TORSION UNITS FOR FOR A REE GROUP, TITS GROUP AND A STEINBERG TRIALITY GROUP

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TORSION UNITS FOR FOR A REE GROUP, TITS GROUP AND A STEINBERG TRIALITY GROUP"

Transcript

1 TORSION UNITS FOR FOR A REE GROUP, TITS GROUP AND A STEINBERG TRIALITY GROUP JOE GILDEA Abstract. We investigate the Zassenhaus conjecture for the Steinberg triality group 3 D 4 (2 3 ), Tits group 2 F 4 (2) and the Ree group 2 F 4 (2). Consequently, we prove that the Prime Graph question is true for all three groups. 1. Introduction and Main Results Let U(ZG) be the unit group of the integral group ring of a finite group G. It is well known that U(ZG) = {±1} V (ZG), where V (ZG) is the group of units of augmentation one. Throughout this paper, G will always represent a finite group and torsion units will always represent torsion units in V (ZG) \ {1}. The next conjecture is very important in theory of integral group rings: Conjecture 1. If G is a finite group, then for each torsion unit u V (ZG) there exists g G, such that u = g. Hans Zassenhaus formulated a stronger version of this conjecture in [41], which states: Conjecture 2. A torsion unit in V (ZG) is said to be rationally conjugate to a group element if it is conjugate to an element of G by a unit of the rational group ring QG. This conjecture was confirmed for Nilpotent Groups in [33, 40] and cyclic-by-abelian groups in [18].. However, these techniques do not transfer to simple groups. The Luthar-Passi Method (which was introduced in [28]) is the main investigative tool for simple groups in relation to the Zassenhaus conjecture. The Zassenhaus conjecture was confirmed true for all groups up to order 71 in [24]. This conjecture was also validated for A 5, S 5, central extensions of S 5 and other simple finite groups in [4, 5, 28, 29]. In [35] partial results were given for A 6, and the remaining cases were dealt with in [21]. Alternating groups of higher order were also considered in [36, 37]. Additionally, it was proved for P SL(2, p) when p = {7, 11, 13} in [22] and p = {8, 17} in [19] and P SL(2, p) when p = {19, 23} in [2]. See [23, 30] for further results regarding P SL(2, p). Let H be a group with a torsion part t(h) of finite exponent and #H be the set of primes dividing the order of elements from the set t(h). The prime graph of H (denoted by π(h)) is a graph with vertices labeled by primes from #H, such that vertices p and q are adjacent if and only if there is an element of order pq in the group H. The following, was composed as a problem in [31] (Problem 37): Question 1. (Prime Graph Question) If G is a finite group, then π(g) = π(v (ZG)). This question is upheld for Frobenius and Solvable groups in [26]. It was also confirmed for some Sporadic Simple groups in [3, 6 16]. Additionally, it was confirmed for the sympletic simple group S 4 (4) in [34]. The prime graph question is an intermediate step towards the Zassenhaus conjecture. The family of Steinberg Triality groups (denoted by 3 D 4 (q 3 )) were introduced by Steinberg in [38]. The Ree groups 2 F 4 (2 n+1 ) were initially constructed in [32]. These groups are simple if n Mathematics Subject Classification. 16S34, 20C05. Key words and phrases. Zassenhaus Conjecture, Prime Graph Question, torsion unit, partial augmentation, integral group ring. 1

2 2 JOE GILDEA and Tits constructed a new simple group from the derived subgroup of 2 F 4 (2) (denoted by 2 F 4 (2) ) in [39]. We combine the Luthar-Passi Method together with techniques developed in [20, 22] to obtain our results. Our main results are as follows: Theorem 1. Let G = 3 D 4 (2 3 ) and u be a torsion unit of V (ZG). Subsequently the following conditions hold: (i) If u {7}, then u is rationally conjugate to some g in G. (ii) There are no elements of orders 26, 39 or 91 in V (ZG). (iii) If u = 2, then ν rx = 0 rx / {ν 2a, ν 2b } and (ν 2a, ν 2b ) {(2, 1), (1, 0), (0, 1), ( 1, 2), ( 2, 3)}. (iv) If u = 3, then ν rx = 0 rx / {ν 3a, ν 3b } and (ν 3a, ν 3b ) {(3, 2), (2, 1), (1, 0), (0, 1), ( 1, 2)}. (v) If u = 13, then ν rx = 0 rx / {ν 13a, ν 13b, ν 13c } and (ν 13a, ν 13b, ν 13c ) {(1, 1, 1), (1, 0, 0), (0, 0, 1), (1, 1, 1), (0, 1, 0), ( 1, 1, 1)}. Theorem 2. Let G = 2 F 4 (2) and u be a torsion unit of V (ZG). Subsequently the following conditions hold: (i) If u {3, 5}, then u is rationally conjugate to some g in G. (ii) There are no elements of orders 15, 26, 39 or 65 in V (ZG). (iii) If u = 2, then ν rx = 0 rx / {ν 2a, ν 2b } and (ν 2a, ν 2b ) {(3, 2), (2, 1), (1, 0), (0, 1), ( 1, 2), ( 2, 3), ( 3, 4)}. (iv) If u = 10, then ν rx = 0 rx / {ν 2a, ν 2b, ν 5a, ν 10a } and (ν 2a, ν 2b, ν 5a, ν 10a ) {( 2, 2, 0, 5), ( 1, 3, 0, 5), ( 1, 3, 5, 0), ( 1, 1, 0, 3), ( 1, 1, 5, 2), ( 1, 1, 0, 1), (0, 4, 5, 0), (0, 2, 0, 3), (0, 2, 5, 2), (0, 0, 0, 1), (0, 0, 5, 4), (0, 2, 0, 1), (0, 4, 5, 2), (0, 4, 0, 3), (1, 1, 0, 1), (1, 3, 5, 2), (1, 3, 0, 3), (2, 2, 0, 3)}. (v) If u = 13, then ν rx = 0 rx / {ν 13a, ν 13b } and (ν 13a, ν 13b ) {(9, 8), (8, 7), (7, 6), (6, 5), (5, 4), (4, 3), (3, 2), (2, 1), (1, 0), (0, 1), ( 1, 2), ( 2, 3), ( 3, 4), ( 4, 5), ( 5, 6), ( 6, 7), ( 7, 8), ( 8, 9)}. Theorem 3. Let G = 2 F 4 (2) and u be a torsion unit of V (ZG). Subsequently the following conditions hold: (i) If u {3, 5, 13}, then u is rationally conjugate to some g in G. (ii) There are no elements of orders 15, 26, 39 or 65 in V (ZG). (iii) If u = 2, then ν rx = 0 rx / {ν 2a, ν 2b } and (ν 2a, ν 2b ) {(3, 2), (2, 1), (1, 0), (0, 1), ( 1, 2), ( 2, 3), ( 3, 4)}. (iv) If u = 10, then ν rx = 0 rx / {ν 2a, ν 2b, ν 5a, ν 10a } and (ν 2a, ν 2b, ν 5a, ν 10a ) {( 2, 2, 0, 5), ( 1, 3, 0, 5), ( 1, 3, 5, 0), ( 1, 1, 0, 3), ( 1, 1, 5, 2), ( 1, 1, 0, 1), (0, 4, 5, 0), (0, 2, 0, 3), (0, 2, 5, 2), (0, 0, 0, 1), (0, 0, 5, 4), (0, 2, 0, 1), (0, 4, 5, 2), (0, 4, 0, 3), (1, 1, 0, 1), (1, 3, 5, 2), (1, 3, 0, 3), (2, 2, 0, 3)}.

