Declaraţii de variabile, tipuri, funcţii

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Declaraţii de variabile, tipuri, funcţii"

Transcript

1 Declaraţii de variabile, tipuri, funcţii 2 noiembrie 2004

2 Declaraţii de variabile, tipuri, funcţii 2 Puţinǎ teorie sintaxa: regulile gramaticale care descriu un limbaj un şir de simboluri (text) face parte din limbaj? (e bine format?) semantica: înţelesul (semnificaţia) unui obiect din limbaj rezultǎ din semnificaţia fiecǎrui element de program în parte determinǎ rezultatul execuţiei programului Definim sintaxa elementelor de limbaj folosind anumite notaţii: ::= pentru definiţie pentru alternative etc. Convenţie: cursiv pentru simboluri neterminale (definite la rândul lor) tipǎrit pentru simboluri terminale (elemente lexicale) instructiune while ::= while ( condiţie ) instrucţiune BNF (Backus-Naur Form): notaţie formalǎ pt. gramatica unui limbaj

3 Declaraţii de variabile, tipuri, funcţii 3 Elemente lexicale Prima fazǎ de compilare: analiza lexicalǎ = separarea în atomi lexicali: unitǎţile elementare de limbaj care au o semnificaţie: cuvinte cheie: int, void, while, etc. identificatori: secvenţǎ de litere, cifre şi începând cu literǎ sau folosiţi pt. nume de variabile, funcţii, tipuri, etichete, etc. ATENŢIE! În C se face distincţie între majuscule şi minuscule!!! Lungimea semnificativǎ a identificatorilor: 31 (externi)/63 (interni) (porţiunea suplimentarǎ poate fi ignoratǎ de unele compilatoare!) constante: 123, 3.14, \0, "salut!\n" etc. semne de punctuaţie operatori: + - = ++ && etc. separatori: { } ( ) ; etc. Spaţiile: necesare doar unde trebuie separaţi doi atomi lexicali alǎturaţi ex. void main, nu voidmain; nu floatx=3.14; nesemnificative în rest. Indentaţi programele pt. citire uşoarǎ! (automat în editoarele bune)

4 Declaraţii de variabile, tipuri, funcţii 4 Structura programului: declaraţii şi definiţii Un program C: compus din 1 unitǎţi de compilare (fişiere). Fiecare: un şir de declaraţii (de tipuri, variabile, funcţii) sau definiţii de funcţii. translation-unit ::= external-declaration translation-unit external-declaration external-definition ::= declaration function-definition O declaraţie specificǎ interpretarea şi atributele unui identificator (toate informaţiile necesare pentru a-l folosi) pentru o variabilǎ, numele şi tipul pentru o funcţie, numele, tipul, şi tipul parametrilor O definiţie e o declaraţie care specificǎ complet identificatorul respectiv pentru o variabilǎ, în plus, are ca efect alocarea memoriei pentru o funcţie, include corpul funcţiei Un identificator nu poate fi folosit înainte de a fi declarat. e necesarǎ o declaraţie, dacǎ obiectul e folosit înainte de definiţie ex. printf e declaratǎ în stdio.h şi definitǎ într-o bibliotecǎ standard

5 Declaraţii de variabile, tipuri, funcţii 5 Declaraţii: forma generalǎ Întâlnite pânǎ acum: float x; int a, b = 1; char t[20]; Dar se pot declara deodatǎ şi mai multe obiecte cu acelaşi tip de bazǎ: Ex. int i = 1, n, tab[20], f(double, int); declarǎ un întreg iniţializat cu 1, alt intreg neiniţializat, un tablou de 20 de întregi, şi o funcţie întreagǎ cu doi parametri (double şi int) Sintaxa cu tipul de bazǎ în faţǎ e similarǎ cu folosirea în expresii: tab[ceva] este un int f(ceva1, ceva2) este un int declaratie ::= specificatori tip lista-decl-init ; lista-decl-init ::= declarator-init lista-decl-init, declarator-init declarator-init ::= declarator declarator ::= identificator declarator = iniţializator declarator [ expresie ] pt. tablouri declarator ( parametri ) pt. funcţii * declarator pt. pointeri

