици mol 1, тако да више не зависи од вредности килограма. Јединица за јачину светлости биће преформулисана. Њена вредност биће одређена фиксираном нумеричком вредношћу светлосне ефикасности извора монохроматског зрачења учестаности херца. Метрологија електричних величина данас почива на квантним електричним еталонима (стандардима). Квантни стандард за напон је заснован је на Џозенсоновом ефекту. Он се испољава када су два суперпроводника раздвојена танким изолационим слојем чија је дебљина реда величине нанометра. То омогућује остваривање еталона напона, чија је вредност одређена вредношћу елементарног наелектрисања и Планкове константе, са релативном мерном несигурношћу реда величине Јединица за отпорност је повезана са вредношћу TEHNIKA KVALITET IMS, STANDARDIZACIJA I METROLOGIJA 16 (2016) 641

7 елементарног наелектрисања и Планкове константе квантним Холовим ефектом. Квантни троугао еталона електричних јединица (волт ампер ом) затвара се еталоном електричне струје заснованом на преносу појединачних електрона кроз суперпроводну наноструктуру (superconductor/insulator/- normal metal/insulator/ superconductor, SINIS, turnstile) [12]. 5. ЗАКЉУЧАК Дефинисањем мерних јединица бавили су се најпре властодржци, фараони и краљеви, а потом, од доба Ренесансе, научници. Прамере су од давнина представљале обележје државности, па је њихово усвајање и ширење било и питање националног престижа и политике. Тако је остало и до данас, што унапређење Међународног система јединица чини деликатним. Измене или проширења SI система су у надлежности посебног дипломатског тела (Генерална конференција за тегове и мере). Настојање да се доследно оствари идеја водиља стварања Метарског система, да он буде заснован на природним законима, а не одабраним артефактима, довело је до потребе увођења новог, квантог система мерних јединица. Упркос ентузијазму и првобитних оптимистичних прогноза, тај процес још увек траје. Дилеме су разноврсне и не само научне и филозофске. Осим економских и геополитичких аспеката треба узимати у обзир и едукативну страну. Мерења су одлучујући део људске активности од почетака било ког облика друштвене организације. Она су директно повезана са објективним сазнањима и валидацијом знања, и као таква присутна у свакодневном животу обичних људи. Њима није тешко да појме шта је и колика је секунда, али наносекунда постаје недокучива. Упркос жеље да дефиниције основних је треба да буду разумљиве [13], формулације које су засноване на квантној физици делују езотерично, јер проистичу из знања која се стичу тек на вишим курсевима физике. Могуће је, чак врло вероватно, да ће нови систем мерних јединица бити прихваћен годие. Међутим, у стручној јавности постоји известан скептицизам да су сви потребни услови за прелазак испуњени. Неки теоријски физичари сумњају да су природне константе константне у космичким размерама [14]. Да ли оно што се сада припрема представља коначан циљ или, ипак, само још један корак у процесу стварања и унапређења Међународног система јединица, будућност ће показати. ЛИТЕРАТУРА [1] Y. V. Tarbeyev Measurements and Measurement Standards, Physical Methods, Instruments And Measurements, Encyclopedia of Life Support Systems (EOLSS) [2] International vocabulary of metrology Basic and general concepts and asotiated terms (VIM 3rd edition, 2012), [3] X. Borg, The ST System of Units, Blaze Labs Research, [4] ISO :2009, Quantities and units, wikipedia.org/wiki/iso [5] BIPM-MissionRoleObjectives, [6] System of Electrical and Magnetic Units. [7] Mars Cllimate Orbiter Mishap, Investigation Board, Phase Report, Nov. 10, [8] I. T. Mills, Redefinition of the kilogram, ampere, kelvin and mole, Metrologia 43 (2006) [9] K. A. Tomilin, Natural Systems Of Units, To the Centenary Anniversary of the Planck System, [10]R. Davis, The SI unit of mass, Metrologia 40 (2003) [11]P. H. Cutler, A. A. Lucas, Quantum Metrology and Fundamental Physical Constants, Nato Science Series B: 1983 Edition [12]A. Manninen, Quantum standards for the new SI system, Pages/Quantum-standards-for-the-new-SIsystem.aspx [13] [14]Hill V. V. Khruschov, Fundamental problems in metrology, Is There An Objective Need For An Urgent Redefinition Of The Kilogram And Mole? Measurement Techniques, Vol. 56, No. 7, October, TEHNIKA KVALITET IMS, STANDARDIZACIJA I METROLOGIJA 16 (2016)