3 TORSION UNITS 3 Corollary 1. The Prime Graph question is true for the groups 3 D 4 (2), 2 F 4 (2) and 2 F 4 (2). Let u = a g g be a torsion unit of V (ZG). Then, the sum g X G a g Z is the partial augmentation (denoted by ε C (u)) of u with respect to it s conjugacy classes X G in G. Let ν i = ε Ci (u) be the i-th partial augmentation of u. It was proved that ν 1 = 0 and ν j = 0 if the conjugacy class C j consists of a central element by G. Higman and S. D. Berman [1]. Therefore, ν 2 + ν ν l = 1, where l denotes the number of non-central conjugacy classes of G. Proposition 1. ([17]) Let u be torsion unit of V (ZG). The order of u divides the exponent of G. The following propositions provide relationships between the partial augmentations and the order of a torsion unit. Proposition 2. (Proposition 3.1 in [20] ) Let u be a torsion unit of V (ZG). Let C be a conjugacy class of G. If p is a prime dividing the order of a representative of C but not the order of u then the partial augmentation ε C (u) = 0. Proposition 3. (Proposition 2.2 in [22]) Let G be a finite group and let u be a torsion unit in V (ZG). (i) If u has order p n, then ε x (u) = 0 for every x of G whose p-part is of order strictly greater than p n. (ii) If x is an element of G whose p-part, for some prime, has order strictly greater than the order of the p-part of u, then ε x (u) = 0. Proposition 4. ([28]) Let u be a torsion unit of V (ZG) of order k. Then u is conjugate in QG to an element g G iff for each d dividing k there is precisely one conjugacy class νi d with partial augmentation ε νid (u d ) 0. Proposition 5. (Theorem 1 in [28] and [22]) Let p be equal to zero or a prime divisor of G. Suppose that u is an element of V (ZG) of order k. Let z be a primitive k th root of unity. Then for every integer l and any character χ of G, the number µ l (u, χ, p) = 1 T r k Q(z )/Q{χ(u d )z dl } d is a non-negative integer. d k We will use the notation µ l (u, χ, ) when p = 0. The LAGUNA package [27] for the GAP system [25] is a very useful tool when calculating µ l (u, χ, p). 2. Proof of Theorem 1 Let G = 3 D 4 (2 3 ). Clearly G = = and exp(g) = 6552 = Initially, for any torsion unit of V (ZG) of order k: ν 2a + ν 2b + ν 3a + ν 3b + ν 4a + ν 4b + ν 4c + ν 6a + ν 6b + ν 7a + ν 7b + ν 7c + ν 7d + ν 8a + ν 8b + ν 9a + ν 9b + ν 9c + ν 12a + ν 13a + ν 13b + ν 13c + ν 14a + ν 14b + ν 14c + ν 18a + ν 18b + ν 18c + ν 21a + ν 21b + ν 21c + ν 28a + ν 28b + ν 28c = 1. In order to prove that the Zassenhaus Conjecture holds, we need to consider torsion units of V (ZG) of order 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 18, 21, 28, 24, 26, 36, 39, 42, 56, 63 and 91 (by Proposition 1). For the purpose of this paper and due to the complexity of certain orders, we shall consider elements of order 2, 3, 7, 13, 26, 39 and 91. We shall now consider each case separately. Case (i). Let u V (ZG) where u = 2. Using Propositions 2 & 3, ν 2a + ν 2b = 1. µ 0 (u, χ 2, ) = 1 2 ( 2γ ) 0; µ 1 (u, χ 2, ) = 1 2 (2γ ) 0; µ 0 (u, χ 3, ) = 1 2 (4γ ) 0; µ 1 (u, χ 3, ) = 1 2 ( 4γ ) 0