6 Declaraţii de variabile, tipuri, funcţii 6 Domeniul de vizibilitate al identificatorilor Pt. orice identificator, compilatorul trebuie sǎ-i decidǎ semnificaţia Identificatorii obişnuiţi: variabile, tipuri, funcţii, constante enumerare au un spaţiu de nume comun (NU: variabilǎ şi funcţie cu acelaşi nume) Q1: Un identificator poate fi folosit într-un punct de program? R: Domeniul de vizibilitate (al unei declaraţii / al unui identificator) domeniu de vizibilitate la nivel de fişier (file scope) pentru identificatori declaraţi în afara oricǎrui bloc (oricǎrei funcţii) din punctul de declaraţie pânǎ la sfârşitul fişierului compilat domeniu de vizibilitate la nivel de bloc (block scope) pentru identificatori declaraţi într-un bloc { } (corp de funcţie, instrucţiune compusǎ) şi pentru parametrii unei funcţii din punctul de declaraţie pânǎ la acolada } care închide blocul Un identificator poate fi redeclarat într-un bloc interior şi îsi recapǎtǎ vechea semnificaţie când blocul ia sfârşit.

7 Declaraţii de variabile, tipuri, funcţii 7 Domeniu de vizibilitate: Exemplu int m, n, p; float x, y, z; /* m1, n1, p1, x1, y1, z1 */ int f(int n, int x) { /* n2, x2: alt n, alt x */ int i; float y = 1; /* i1, y2 */ m = p; p = n; /* m1 = p1; p1 = n2; */ for (i = 0; i < 10; ++i) { float x = i*i; /* x3 = i1 * i1; */ z += x; /* z1 += x3; */ } return z += x + y; /* z1 += x2 + y2 */ } void main(void) { int i=0, m=3, x=2; /* i2, m2, x4 */ z = f(m, x); /* z1 = f(m2, x4); */ x = f(i, y); /* x4 = f(i2, y1); */ }

8 Declaraţii de variabile, tipuri, funcţii 8 Variabile globale şi locale Dacǎ în declaraţia de variabile nu apar alţi specificatori înainte de tip: Variabile globale = o variabilǎ declaratǎ in afara oricǎrei funcţii are spaţiu de memorie alocat pe întreaga execuţie a programului e iniţializatǎ o singurǎ datǎ (cu valoarea datǎ explicit în declaraţie, sau implicit cu zero) e vizibilǎ în întreg textul programului începând cu declaraţia ei Variabile locale (interne) = o variabilǎ declaratǎ în interiorul unui bloc (inclusiv de funcţie) existǎ doar atât timp cât programul executǎ blocul respectiv sunt iniţializate cu valoarea datǎ la orice intrare în blocul respectiv (sau au o valoare nedefinitǎ dacǎ declaraţia nu specificǎ iniţializare) sunt vizibile doar în interiorul blocului respectiv

9 Declaraţii de variabile, tipuri, funcţii 9 Legǎtura dintre identificatori (linkage) Q2: Douǎ declaraţii ale unui identificator se referǎ la aceeaşi entitate? R: Tipul de legǎturǎ (linkage) al unui identificator (obiect/funcţie) extern: toate declaraţiile identificatorului din toate fişierele care compun un program se referǎ la acelaşi obiect sau funcţie pentru declaraţiile la nivel de fişier fǎrǎ specificator de memorare sau declaraţia cu specificatorul extern a unui identificator care nu a fost deja declarat cu tipul de legǎturǎ intern intern: toate declaraţiile identificatorului din fişierul curent se referǎ la acelaşi obiect sau funcţie; nu se propagǎ în exteriorul fişierului pt. declaraţiile la nivel de fişier cu specificatorul de memorare static fǎrǎ legǎturi (no linkage): fiecare declaraţie denotǎ o entitate unicǎ pentru declaraţiile la nivel de bloc fǎrǎ specificatorul extern