8 SUMMARY INTERNATIONAL SYSTEM OF UNITS, RETURN TO THE BASIC PRINCIPLES? The purpose of this paper is to describe the measurement and metrology from the measurement units point of wiev. Metrology is one of the first areas in which a broad international cooperation is established. There are a number of organizations today, whose ultimate goal is the establishment and maintenance of measuring unity in the world. The basis for this is an internationally accepted system of measuring units (SI). The paper contains a brief history of the development of the current and the conception of a new system of units, whose adoption is expected in Key words: International System of Units, the basic unit of measurement, physical constant, the definition of basic units of measurement TEHNIKA KVALITET IMS, STANDARDIZACIJA I METROLOGIJA 16 (2016) 643

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Закони термодинамике

Закони термодинамике Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Механика флуида Б - уводни поjмови

Механика флуида Б - уводни поjмови Механика флуида Б - уводни поjмови Александар Ћоћић Машински факултет Београд Александар Ћоћић (MФ Београд) MФБ-01 1 / 11 Информациjе o предмету, професору, итд. Александар Ћоћић, доцент email: acocic@mas.bg.ac.rs

Διαβάστε περισσότερα

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање

Διαβάστε περισσότερα

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

L кплп (Калем у кплу прпстпперипдичне струје)

L кплп (Калем у кплу прпстпперипдичне струје) L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве

Διαβάστε περισσότερα

У к у п н о :

У к у п н о : ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Седми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. КРЕТАЊЕ И

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004 РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 004 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор 100 VA има напон и реактансу кратког споја u 4% и x % респективно При номиналном оптерећењу

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Могућности и планови ЕПС на пољу напонско реактивне подршке. Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије

Могућности и планови ЕПС на пољу напонско реактивне подршке. Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије Могућности и планови ЕПС на пољу напонско реактивне подршке Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије 1 Обавезе ЈП ЕПС као КПС... ЗАКОН О ЕНЕРГЕТИЦИ ЧЛАН 94. Енергетски

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ. Осиловање

МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ. Осиловање МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ Понедељак, 29. децембар, 2010 Хуков закон Период и фреквенција осциловања Просто хармонијско кретање Просто клатно Енергија простог хармонијског осцилатора Веза са униформним кретањем

Διαβάστε περισσότερα

C кплп (Кпндензатпр у кплу прпстпперипдичне струје)

C кплп (Кпндензатпр у кплу прпстпперипдичне струје) C кплп (Кпндензатпр у кплу прпстпперипдичне струје) i u За кплп са слике на крајевима кпндензатпра ппзнате капацитивнпсти C претппставићемп да делује ппзнат прпстпперипдичан наппн: u=u m sin(ωt + ϴ). Услед

Διαβάστε περισσότερα

Разлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q

Разлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q Разлика потенцијала Разлика потенцијала између тачака A и B се дефинише као промена потенцијалне енергије (крајња минус почетна вредност) када се наелектрисање q помера из тачке A утачку B подељена са

Διαβάστε περισσότερα

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ШКОЛСКЕ 2012/2013. ГОДИНЕ. која се троши на његово загревање након затварања прекидача.

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ШКОЛСКЕ 2012/2013. ГОДИНЕ. која се троши на његово загревање након затварања прекидача. ШКОЛСКЕ 0/03. ГОДИНЕ. Друштво физичара Србије VIII Министарство просвете, науке и технолошког РАЗРЕД развоја Републике Србије ЗАДАЦИ. Отпорности у струјном колу приказаном на слици износе R.8, R и R 3.