4 4 JOE GILDEA where γ 1 = 3ν 2a ν 2b and γ 2 = 5ν 2a ν 2b. It follows that the only possible integer solutions for (ν 2a, ν 2b ) are listed in part (iii) of Theorem 1. Case (ii). Let u V (ZG) where u = 3. Using Propositions 2 & 3, ν 3a + ν 3b = 1. µ 0 (u, χ 3, ) = 1 3 (2γ ) 0; µ 1 (u, χ 3, ) = 1 3 ( γ ) 0; µ 0 (u, χ 2, 2) = 1 3 (2γ 2 + 8) 0; µ 1 (u, χ 2, 2) = 1 3 ( γ 2 + 8) 0 where γ 1 = 7ν 3a 2ν 3b and γ 2 = 2ν 3a ν 3b. It follows that the only possible integer solutions for (ν 2a, ν 2b ) are listed in part (iv) of Theorem 1. Case (iii). Let u V (ZG) where u = 7. Using Propositions 2 & 3, ν 7a + ν 7b + ν 7c + ν 7d = 1. µ 0 (u, χ 2, ) = 1 7 (6γ ) 0; µ 1 (u, χ 2, ) = 1 7 ( γ ) 0; µ 0 (u, χ 5, ) = 1 7 (42γ ) 0; µ 1 (u, χ 5, ) = 1 7 ( 7γ ) 0; µ 0 (u, χ 6, ) = 1 7 (6γ ) 0; µ 1 (u, χ 6, ) = 1 7 ( γ ) 0; µ 0 (u, χ 10, ) = 1 7 (6γ ) 0; µ 1 (u, χ 10, ) = 1 7 ( γ ) 0; µ 0 (u, χ 6, 13) = 1 7 (6γ ) 0; µ 1 (u, χ 6, 13) = 1 7 ( γ ) 0; µ 0 (u, χ 2, 3) = 1 7 (4γ ) 0; µ 1 (u, χ 2, 3) = 1 7 ( γ ) 0; µ 0 (u, χ 2, 2) = 1 7 ( 2γ 6 + 8) 0; µ 0 (u, χ 12, ) = 1 7 (6γ ) 0; µ 1 (u, χ 12, ) = 1 7 ( γ ) 0; µ 1 (u, χ 2, 2) = 1 7 (γ 8 + 8) 0; µ 3 (u, χ 2, 2) = 1 7 (γ 9 + 8) 0; µ 2 (u, χ 2, 2) = 1 7 (γ ) 0; µ 1 (u, χ 18, ) = 1 7 (γ ) 0; µ 2 (u, χ 18, ) = 1 7 (γ ) 0; µ 3 (u, χ 18, ) = 1 7 (γ ) 0; µ 0 (u, χ 25, ) = 1 7 (γ ) 0; µ 1 (u, χ 25, ) = 1 7 (γ ) 0; µ 2 (u, χ 25, ) = 1 7 (γ ) 0; µ 3 (u, χ 25, ) = 1 7 (γ ) 0; µ 1 (u, χ 6, 2) = 1 7 (γ ) 0; µ 2 (u, χ 6, 2) = 1 7 (γ ) 0; µ 3 (u, χ 6, 2) = 1 7 (γ ) 0; µ 0 (u, χ 9, 2) = 1 7 (γ ) 0; µ 1 (u, χ 9, 2) = 1 7 (γ ) 0; µ 2 (u, χ 9, 2) = 1 7 (γ ) 0; µ 3 (u, χ 9, 2) = 1 7 (γ ) 0; µ 1 (u, χ 13, 2) = 1 7 (γ ) 0; µ 2 (u, χ 13, 2) = 1 7 (γ ) 0; µ 3 (u, χ 13, 2) = 1 7 (γ ) 0; µ 1 (u, χ 22, ) = 1 7 (γ ) 0; µ 2 (u, χ 22, ) = 1 7 (γ ) 0; µ 3 (u, χ 22, ) = 1 7 (γ ) 0 where γ 1 = 5ν 7a + 5ν 7b + 5ν 7c 2ν 7d, γ 2 = ν 7a + ν 7b + ν 7c, γ 3 = 9ν 7a + 9ν 7b + 9ν 7c + 2ν 7d, γ 4 = 6ν 7a + 6ν 7b + 6ν 7c ν 7d, γ 5 = 8ν 7a + 8ν 7b + 8ν 7c + ν 7d, γ 6 = 4ν 7a + 4ν 7b + 4ν 7c 3ν 7d, γ 7 = 3ν 7a + 3ν 7b + 3ν 7c 4ν 7d, γ 8 = 8ν 7a ν 7b + 13ν 7c ν 7d, γ 9 = ν 7a + 13ν 7b 8ν 7c ν 7d, γ 10 = 13ν 7a 8ν 7b ν 7c ν 7d, γ 11 = 36ν 7a 27ν 7b 6ν 7c + ν 7d, γ 12 = 6ν 7a + 36ν 7b 27ν 7c + ν 7d, γ 13 = 27ν 7a 6ν 7b +36ν 7c +ν 7d, γ 14 = 22ν 7a 22ν 7b 22ν 7c +6ν 7d, γ 15 = 34ν 7a ν 7b 22ν 7c ν 7d, γ 16 = 22ν 7a +34ν 7b ν 7c ν 7d, γ 17 = ν 7a 22ν 7b +34ν 7c ν 7d, γ 18 = 20ν 7a +8ν 7b +15ν 7c +ν 7d, γ 19 = 15ν 7a 20ν 7b +8ν 7c +ν 7d, γ 20 = 8ν 7a +15ν 7b 20ν 7c +ν 7d, γ 21 = 34ν 7a 34ν 7b 34ν 7c 6ν 7d, γ 22 = 20ν 7a 13ν 7b +50ν 7c +ν 7d, γ 23 = 50ν 7a 20ν 7b 13ν 7c +ν 7d, γ 24 = 13ν 7a +50ν 7b 20ν 7c +ν 7d, γ 25 = 35ν 7a + 28ν 7b + 7ν 7c, γ 26 = 7ν 7a 35ν 7b + 28ν 7c, γ 27 = 28ν 7a + 7ν 7b 35ν 7c, γ 28 = 35ν 7a 14ν 7b 14ν 7c, γ 29 = 14ν 7a + 35ν 7b 14ν 7c and γ 30 = 14ν 7a 14ν 7b + 35ν 7c. It follows that the only possible integer solutions for (ν 7a, ν 7b, ν 7c, ν 7d ) are (1, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0) and (0, 1, 0, 0). Therefore, u is rationally conjugated to some element g G by Proposition 4. Case (iv). Let u V (ZG) where u = 13. Using Propositions 2 & 3, ν 13a + ν 13b + ν 13c = 1.