10 Declaraţii de variabile, tipuri, funcţii 10 Durata de memorare a obiectelor Q3: Ce timp de viaţǎ/duratǎ de memorare are un obiect în program? R: 3 feluri diferite: static, automatic şi alocat (discutat ulterior) Pe întreaga duratǎ de viaţǎ, un obiect are o adresǎ constantǎ şi îşi pǎstreazǎ ultima valoare memoratǎ. Duratǎ de memorare staticǎ: pentru obiecte declarate cu tipul de legǎturǎ extern sau intern, sau declarate cu specificatorul de memorare static timp de viaţǎ: întreaga execuţie a programului. obiectul e iniţializat o singurǎ datǎ, înainte de lansarea în execuţie. Duratǎ de memorare automatǎ: pentru obiecte fǎrǎ legǎturǎ timp de viaţǎ: de la intrarea în blocul asociat pânǎ la încheierea sa la fiecare apel recursiv, se creazǎ o nouǎ instanţǎ a obiectului valoarea iniţialǎ: nedeterminatǎ; o eventualǎ iniţializare în declaraţie e repetatǎ de câte ori e atinsǎ

11 Declaraţii de variabile, tipuri, funcţii 11 Declaraţii de tablouri Exemple: char sir[20]; double mat[6][5]; Sintaxa: specificatori opt tip ident [ D1 ]... [ Dn ] iniţializare opt declarǎ un tablou n-dimensional de D1... Dn elemente de tip de fapt: tablou de D1 elem. care sunt tablouri de... Dn elem. de tip Atenţie: în C, numerotarea elementelor în tablou începe de la zero! În ANSI C, tablourile se declarǎ doar cu dimensiuni constante (pozitive) În C99, tablourile declarate local pot avea dimensiuni evaluate la rulare void f(int n) { char s[n + 3]; /* prelucreazǎ s */ } Un tablou fǎrǎ dimensiune datǎ, neiniţializat (int a[];) are 1 element! Şiruri de caractere: caz particular de tablouri de char în memorie, sfârşitul unui şir e indicat de caracterul special \0 (nul) Atenţie: toate funcţiile care lucreazǎ cu şiruri depind de acest lucru! (dar convenţia nu are legǎturǎ cu aspectul în text, de ex. la citire) constante şir: cu ghilimele duble ("test"), terminate implicit cu \0

12 Declaraţii de variabile, tipuri, funcţii 12 Iniţializarea variabilele cu duratǎ de memorare staticǎ sunt iniţializate înainte de execuţie: implicit cu zero; explicit pot fi iniţializate doar cu constante variabilele cu duratǎ automatǎ pot fi iniţializate cu expresii arbitrare (ori de câte ori iniţializarea e atinsǎ la rulare) Pentru variabilele de tip tablou, iniţializatorii se scriu între acolade nivelele de acolade indicǎ sub-obiectele iniţializate int m[2][3] = { { 1, 0, 0 }, { 0, 1, 0 } }; dacǎ nu, iniţializatorii se folosesc pe rând, în ordinea indicilor int c[2][2][2] = { { 1, 1, 1 }, { { 1, 0 }, 1 } }; pt. iniţializator mai mic ca dimensiunea, restul nu e iniţializat explicit (vezi c[0][1][1], c[1][1][1]); când iniţializatorul e mai mare, restul se ignorǎ char msg[4] = "test"; ca şi char msg[4] = { t, e, s, t }; dacǎ dimensiunea nu e datǎ explicit, se deduce din iniţializator char msg[] = "test"; ca şi char msg[5] = { t, e, s, t, \0 }; când se specificǎ elementul de iniţializat, se continuǎ apoi în ordine: int t[10] = { 1, 2, 3, [8] = 2, 1 }; /* t[3]-t[7] nespecificate */