Διαβάστε περισσότερα

Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност,

Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност, Температурно стабилан отпорник састоји се од два једнака цилиндрична дела начињена од различитих материјала (гвожђе и графит) У ком односу стоје отпорности ова два дела отпорника ако се претпостави да

Διαβάστε περισσότερα

Тест за 7. разред. Шифра ученика

Тест за 7. разред. Шифра ученика Министарство просвете Републике Србије Српско хемијско друштво Окружно/градско/међуокружно такмичење из хемије 28. март 2009. године Тест за 7. разред Шифра ученика Пажљиво прочитај текстове задатака.

Διαβάστε περισσότερα

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год.

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год. КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН 7. год. Тест има задатака. Време за рад је 8 минута. Задаци са редним бројем -6 вреде по поена задаци 7- вреде по 5 поена задаци 5- вреде

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 07. Вишефазне електричне системе је патентирао српски истраживач Никола Тесла

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2/13 Diffie-Hellman размена кључева први алгоритам са јавним

Διαβάστε περισσότερα

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА 4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи

Διαβάστε περισσότερα

Флукс, електрична енергија, електрични потенцијал

Флукс, електрична енергија, електрични потенцијал Флукс, електрична енергија, електрични потенцијал 1 Електрични флукс Ако линије поља пролазе кроз површину A која је нормална на њих Производ EA је флукс, Φ Генерално: Φ E = E A cos θ 2 Електрични флукс,

Διαβάστε περισσότερα

I Наставни план - ЗЛАТАР

I Наставни план - ЗЛАТАР I Наставни план - ЗЛААР I РАЗРЕД II РАЗРЕД III РАЗРЕД УКУО недељно годишње недељно годишње недељно годишње годишње Σ А1: ОАЕЗНИ ОПШЕОРАЗОНИ ПРЕДМЕИ 2 5 25 5 2 1. Српски језик и књижевност 2 2 4 2 2 1.1

Διαβάστε περισσότερα

У к у п н о :

У к у п н о : ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Осми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. ЕЛЕКТРИЧНО

Διαβάστε περισσότερα

ФИЗИКА Час број 11 Понедељак, 8. децембар, Aвогадров закон. Увод. Авогадров закон. Гасовито агрегатно стање

ФИЗИКА Час број 11 Понедељак, 8. децембар, Aвогадров закон. Увод. Авогадров закон. Гасовито агрегатно стање ФИЗИКА Час број Понедељак, 8. децембар, 008 Једначина стања идеалног и реалног гаса Притисак и температура гаса Молекуларно кинетичка теорија идеалног гаса Болцманова и Максвелова расподела Средњи слободни

Διαβάστε περισσότερα

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу

Διαβάστε περισσότερα

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног

Διαβάστε περισσότερα

Слика 1. Слика 1.1 Слика 1.2 Слика 1.3. Количина електрицитета која се налази на електродама кондензатора капацитивности C 3 је:

Слика 1. Слика 1.1 Слика 1.2 Слика 1.3. Количина електрицитета која се налази на електродама кондензатора капацитивности C 3 је: Три кондензатора познатих капацитивности 6 nf nf и nf везани су као на слици и прикључени на напон U Ако је позната количина наелектрисања на кондензатору капацитивности одредити: а) Напон на који је прикључена

Διαβάστε περισσότερα

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Прва година ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА Г1: ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА 10 ЕСПБ бодова. Недељно има 20 часова

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016. ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним

Διαβάστε περισσότερα

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације

Διαβάστε περισσότερα

брзина којом наелектрисања пролазе кроз попречни пресек проводника

брзина којом наелектрисања пролазе кроз попречни пресек проводника Струја 1 Електрична струја Кад год се наелектрисања крећу, јавља се електрична струја Струја је брзина којом наелектрисања пролазе кроз попречни пресек проводника ΔQ I Δtt Јединица за струју у SI систему