5 TORSION UNITS 5 µ 1 (u, χ 9, 2) = 1 13 (γ ) 0; µ 1 (u, χ 6, 2) = 1 13 ( γ ) 0; µ 2 (u, χ 6, 2) = 1 13 (γ ) 0; µ 2 (u, χ 9, 2) = 1 13 ( γ ) 0; µ 1 (u, χ 2, 2) = 1 13 (γ 3 + 8) 0; µ 2 (u, χ 2, 2) = 1 13 (γ 3 + 8) 0; µ 4 (u, χ 2, 2) = 1 13 (γ 4 + 8) 0 where γ 1 = 9ν 13a 4ν 13b 4ν 13c, γ 2 = 4ν 13a 9ν 13b + 4ν 13c, γ 3 = 5ν 13a 8ν 13b + 5ν 13c, γ 4 = 5ν 13a + 5ν 13b 8ν 13c and γ 5 = 8ν 13a + 5ν 13b + 5ν 13c. Clearly γ 1 {9 + 13k 13 k 3} and γ 2 {4 + 13k 4 k 12}. It follows that the only possible integer solutions for (ν 13a, ν 13b, ν 13c ) are listed in part (v) of Theorem 1. Case (v). Let u V (ZG) where u = 26. Using Propositions 2 & 3, ν 2a + ν 2b + ν 13a + ν 13b + ν 13c = 1. Let γ 1 = 3ν 2a ν 2b, γ 2 = 5ν 2a ν 2b, γ 3 = 28ν 2a 4ν 2b + ν 13a + ν 13b + ν 13c, γ 4 = 63ν 2a + 15ν 2b 4ν 13a 4ν 13b +9ν 13c and γ 5 = 63ν 2a +15ν 2b +9ν 13a 4ν 13b 4ν 13c. We shall now separately consider the following cases involving χ(u n ) for n {2, 13}: χ(u 13 ) = m 1 χ(2a) + m 2 χ(2b) and χ(u 2 ) = m 3 χ(13a) + m 4 χ(13b) + m 5 χ(13c) where (m 1, m 2, m 3, m 4, m 5 ) {(1, 0, 1, 0, 0), (1, 0, 0, 1, 0), (1, 0, 0, 0, 1), (1, 0, 1, 1, 1), (1, 0, 1, 1, 1), (1, 0, 1, 1, 1), (2, 1, 1, 0, 0), (2, 1, 0, 1, 0), (2, 1, 0, 0, 1), (2, 1, 1, 1, 1), (2, 1, 1, 1, 1), (2, 1, 1, 1, 1), ( 1, 2, 1, 0, 0), ( 1, 2, 0, 1, 0), ( 1, 2, 0, 0, 1), ( 1, 2, 1, 1, 1), ( 1, 2, 1, 1, 1), ( 1, 2, 1, 1, 1), ( 2, 3, 1, 0, 0), ( 2, 3, 0, 1, 0), ( 2, 3, 0, 0, 1), ( 2, 3, 1, 1, 1), ( 2, 3, 1, 1, 1), ( 2, 3, 1, 1, 1)}. µ 13 (u, χ 2, ) = 1 26 (24γ 1 + 8) 0; µ 0 (u, χ 2, ) = 1 26 ( 24γ ) 0. It follows that there are no possible integer solutions for (ν 2a, ν 2b, ν 13a, ν 13b, ν 13c ) in all cases. χ(u 13 ) = m 1 χ(2a) + m 2 χ(2b) and χ(u 2 ) = m 3 χ(13a) + m 4 χ(13b) + m 5 χ(13c) where (m 1, m 2, m 3, m 4, m 5 ) {(0, 1, 1, 0, 0), (0, 1, 0, 1, 0), (0, 1, 0, 0, 1), (0, 1, 1, 1, 1), (0, 1, 1, 1, 1), (0, 1, 1, 1, 1)}. µ 13 (u, χ 2, ) = 1 26 (24γ ) 0; µ 0 (u, χ 2, ) = 1 26 ( 24γ ) 0; µ 0 (u, χ 3, ) = 1 26 (48γ ) 0; µ 13 (u, χ 3, ) = 1 26 ( 48γ ) 0; µ 1 (u, χ 4, ) = 1 26 (γ ) 0; µ 8 (u, χ 31, ) = 1 26 (γ 4 + k 1 ) 0; µ 1 (u, χ 31, ) = 1 26 ( γ 4 + k 2 ) 0; µ 2 (u, χ 31, ) = 1 26 (γ 5 + k 3 ) 0; µ 3 (u, χ 31, ) = 1 26 ( γ 5 + k 4 ) 0 where (m 1, m 2, m 3, m 4, m 5 ) = (0, 1, 1, 0, 0) when (k 1, k 2, k 3, k 4 ) = (3993, 3950, 3980, 3963), (m 1, m 2, m 3, m 4, m 5 ) = (0, 1, 0, 1, 0) when (k 1, k 2, k 3, k 4 ) = (3980, 3963, 3993, 3950), (m 1, m 2, m 3, m 4, m 5 ) = (0, 1, 0, 0, 1) when (k 1, k 2, k 3, k 4 ) = (3980, 3950, 3980, 3950), (m 1, m 2, m 3, m 4, m 5 ) = (0, 1, 1, 1, 1) when (k 1, k 2, k 3, k 4 ) = (3993, 3937, 3967, 3963), (m 1, m 2, m 3, m 4, m 5 ) = (0, 1, 1, 1, 1) when (k 1, k 2, k 3, k 4 ) = (3993, 3963, 3993, 3963) and (m 1, m 2, m 3, m 4, m 5 ) = (0, 1, 1, 1, 1) when (k 1, k 2, k 3, k 4 ) = (3967, 3963, 3993, 3937). It follows that there are no possible integer solutions for (ν 2a, ν 2b, ν 13a, ν 13b, ν 13c ) in all cases. Case (vi). Let u V (ZG) where u = 39. Using Propositions 2 & 3, ν 3a + ν 3b + ν 13a + ν 13b + ν 13c = 1.