13 Declaraţii de variabile, tipuri, funcţii 13 Definiţii de constante şi tipuri Definiţii de tip: typedef declaraţie typedef unsigned long size t; typedef unsigned char byte; sintaxa: ca şi declaraţia de variabile, prefixatǎ cu typedef dacǎ în declaraţie, identificatorul ar fi o variabilǎ de un anumit tip, atunci typedef declaraţie defineşte identificatorul ca numele acelui tip Ex: în int mat3x5[3][5]; mat3x5 ar fi o matrice de 3x5 întregi. typedef int mat3x5[3][5]; /* mat3x5 e tipul tablou de 3x5 int */ mat3x5 A, B; /* A, B sunt variabile tablou de 3x5 int */ Declaraţii de constante cu calificatorul de tip const: const int LEN = 10; folosit pt. declararea de constante; constuie eroare modificarea lor nu se permite folosirea de operatori de atribuire pt. obiecte const (compilatorul e liber de exemplu sǎ le aloce în memorie read-only)

14 Declaraţii de variabile, tipuri, funcţii 14 Declaraţii şi definiţii de funcţii Declaraţia: prototipul (antetul) funcţiei: tip, nume, tipul parametrilor decl-fct ::= tip nume-fct ( lista-decl-param ) ; lista-decl-param ::= void decl-param,..., decl-param decl-param ::= tip tip nume-param int abs(int n); int getchar(void); double pow(double, double); tipul returnat nu poate fi tablou; poate fi void (nimic) numele parametrilor nu e relevant în declaraţie şi poate lipsi o funcţie poate fi declaratǎ repetat, cu declaraţii compatibile numǎr variabil de parametri dacǎ lista se terminǎ în... (v. ulterior) declaraţia doar cu () nu specificǎ parametrii şi e perimatǎ specificatorul inline e o indicaţie de optimizare pentru vitezǎ; se rezumǎ la fişierul curent; depinde de implementare (vezi standard)

15 Declaraţii de variabile, tipuri, funcţii 15 Definiţii de funcţii Sintaxa: definiţie-funcţie ::= antet-funcţie bloc blocul conţine declaraţii şi instrucţiuni (corpul funcţiei) parametrii specificaţi şi prin nume (vizibilitate în corpul funcţiei) Transferul parametrilor în C se face prin valoare expresiile date ca argumente în apelul de funcţie sunt evaluate şi atribuite parametrilor formali (cu eventuale conversii ca la atribuire) ordinea de evaluarea a argumentelor nu e specificatǎ dispunerea în memorie a argumentelor (pe stivǎ) nu e specificatǎ se executǎ corpul funcţiei; se revine la instrucţiunea de dupǎ apel

16 Declaraţii de variabile, tipuri, funcţii 16 Transmiterea parametrilor: exemple int a = 1, b = 2, m = 3; // primul a, m: a1, m1 int f (int a, int p, int n) // alt a: a2 { a = 2; // a2 = 2 m = 5; n = 0; // m1 = 5 } void main(void) { int m = 4, n = 5, p = 6; // alt m: m2 f (b+2, n, p); // f(4, 5,6); /* a = 1, m1 = 5, m2 = 4 */ }

17 Declaraţii de variabile, tipuri, funcţii 17 Funcţii matematice standard (declarate în math.h) Funcţii de conversie double fabs(double x); valoarea absolutǎ a lui x double floor(double x); partea întreagǎ x a lui x, ca double double ceil(double x); cel mai mic întreg x nu mai mic de x double trunc(double x); truncheazǎ argumentul la întreg, înspre 0 Funcţii de rotunjire (Obs: direcţia de rotunjire poate fi controlatǎ cu fgetround() şi fsetround() din fenv.h, detalii în standard) double nearbyint(double x); rotunjesc în direcţia curentǎ cu/ double rint(double x) /fǎrǎ excepţie de argument inexact (implementarea/tratarea excepţiilor e definitǎ în standard, v. fenv.h) double round(double x): rotunjeşte jumǎtǎţile în direcţia opusǎ lui zero long int lrint(double x); long int lround(double x); ca şi rint(), round() dar rezultat întreg; nedefinit în caz de depǎşire Funcţiile din math.h au variante cu sufixele f şi l cu argumente şi rezultate float sau long double. Exemple: float fabsf(float); long double fabsl(long double);