Διαβάστε περισσότερα

3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ

3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ 3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ Подсетимо се. Шта је сила еластичности? У ком смеру она делује? Од свих еластичних тела која смо до сада помињали, за нас је посебно интересантна опруга. Постоје разне опруге,

Διαβάστε περισσότερα

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић Скупови (наставак) Релације Професор : Рака Јовановић Асиситент : Јелена Јовановић Дефиниција дуалне скуповне формуле За скуповне формулу f, која се састоји из једног или више скуповних симбола и њихових

Διαβάστε περισσότερα

Температура. везана за топло и хладно ово није једнозначно у субјективном смислу

Температура. везана за топло и хладно ово није једнозначно у субјективном смислу ФИЗИКА 2010 Понедељак, 15. новембар и 22. новембар 2010 Температура Топлотно ширење чврстих тела и течности Закони који важе за идеални гас Кинетичка теорија Фазне трансформације Влажност, испаравање,

Διαβάστε περισσότερα

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно

Διαβάστε περισσότερα

Одређивање специфичне тежине и густине чврстих и течних тела. Одређивање специфичне тежине и густине чврстих и течних тела помоћу пикнометра

Одређивање специфичне тежине и густине чврстих и течних тела. Одређивање специфичне тежине и густине чврстих и течних тела помоћу пикнометра Одређивање специфичне тежине и густине чврстих и течних тела Густина : V Специфична запремина : V s Q g Специфична тежина : σ V V V g Одређивање специфичне тежине и густине чврстих и течних тела помоћу

Διαβάστε περισσότερα

1. и 2. октобар ФИЗИКА са МЕРЕЊИМA. Информације о предмету

1. и 2. октобар ФИЗИКА са МЕРЕЊИМA. Информације о предмету 1. и 2. октобар 2015. ФИЗИКА са МЕРЕЊИМA Информације о предмету 1 О предметном професору Др ЖЕЉКА ТОМИЋ, дипл.инж. електротехнике Кабинет: број П9, I спрат E-mail: ztomic@tehnikum.edu.rs Констултације,

Διαβάστε περισσότερα

3. и 4. октобар ФИЗИКА. Информације о предмету ТЕХНИКУМ ТАУРУНУМ ВИСОКА ИНЖЕЊЕРСКА ШКОЛА СТРУКОВНИХ СТУДИЈА

3. и 4. октобар ФИЗИКА. Информације о предмету ТЕХНИКУМ ТАУРУНУМ ВИСОКА ИНЖЕЊЕРСКА ШКОЛА СТРУКОВНИХ СТУДИЈА ФИЗИКА 3. и 4. октобар 2018. Информације о предмету ТЕХНИКУМ ТАУРУНУМ ВИСОКА ИНЖЕЊЕРСКА ШКОЛА СТРУКОВНИХ СТУДИЈА 1 О професорима и сарадницима Др ЖЕЉКА ТОМИЋ, дипл.инж. eлектротехнике e-mail: ztomic@tehnikum.edu.rs

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα

Крагујевац, 02. jул Пријемни испит и начин бодовања

Крагујевац, 02. jул Пријемни испит и начин бодовања Универзитет у Крагујевцу ПРИРОДНО-МАТЕМАТИЧКИФАКУЛТЕТ Институт за физику Радоја Домановића 12, 34000 Крагујевац, Србија University оf Kragujevac FACULTY OF SCIENCE Department of Physics Radoja Domanovića

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ

Διαβάστε περισσότερα

2.1. Права, дуж, полуправа, раван, полураван

2.1. Права, дуж, полуправа, раван, полураван 2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.

Διαβάστε περισσότερα

Cook-Levin: SAT је NP-комплетан. Теодор Најдан Трифунов 305M/12

Cook-Levin: SAT је NP-комплетан. Теодор Најдан Трифунов 305M/12 Cook-Levin: SAT је NP-комплетан Теодор Најдан Трифунов 305M/12 1 Основни појмови Недетерминистичка Тјурингова машина (НТМ) је уређена седморка M = (Q, Σ, Γ, δ, q 0,, ) Q коначан скуп стања контролног механизма

Διαβάστε περισσότερα