6 6 JOE GILDEA Consider the cases χ(u 13 ) = m 1 χ(3a) + m 2 χ(3b) and χ(u 3 ) = m 3 χ(13a) + m 4 χ(13b) + m 5 χ(13c) where (m 1, m 2, m 3, m 4, m 5 ) {(1, 0, 1, 0, 0), (1, 0, 0, 1, 0), (1, 0, 0, 0, 1), (0, 1, 1, 0, 0), (0, 1, 0, 1, 0), (0, 1, 0, 0, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 1), (3, 2, 1, 0, 0), (3, 2, 0, 1, ), (3, 2, 0, 0, 1), (3, 2, 1, 1, 1), (3, 2, 1, 1, 1), (3, 2, 1, 1, 1), (2, 1, 1, 0, 0), (2, 1, 0, 1, 0), (2, 1, 0, 0, 1), (2, 1, 1, 1, 1), (2, 1, 1, 1, 1), (2, 1, 1, 1, 1), ( 1, 2, 1, 0, 0), ( 1, 2, 0, 1, 0), ( 1, 2, 0, 0, 1), ( 1, 2, 1, 1, 1), ( 1, 2, 1, 1, 1), ( 1, 2, 1, 1, 1)}. µ 13 (u, χ 2, ) = 1 39 (12γ + 27) 0; µ 0(u, χ 2, ) = 1 39 ( 24γ + 24) 0; µ 1 (u, χ 2, ) = 1 39 ( γ + 27) 0 where γ = ν 3a +ν 3b. It follows that there are no possible integer solutions for (ν 3a, ν 3b, ν 13a, ν 13b, ν 13c ). Case (vii). Let u V (ZG) where u = 91. Using Propositions 2 & 3, ν 7a + ν 7b + ν 7c + ν 7d + ν 13a + ν 13b + ν 13c = 1. Let γ = 5ν 7a + 5ν 7b + 5ν 7c 2ν 7d. We shall now separately consider the following cases involving χ(u n ) for n {7, 13}: χ(u 13 ) = χ(7k) and χ(u 7 ) = m 1 χ(13a) + m 2 χ(13b) + m 3 χ(13c) where k {a, b, c} and (m 1, m 2, m 3 ) {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (1, 1, 1), ( 1, 1, 1)}. Applying Proposition 5, we obtain: µ 0 (u, χ 2, ) = 1 91 (72γ + 56) 0; µ 13(u, χ 2, ) = 1 91 ( 12γ + 21) 0. It follows that there are no possible integer values for (ν 7a, ν 7b, ν 7c, ν 7d, ν 13a, ν 13b, ν 13c ). χ(u 13 ) = χ(7d) and χ(u 7 ) = m 1 χ(13a) + m 2 χ(13b) + m 3 χ(13c) where (m 1, m 2, m 3 ) {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (1, 1, 1), ( 1, 1, 1)}. µ 0 (u, χ 2, ) = 1 91 (72γ + 14) 0; µ 7(u, χ 2, ) = 1 91 ( 6γ + 14) 0. It follows that there are no possible integer values for (ν 7a, ν 7b, ν 7c, ν 7d, ν 13a, ν 13b, ν 13c ). We shall now consider the prime graph of G = 3 D 4 (2 3 ). G contains elements of order 6, 14 and 21. Therefore [2, 3], [2, 7] and [3, 7] are adjacent in π(g) and consequently adjacent in π(v (ZG)). Clearly π(g) = π(v (ZG)), since there are no torsion units of order 26, 39 and 91 in V (ZG). This completes the proof. 3. Proof of Theorem 2 Let G = 2 F 4 (2). Clearly G = = and exp(g) = 3120 = Initially, for any torsion unit of V (ZG) of order k: ν 2a + ν 2b + ν 3a + ν 4a + ν 4b + ν 4c + ν 5a + ν 6a + ν 8a + ν 8b + ν 8c + ν 8d + ν 10a + ν 12a + ν 12b + ν 13a + ν 13b + ν 16a + ν 16b + ν 16c + ν 16d = 1 For the purpose of this paper, we shall consider torsion units of V (ZG) of order 2, 3, 5, 10, 15, 26, 39 and 65. We shall now consider each case separately. Case (i). Let u V (ZG) where u = 2. Using Propositions 2 & 3, ν 2a + ν 2b = 1. µ 0 (u, χ 2, ) = 1 2 ( 2γ + 26) 0; µ 1(u, χ 2, ) = 1 2 (2γ + 26) 0

7 TORSION UNITS 7 where γ = 3ν 2a ν 2b. It follows that the only possible integer solutions for (ν 2a, ν 2b ) are listed in part (iii) of Theorem 2. Case (ii). Let u V (ZG) where u = 3. By Proposition 2, ν kx = 0 for all kx {2a, 2b, 4a, 4b, 4c, 5a, 6a, 8a, 8b, 8c, 8d, 10a, 12a, 12b, 13a, 13b, 16a, 16b, 16c, 16d}. Therefore, u is rationally conjugated to some element g G by Proposition 4. Case (iii). Let u V (ZG) where u = 5. By Proposition 2, ν kx = 0 for all kx {2a, 2b, 3a, 4a, 4b, 4c, 6a, 8a, 8b, 8c, 8d, 10a, 12a, 12b, 13a, 13b, 16a, 16b, 16c, 16d}. Therefore, u is rationally conjugated to some element g G by Proposition 4. Case (iv). Let u V (ZG) where u = 10. Using Propositions 2 & 3, ν 2a + ν 2b + ν 5a + ν 10a = 1. Let γ 1 = 6ν 2a 2ν 2b ν 5a + ν 10a, γ 2 = 14ν 2a 2ν 2b + 3ν 5a ν 10a, γ 3 = 5ν 2a + ν 2b, γ 4 = 5ν 2a 11ν 2b and γ 5 = 32ν 2a + 15ν 2b + ν 5a + ν 10a. We shall now separately consider the following