18 Declaraţii de variabile, tipuri, funcţii 18 Funcţii standard din math.h (cont.) Funcţii de exponenţiere şi logaritmice double exp(double x); returneazǎ e x double exp2(double x); returneazǎ 2 x double log(double x); returneazǎ logaritmul natural ln x double log10(double x); double log2(double x); log. în baza 10 şi 2 double pow(double x); returneazǎ x y double sqrt(double x); returneazǎ x Funcţii trigonometrice şi hiperbolice acos, asin, atan, cos, sin, tan, acosh, asinh, atanh, cosh, sinh, tanh (valori unghiulare în radiani; inversele returneazǎ valori principale) double atan2(double y, double x); returneazǎ arctg(y/x) în intervalul [ π, π], determinǎ cadranul dupǎ semnele ambelor argumente

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Studiul elementelor de bază din limbajul C++ - continuare

Studiul elementelor de bază din limbajul C++ - continuare PRELEGERE VI PROGRAMAREA CALCULATOARELOR ŞI LIMBAJE DE PROGRAMARE Studiul elementelor de bază din limbajul C++ - continuare I. Tipuri de constante Constantele reprezintă cantităţi fixe numerice, alfabetice

Διαβάστε περισσότερα

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui - Introducere Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui Αγαπητέ κύριε, Αγαπητέ κύριε, Formal, destinatar de sex

Διαβάστε περισσότερα

Editura EduSoft Bacău

Editura EduSoft Bacău Bogdan Pătruţ Carmen Violeta Muraru APLICAŢII ÎN C şi C++ Editura EduSoft Bacău - 2006 Copyright 2006 Editura EduSoft Toate drepturile asupra prezentei ediţii sunt rezervate Editurii EduSoft. Reproducerea

Διαβάστε περισσότερα

Fișiere de tip Script, Function și CallBack - uicontrol.

Fișiere de tip Script, Function și CallBack - uicontrol. Fișiere de tip Script, Function și CallBack - uicontrol. Obiectivele lucrării de laborator: - Prezentarea și descrierea fișierelor Script și Function - Prezentarea și implementarea parametrului Callback

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

PROGRAMAREA CALCULATOARELOR Note de curs

PROGRAMAREA CALCULATOARELOR Note de curs ELENA ŞERBAN PROGRAMAREA CALCULATOARELOR Note de curs http://www.ace.tuiasi.ro/~eserban PROGRAMAREA CALCULATOARELOR CURS AN I TITULAR DISCIPLINĂ: ş. l. dr. ing. ELENA ŞERBAN www.ace.tuiasi.ro/~eserban

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1 2. Circuite logice 2.2. Diagrame Karnaugh Copyright Paul GASNER Diagrame Karnaugh Tehnică de simplificare a unei expresii în sumă minimă de produse (minimal sum of products MSP): Există un număr minim

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

TAD Stiva (STACK) Observaţii: 1. sunt aşezate ordonat unele peste altele. Un element nou se adaugă în stivă deasupra elementului cel mai recent

TAD Stiva (STACK) Observaţii: 1. sunt aşezate ordonat unele peste altele. Un element nou se adaugă în stivă deasupra elementului cel mai recent TAD Stiva (STACK) Observaţii: 1. În limbajul uzual cuvântul stivă referă o grămadă în care elementele constitutive sunt aşezate ordonat unele peste altele. Un element nou se adaugă în stivă deasupra elementului

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Profil informatică Teste pentru licenţă

Profil informatică Teste pentru licenţă Profil informatică Teste pentru licenţă 14-MAR-003 1 Programare în Pascal 1. Un comentariu între acolade: a) ajută calculatorul săînţeleagă funcţia pe care o realizează programul b) ajută cititorul săînţeleagă

Διαβάστε περισσότερα

Προγραμματισμός Συστημάτων

Προγραμματισμός Συστημάτων MYY502 Προγραμματισμός Συστημάτων Β. Δημακόπουλος dimako@cse.uoi.gr http://www.cse.uoi.gr/~dimako Εργαστήρια Μάλλον (!) ξεκινούν την επόμενη εβδομάδα Εγγραφές στο εργαστήριο 2 βάρδιες, 15:00 17:00 και

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Programarea Calculatoarelor

Programarea Calculatoarelor Programarea Calculatoarelor Modul 1: Rezolvarea algoritmică a problemelor Introducere în programare Algoritm Obiectele unui algoritm Date Constante Variabile Expresii Operaţii specifice unui algoritm şi

Διαβάστε περισσότερα

Circuite cu diode în conducţie permanentă

Circuite cu diode în conducţie permanentă Circuite cu diode în conducţie permanentă Curentul prin diodă şi tensiunea pe diodă sunt legate prin ecuaţia de funcţionare a diodei o cădere de tensiune pe diodă determină valoarea curentului prin ea

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Lucrul mecanic. Puterea mecanică.