cases involving χ(u n ) for n {2, 5}: χ(u 5 ) = m 1 χ(2a) + m 2 χ(2b) and χ(u 2 ) = χ(5a) where (m 1, m 2 ) {(1, 0), (0, 1), ( 1, 2)}. µ 0 (u, χ 2, ) = 1 10 ( 4γ 1 + k 1 ) 0; µ 1 (u, χ 2, ) = 1 10 ( γ 1 + k 2 ) 0; µ 5 (u, χ 2, ) = 1 10 (4γ 1 + k 3 ) 0; µ 0 (u, χ 6, ) = 1 10 (4γ 2 + k 4 ) 0; µ 1 (u, χ 6, ) = 1 10 (γ 2 + k 5 ) 0; µ 5 (u, χ 6, ) = 1 10 ( 4γ 2 + k 6 ) 0 µ 0 (u, χ 7, ) = 1 10 ( 16γ 3 + k 7 ) 0; µ 5 (u, χ 7, ) = 1 10 (16γ 3 + k 8 ) 0; µ 0 (u, χ 9, ) = 1 10 (4γ 5 + k 9 ) 0; µ 5 (u, χ 9, ) = 1 10 ( 4γ 5 + k 10 ) 0 where the values for k i s and corresponding (m 1, m 2 ) values are as follows: (m 1, m 2 ) (k 1, k 2, k 3, k 4, k 5, k 6, k 7, k 8, k 9, k 10 ) (1, 0) (24, 31, 36, 104, 61, 76, 280, 320, 386, 324) (0, 1) (32, 23, 28, 88, 77, 92, 296, 304, 370, 340) ( 1, 2) (40, 15, 20, 72, 93, 108, 312, 288, 354, 356) It follows that the only possible integer solutions for (ν 2a, ν 2b, ν 13a ) are (0, 0, 5, 4), (0, 0, 0, 1), (0, 4, 5, 0), (1, 1, 0, 1), ( 1, 1, 0, 1), ( 1, 3, 0, 5), ( 1, 3, 5, 0), (2, 2, 0, 3) and (0, 2, 0, 1) in all cases. χ(u 5 ) = 3χ(2a) 2χ(2b) and χ(u 2 ) = χ(5a). µ 2 (u, χ 2, ) = 1 10 (γ 1 + 3) 0; µ 0 (u, χ 2, ) = 1 10 ( 4γ 1 + 8) 0; µ 1 (u, χ 6, ) = 1 10 (γ ) 0; µ 5 (u, χ 6, ) = 1 10 ( 4γ ) 0; µ 5 (u, χ 7, ) = 1 10 (16γ ) 0; µ 0 (u, χ 7, ) = 1 10 ( 16γ ) 0; µ 0 (u, χ 9, ) = 1 10 (4γ ) 0. Clearly γ 1 = 3, γ 2 { 29, 19, 9, 1, 11} and γ 3 {3 + 5k 5 k 2}. It follows that the only possible integer solutions for (ν 2a, ν 2b, ν 13a ) are ( 2, 2, 0, 5) and (1, 3, 0, 3). χ(u 5 ) = 2χ(2a) χ(2b) and χ(u 2 ) = χ(5a). µ 2 (u, χ 2, ) = 1 10 (γ ) 0; µ 0 (u, χ 2, ) = 1 10 ( 4γ ) 0; µ 0 (u, χ 6, ) = 1 10 (4γ ) 0; µ 5 (u, χ 6, ) = 1 10 ( 4γ ) 0; µ 1 (u, χ 6, ) = 1 10 (γ ) 0; µ 5 (u, χ 7, ) = 1 10 (16γ ) 0; µ 0 (u, χ 7, ) = 1 10 ( 16γ ) 0; µ 0 (u, χ 8, ) = 1 10 (4γ ) 0; µ 0 (u, χ 9, ) = 1 10 (4γ ) 0. Clearly γ 1 { 1, 11}, γ 2 { 25, 15, 5, 5, 15} and γ 3 {4 + 5k 5 k 2}. It follows that the only possible integer solutions for (ν 2a, ν 2b, ν 13a ) are ( 1, 1, 0, 3), ( 1, 1, 5, 2), (0, 4, 5, 2)

8 8 JOE GILDEA and (0, 4, 0, 3). χ(u 5 ) = 2χ(2a) + 3χ(2b) and χ(u 2 ) = χ(5a). µ 5 (u, χ 2, ) = 1 10 (4γ ) 0; µ 1 (u, χ 2, ) = 1 10 ( γ 1 + 7) 0; µ 0 (u, χ 6, ) = 1 10 (4γ ) 0; µ 5 (u, χ 6, ) = 1 10 ( 4γ ) 0; µ 1 (u, χ 6, ) = 1 10 (γ ) 0; µ 5 (u, χ 7, ) = 1 10 (16γ ) 0; µ 0 (u, χ 7, ) = 1 10 ( 16γ ) 0; µ 0 (u, χ 8, ) = 1 10 (γ ) 0; µ 0 (u, χ 9, ) = 1 10 (γ ) 0. Clearly γ 1 { 3, 7} γ 2 { 9, 1, 11, 21, 3} and γ 3 {3 + 5k 4 k }. It follows that the only possible integer solutions for (ν 2a, ν 2b, ν 13a ) are (1, 3, 0, 3), (0, 2, 5, 2), (1, 3, 5, 2) and (0, 2, 0, 3). χ(u 5 ) = 3χ(2a) + 4χ(2b) and χ(u 2 ). µ 5 (u, χ 2, ) = 1 10 (4γ 1 + 4) 0; µ 1 (u, χ 2, ) = 1 10 ( γ 1 1) 0; µ 0 (u, χ 6, ) = 1 10 (4γ ) 0; µ 2 (u, χ 6, ) = 1 10 ( γ ) 0; µ 5 (u, χ 7, ) = 1 10 (16γ ) 0; µ 0 (u, χ 7, ) = 1 10 ( 16γ ) 0; µ 0 (u, χ 9, ) = 1 10 (4γ ) 0; µ 5 (u, χ 9, ) = 1 10 ( 4γ ) 0. Clearly γ 1 = 1, γ 2 { 5, 5, 15, 25} and γ 3 {4 + 5k 4 k 3}. It follows that there are no possible integer solutions for (ν 2a, ν 2b, ν 13a ) in this case. Case (v). Let u V (ZG) where u = 13. Using Propositions 2 & 3, ν 13a + ν 13b = 1. µ 1 (u, χ 7, 5) = 1 13 (γ ) 0; µ 2 (u, χ 15, 5) = 1 13 ( γ ) 0; µ 2 (u, χ 7, 5) = 1 13 (γ ) 0 where γ 1 = 8ν 13a 5ν 13b and γ 2 = 5ν 13a + 8ν 13b. It follows that the only possible integer solutions for (ν 3a, ν 3b ) are listed in part (v) of Theorem 2. Case (vi). Let u V (ZG) where u = 15. Using Propositions 2 & 3, ν 3a + ν 5a = 1. µ 0 (u, χ 2, ) = 1 15 ( 8γ + 28) 0; µ 5(u, χ 2, ) = 1 15 (4γ + 31) 0 where γ = ν 3a ν 5a. Clearly γ = 4 and there are no possible integer solutions for (ν 3a, ν 5a ). Case (vii). Let u V (ZG) where u = 26. Using Propositions 2 & 3, ν 2a + ν 2b + ν 13a + ν 13b = 1. Let γ 1 = 3ν 2a ν 2b, γ 2 = 7ν 2a ν 2b, γ 3 = 20ν 2a 4ν 2b + ν 13a + ν 13b and γ 4 = 6ν 13a 7ν 13b. We shall now separately consider the following cases involving χ(u n ) for n {2, 13}: (m 1, m 2, m 3, m 4 ) {(1, 0, 1, 0), (1, 0, 0, 1), (1, 0, 9, 8), (1, 0, 8, 7), (1, 0, 7, 6), (1, 0, 6, 5), (1, 0, 5, 4), (1, 0, 4, 3), (1, 0, 3, 2), (1, 0, 2, 1), (1, 0, 1, 2), (1, 0, 2, 3), (1, 0, 3, 4), (1, 0, 4, 5), (1, 0, 5, 6), (1, 0, 6, 7), (1, 0, 7, 8), (1, 0, 8, 9)}. µ 13 (u, χ 2, ) = 1 26 (24γ ) 0; µ 0 (u, χ 2, ) = 1 26 ( 24γ ) 0. It follows that there are no possible integer values for (ν 2a, ν 2b, ν 13a, ν 13b ). (m 1, m 2, m 3, m 4 ) {(2, 1, 1, 0), (2, 1, 0, 1), (2, 1, 9, 8), (2, 1, 8, 7), (2, 1, 7, 6), (2, 1, 6, 5), (2, 1, 5, 4), (2, 1, 4, 3), (2, 1, 3, 2), (2, 1, 2 1), (2, 1, 1, 2),

9 TORSION UNITS 9 (2, 1, 2, 3), (2, 1, 3, 4), (2, 1, 4, 5), (2, 1, 5, 6), (2, 1, 6, 7), (2, 1, 7, 8), (2, 1, 8, 9)}. µ 13 (u, χ 2, ) = 1 26 (24γ ) 0; µ 0 (u, χ 2, ) = 1 26 ( 24γ ) 0. It follows that there are no possible integer values for (ν 2a, ν 2b, ν 13a, ν 13b ). (m 1, m 2, m 3, m 4 ) {( 2, 3, 1, 0), ( 2, 3, 0, 1), ( 2, 3, 9, 8), ( 2, 3, 8, 7), ( 2, 3, 7, 6), ( 2, 3, 6, 5), ( 2, 3, 5, 4), ( 2, 3, 4, 3), ( 2, 3, 3, 2), ( 2, 3, 2, 1), ( 2, 3, 1, 2), ( 2, 3, 2, 3), ( 2, 3, 3, 4), ( 2, 3, 4, 5), ( 2, 3, 5, 6), ( 2, 3, 6, 7), ( 2, 3, 7, 8), ( 2, 3, 8, 9)}. µ 13 (u, χ 2, ) = 1 26 (24γ 1 + 8) 0; µ 0 (u, χ 2, ) = 1 26 ( 24γ ) 0. It follows that there are no possible integer values for (ν 2a, ν 2b, ν 13a, ν 13b ). (m 1, m 2, m 3, m 4 ) {(0, 1, 9, 8), (0, 1, 8, 9)}. µ 13 (u, χ 2, ) = 1 26 (24γ ) 0; µ 0 (u, χ 2, ) = 1 26 ( 24γ ) 0; µ 0 (u, χ 6, ) = 1 26 (24γ ) 0; µ 13 (u, χ 6, ) = 1 26 ( 24γ ) 0; µ 1 (u, χ 7, ) = 1 26 (γ ) 0. Clearly γ 1 = γ 2 = 1. It follows that there are no possible integer values for (ν 2a, ν 2b, ν 13a, ν 13b ). (m 1, m 2, m 3, m 4 ) {(3, 2, 9, 8), (3, 2, 8, 9)}. µ 2 (u, χ 2, ) = 1 26 (2γ 1 + 4) 0; µ 0 (u, χ 2, ) = 1 26 ( 24γ 1 + 4) 0; µ 0 (u, χ 6, ) = 1 26 (24γ ) 0; µ 13 (u, χ 6, ) = 1 26 ( 24γ ) 0. Clearly γ 1 = 2 and γ 2 = 3. It follows that there are no possible integer values for (ν 2a, ν 2b, ν 13a, ν 13b ). (m 1, m 2, m 3, m 4 ) {( 3, 4, 9, 8), ( 3, 4, 8, 9)}. µ 13 (u, χ 2, ) = 1 26 (24γ 1) 0; µ 1 (u, χ 2, ) = 1 26 ( 2γ 1) 0; µ 0 (u, χ 6, ) = 1 26 (24γ ) 0; µ 13 (u, χ 6, ) = 1 26 ( 24γ ) 0. Clearly γ 1 = 0 and γ 2 = 1. It follows that there are no possible integer values for (ν 2a, ν 2b, ν 13a, ν 13b ). (m 1, m 2, m 3, m 4 ) {(0, 1, 1, 0), (0, 1, 0, 1), (0, 1, 8, 7), (0, 1, 7, 6), (0, 1, 6, 5), (0, 1, 5, 4), (0, 1, 4, 3), (0, 1, 3, 2), (0, 1, 2, 1), (0, 1, 1, 2), (0, 1, 2, 3), (0, 1, 3, 4), (0, 1, 4, 5), (0, 1, 5, 6), (0, 1, 6, 7), (0, 1, 7, 8)}. Applying Proposition 5, we obtain: µ 13 (u, χ 2, ) = 1 26 (24γ ) 0; µ 0 (u, χ 2, ) = 1 26 ( 24γ ) 0; µ 0 (u, χ 6, ) = 1 26 (24γ ) 0; µ 13 (u, χ 6, ) = 1 26 ( 24γ ) 0; µ 1 (u, χ 7, ) = 1 26 (γ ) 0; µ 4 (u, χ 21, ) = 1 26 (γ 4 + k) 0; µ 1 (u, χ 21, ) = 1 26 ( γ 4 + k) 0 where the corresponding k-values to the above cases are:

10 10 JOE GILDEA (m 1, m 2, m 3, m 4 ) k (m 1, m 2, m 3, m 4 ) k (0,1,1,0) 2041 (0,1,0,1) 2054 (0,1,8,-7) 1950 (0,1,7,-6) 1963 (0,1,6,-5) 1976 (0,1,5,-4) 1989 (0,1,4,-3) 2002 (0,1,3,-2) 2015 (0,1,2,-1) 2028 (0,1,-1,2) 2067 (0,1,-2,3) 2080 (0,1,-3,4) 2093 (0,1,-4,5) 2106 (0,1,-5,6) 2119 (0,1,-6,7) 2132 (0,1,-7,8) 2145 It follows that there are no possible integer values for (ν 2a, ν 2b, ν 13a, ν 13b ) in all cases. (m 1, m 2, m 3, m 4 ) {(3, 2, 1, 0), (3, 2, 0, 1), (3, 2, 8, 7), (3, 2, 7, 6), (3, 2, 6, 5), (3, 2, 5, 4), (3, 2, 4, 3), (3, 2, 3, 2), (3, 2, 2, 1), (3, 2, 1, 