Lucrul mecanic. Puterea mecanică. 1 Lucrul mecanic. Puterea mecanică. In acestă prezentare sunt discutate următoarele subiecte: Definitia lucrului mecanic al unei forţe constante Definiţia lucrului mecanic al unei forţe variabile Intepretarea

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Subiectul III (30 de puncte) - Varianta 001

Subiectul III (30 de puncte) - Varianta 001 (30 de puncte) - Varianta 001 1. Utilizând metoda backtracking se generează în ordine lexicografică cuvintele de câte patru litere din mulţimea A={a,b,c,d,e}, cuvinte care nu conţin două vocale alăturate.

Διαβάστε περισσότερα

Curs 4. RPA (2017) Curs 4 1 / 45

Curs 4. RPA (2017) Curs 4 1 / 45 Reţele Petri şi Aplicaţii Curs 4 RPA (2017) Curs 4 1 / 45 Cuprins 1 Analiza structurală a reţelelor Petri Sifoane Capcane Proprietăţi 2 Modelarea fluxurilor de lucru: reţele workflow Reţele workflow 3

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei

I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei I. Forţa I. 1. Efectul static şi efectul dinamic al forţei Interacţionăm cu lumea în care trăim o lume în care toate corpurile acţionează cu forţe unele asupra altora! Întrebările indicate prin: * 1 punct

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Corectură. Motoare cu curent alternativ cu protecție contra exploziei EDR * _0616*

Corectură. Motoare cu curent alternativ cu protecție contra exploziei EDR * _0616* Tehnică de acționare \ Automatizări pentru acționări \ Integrare de sisteme \ Servicii *22509356_0616* Corectură Motoare cu curent alternativ cu protecție contra exploziei EDR..71 315 Ediția 06/2016 22509356/RO

Διαβάστε περισσότερα

a. 0,1; 0,1; 0,1; b. 1, ; 5, ; 8, ; c. 4,87; 6,15; 8,04; d. 7; 7; 7; e. 9,74; 12,30;1 6,08.

a. 0,1; 0,1; 0,1; b. 1, ; 5, ; 8, ; c. 4,87; 6,15; 8,04; d. 7; 7; 7; e. 9,74; 12,30;1 6,08. 1. În argentometrie, metoda Mohr: a. foloseşte ca indicator cromatul de potasiu, care formeazǎ la punctul de echivalenţă un precipitat colorat roşu-cărămiziu; b. foloseşte ca indicator fluoresceina, care

Διαβάστε περισσότερα

LUCRAREA 1 INTRODUCERE ÎN MATLAB

LUCRAREA 1 INTRODUCERE ÎN MATLAB LUCRAREA 1 INTRODUCERE ÎN MATLAB 1.1. Introducere MATLAB este un pachet de programe dedicat calcului numeric şi reprezentărilor grafice. Elementul de bază cu care operează este matricea, de aici provenind

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Tipuri abstracte de date.

Tipuri abstracte de date. Tipuri abstracte de date. Limbajele de programare furnizează tipuri de date standard (sau tipuri primitive). De exemplu în C acestea sunt: char, int, float, double. Un tip de date precizează o mulţime

Διαβάστε περισσότερα

3 FUNCTII CONTINUE Noţiuni teoretice şi rezultate fundamentale Spaţiul euclidian R p. Pentru p N *, p 2 fixat, se defineşte R

3 FUNCTII CONTINUE Noţiuni teoretice şi rezultate fundamentale Spaţiul euclidian R p. Pentru p N *, p 2 fixat, se defineşte R 3 FUNCTII CONTINUE 3.. Noţiuni teoretice şi rezultate fundamentale. 3... Saţiul euclidian R Pentru N *, fixat, se defineşte R = R R R = {(x, x,, x : x, x,, x R} de ori De exemlu, R = {(x, y: x, yr} R 3

Διαβάστε περισσότερα

ANEXA 4. OPERAŢII ARITMETICE IMPLEMENTĂRI

ANEXA 4. OPERAŢII ARITMETICE IMPLEMENTĂRI ANEXA 4. OPERAŢII ARITMETICE IMPLEMENTĂRI ADUNAREA ÎN BINAR: A + B Adunarea a două numere de câte N biţi va furniza un rezultat pe N+1 biţi. Figura1. Anexa4. Sumator binar complet Schema bloc a unui sumator

Διαβάστε περισσότερα

1 Introducere în Java 1

1 Introducere în Java 1 1 Introducere în Java 1 Ce este Java?! Proiectat de Sun pentru programarea aparaturii electronice! Limbaj orientat pe obiect cu biblioteci de clase! Foloses te o mas ină virtuală pentru rularea programelor

Διαβάστε περισσότερα

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este

Διαβάστε περισσότερα

CIRCUITE LOGICE CU TB

CIRCUITE LOGICE CU TB CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune

Διαβάστε περισσότερα

Capitolul 14. Asamblari prin pene

Capitolul 14. Asamblari prin pene Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE

2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE 2. CONDENSATOARE 2.1. GENERALITĂŢI PRIVIND CONDENSATOARELE DEFINIŢIE UNITĂŢI DE MĂSURĂ PARAMETRII ELECTRICI SPECIFICI CONDENSATOARELOR SIMBOLURILE CONDENSATOARELOR 2.2. MARCAREA CONDENSATOARELOR MARCARE

Διαβάστε περισσότερα

cateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC

cateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC .Masurarea unghiurilor intr-un triunghi dreptunghic sin B= cateta opusa ipotenuza = AC BC cateta alaturata, cos B= AB ipotenuza BC cateta opusa AC cateta alaturata AB tg B=, ctg B= cateta alaturata AB

Διαβάστε περισσότερα

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g. II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

2CP Electropompe centrifugale cu turbina dubla

2CP Electropompe centrifugale cu turbina dubla 2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică

Διαβάστε περισσότερα

Electronică anul II PROBLEME

Electronică anul II PROBLEME Electronică anul II PROBLEME 1. Găsiți expresiile analitice ale funcției de transfer şi defazajului dintre tensiunea de ieşire şi tensiunea de intrare pentru cuadrupolii din figurile de mai jos și reprezentați-le

Διαβάστε περισσότερα

7 Distribuţia normală

7 Distribuţia normală 7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare

Διαβάστε περισσότερα

CURS 11. Rădăcină unei ecuatii: Cum se defineste o rădăcină aproximativă?

CURS 11. Rădăcină unei ecuatii: Cum se defineste o rădăcină aproximativă? CURS 11 Rezolvarea ecuaţiilor transcendente Fie ecuatia: f(x)=0 algebrică - dacă poate fi adusă la o formă polinomială transcendentă dacă nu este algebrică Ecuaţii algebrice: 3x=9; 2x 2-3x+2=0; x5=x(2x-1);

Διαβάστε περισσότερα

Metode de sortare. Se dau n numere întregi, elemente ale unui vector a. Se cere să se aranjeze elementele vectorului a în ordine crescătoare.

Metode de sortare. Se dau n numere întregi, elemente ale unui vector a. Se cere să se aranjeze elementele vectorului a în ordine crescătoare. Metode de sortare Se dau n numere întregi, elemente ale unui vector a. Se cere să se aranjeze elementele vectorului a în ordine crescătoare. 1. Sortare prin selecţie directă Sortarea prin selecţia minimului

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor 4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Compilatoare. Curs 4 Analiza semantica

Compilatoare. Curs 4 Analiza semantica Compilatoare Curs 4 Analiza semantica ANALIZA SEMANTICA Calculeaza toate atributele asociate nodurilor din arborele sintactic Atributele terminalilor se seteaza de obicei direct din analiza lexicala Restul

Διαβάστε περισσότερα

A1. Valori standardizate de rezistenţe

A1. Valori standardizate de rezistenţe 30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

Η γλώσσα προγραμματισμού C

Η γλώσσα προγραμματισμού C Η γλώσσα προγραμματισμού C Οι συναρτήσεις στη C Οι συναρτήσεις τι είναι Πρόκειται για ανεξάρτητα τμήματα ενός προγράμματος (υποπρογράμματα) που επιτελούν συγκεκριμένες εργασίες. Καλούνται από το κυρίως

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

Reflexia şi refracţia luminii.

Reflexia şi refracţia luminii. Reflexia şi refracţia luminii. 1. Cu cat se deplaseaza o raza care cade sub unghiul i =30 pe o placa plan-paralela de grosime e = 8,0 mm si indicele de refractie n = 1,50, pe care o traverseaza? Caz particular

Διαβάστε περισσότερα

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: (

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: ( Exemple e probleme rezolvate pentru curs 0 DEEA Recapitulare formule e calcul puteri ale numărului 0 n m n+ m 0 = 0 n n m =0 m 0 0 n m n m ( ) n = 0 =0 0 0 n Problema. Să se calculeze: a. 0 9 0 b. ( 0

Διαβάστε περισσότερα

1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE

1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE 1. REZISTOARE 1.1. GENERALITĂŢI PRIVIND REZISTOARELE DEFINIŢIE. UNITĂŢI DE MĂSURĂ. PARAMETRII ELECTRICI SPECIFICI REZISTOARELOR SIMBOLURILE REZISTOARELOR 1.2. MARCAREA REZISTOARELOR MARCARE DIRECTĂ PRIN

Διαβάστε περισσότερα

Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o anumită țară

Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o anumită țară - General Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ-ΓΛΩΣΣΑ C ΑΤΕΙ (ΝΑ ΕΚΤΕΛΕΣΤΟΥΝ ΤΑ ΠΑΡΑΚΑΤΩ ΜΕ ΧΡΗΣΗ ΤΟΥ LCC COMPILER)

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ-ΓΛΩΣΣΑ C ΑΤΕΙ (ΝΑ ΕΚΤΕΛΕΣΤΟΥΝ ΤΑ ΠΑΡΑΚΑΤΩ ΜΕ ΧΡΗΣΗ ΤΟΥ LCC COMPILER) ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ-ΓΛΩΣΣΑ C ΑΤΕΙ (ΝΑ ΕΚΤΕΛΕΣΤΟΥΝ ΤΑ ΠΑΡΑΚΑΤΩ ΜΕ ΧΡΗΣΗ ΤΟΥ LCC COMPILER) 1. Να γραφεί πρόγραµµα το οποίο να αναγνωρίζει αν κάποιος χαρακτήρας είναι ψηφίο, κεφαλαίο γράµµα ή

Διαβάστε περισσότερα

ELEMENTE GENERALE ALE LIMBAJULUI C

ELEMENTE GENERALE ALE LIMBAJULUI C Limbaje de programare Elemente generale ale limbajului C Lucrarea nr. 2 ELEMENTE GENERALE ALE LIMBAJULUI C 1. Scopul lucrării Lucrarea are ca scop prezentarea elementelor de bază ale limbajului C. 2. Noţiuni

Διαβάστε περισσότερα

Η γλώσσα προγραμματισμού C

Η γλώσσα προγραμματισμού C Η γλώσσα προγραμματισμού C Οι συναρτήσεις στη C Οι συναρτήσεις τι είναι Πρόκειται για ανεξάρτητα τμήματα ενός προγράμματος (υποπρογράμματα) που επιτελούν συγκεκριμένες εργασίες. Καλούνται από το κυρίως

Διαβάστε περισσότερα

Noţiuni introductive

Noţiuni introductive Metode Numerice Noţiuni introductive Erori. Condiţionare numerică. Stabilitatea algoritmilor. Complexitatea algoritmilor. Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate

Διαβάστε περισσότερα