2), (3, 2, 2, 3), (3, 2, 3, 4), (3, 2, 4, 5), (3, 2, 5, 6), (3, 2, 6, 7), (3, 2, 7, 8)}. Applying Proposition 5, we obtain: µ 2 (u, χ 2, ) = 1 26 (2γ 1 + 4) 0; µ 0 (u, χ 2, ) = 1 26 ( 24γ 1 + 4) 0; µ 0 (u, χ 6, ) = 1 26 (24γ ) 0; µ 13 (u, χ 6, ) = 1 26 ( 24γ ) 0; µ 4 (u, χ 21, ) = 1 26 (γ 4 + k) 0; µ 1 (u, χ 21, ) = 1 26 ( γ 4 + k) 0. where the corresponding k-values to the above cases are: (m 1, m 2, m 3, m 4 ) k (m 1, m 2, m 3, m 4 ) k (3,-2,1,0) 2041 (3,-2,0,1) 2054 (3,-2,8,-7) 1950 (3,-2,7,-6) 1963 (3,-2,6,-5) 1976 (3,-2,5,-4) 1989 (3,-2,4,-3) 2002 (3,-2,3,-2) 2015 (3,-2,2,-1) 2028 (3,-2,-1,2) 2067 (3,-2,-2,3) 2080 (3,-2,-3,4) 2093 (3,-2,-4,5) 2106 (3,-2,-5,6) 2119 (3,-2,-6,7) 2132 (3,-2,-7,8) 2145 It follows that there are no possible integer values for (ν 2a, ν 2b, ν 13a, ν 13b ) in all cases. (m 1, m 2, m 3, m 4 ) {( 3, 4, 1, 0), ( 3, 4, 0, 1), ( 3, 4, 8, 7), ( 3, 4, 7, 6), ( 3, 4, 6, 5), ( 3, 4, 5, 4), ( 3, 4, 4, 3), ( 3, 4, 3, 2), ( 3, 4, 2, 1), ( 3, 4, 1, 2), ( 3, 4, 2, 3), ( 3, 4, 3, 4), ( 3, 4, 4, 5), ( 3, 4, 5, 6), ( 3, 4, 6, 7), ( 3, 4, 7, 8)}. Applying Proposition 5, we obtain: µ 13 (u, χ 2, ) = 1 26 (24γ 1) 0; µ 1 (u, χ 2, ) = 1 26 ( 2γ 1) 0; µ 0 (u, χ 6, ) = 1 26 (24γ ) 0; µ 13 (u, χ 6, ) = 1 26 ( 24γ ) 0; µ 4 (u, χ 21, ) = 1 26 (γ 4 + k) 0; µ 1 (u, χ 21, ) = 1 26 ( γ 4 + k) 0. where the corresponding k-values to the above cases are: (m 1, m 2, m 3, m 4 ) k (m 1, m 2, m 3, m 4 ) k (-3,4,1,0) 2041 (-3,4,0,1) 2054 (-3,4,8,-7) 1950 (-3,4,7,-6) 1963 (-3,4,6,-5) 1976 (-3,4,5,-4) 1989 (-3,4,4,-3) 2002 (-3,4,3,-2) 2015 (-3,4,2,-1) 2028 (-3,4,-1,2) 2067 (-3,4,-2,3) 2080 (-3,4,-3,4) 2093 (-3,4,-4,5) 2106 (-3,4,-5,6) 2119 (-3,4,-6,7) 2132 (-3,4,-7,8) 2145

11 TORSION UNITS 11 It follows that there are no possible integer values for (ν 2a, ν 2b, ν 13a, ν 13b ) in all cases. Case (viii). Let u V (ZG) where u = 39. Using Propositions 2 & 3, ν 3a + ν 13a + ν 13b = 1. Consider the cases χ(u 13 ) = χ(3a) and χ(u 3 ) = m 1 χ(13a) + m 2 χ(13b) where (m 1, m 2 ) {(1, 0), (0, 1), (9, 8), (8, 7), (7, 6), (6, 5), (5, 4), (4, 3), (3, 2), (2, 1), ( 1, 2), ( 2, 3), ( 3, 4), ( 4, 5), ( 5, 6), ( 6, 7), ( 7, 8), ( 8, 9)}. µ 13 (u, χ 2, ) = 1 39 (12ν 3a + 27) 0; µ 0 (u, χ 2, ) = 1 39 ( 24ν 3a + 24) 0; µ 1 (u, χ 2, ) = 1 39 ( ν 3a + 27) 0. It follows that there are no possible integer solutions for (ν 3a, ν 13a, ν 13b ). Case (ix). Let u V (ZG) where u = 65. Using Propositions 2 & 3, ν 5a + ν 13a + ν 13b = 1. Consider the cases χ(u 13 ) = χ(5a) and χ(u 5 ) = m 1 χ(13a) + m 2 χ(13b) where (m 1, m 2 ) {(1, 0), (0, 1), (9, 8), (8, 7), (7, 6), (6, 5), (5, 4), (4, 3), (3, 2), (2, 1), ( 1, 2), ( 2, 3), ( 3, 4), ( 4, 5), ( 5, 6), ( 6, 7), ( 7, 8), ( 8, 9)}. µ 0 (u, χ 2, ) = 1 65 (48ν 5a + 30) 0; µ 13 (u, χ 2, ) = 1 65 ( 12ν 5a + 25) 0. It follows that there are no possible integer solutions for (ν 5a, ν 13a, ν 13b ). We shall now consider the prime graph of G = 2 F 4 (2). G contains elements of order 6 and 10. Therefore [2, 3] and [2, 5] are adjacent in π(g) and consequently adjacent in π(v (ZG)). Clearly π(g) = π(v (ZG)), since there are no torsion units of order 15, 26, 39 and 65 in V (ZG). This completes the proof. 4. Proof of Theorem 3 Let G = 2 F 4 (2). Clearly G = = and exp(g) = 3120 = Initially, for any torsion unit of V (ZG) of order k: ν 2a + ν 2b + ν 3a + ν 4a + ν 4b + ν 4c + ν 5a + ν 6a + ν 8a + ν 8b + ν 8c + ν 10a + ν 12a + ν 13a + ν 16a + ν 16b + ν 4d + ν 4e + ν 4f + ν 4g + ν 8d + ν 8e + ν 12b + ν 12c + ν 16c + ν 16d + ν 20a + ν 20b = 1 For the purpose of this paper, we shall consider torsion units of V (ZG) of order 2, 3, 5, 10, 15, 26, 39 and 65. We shall now consider each case separately. Case (i). Let u V (ZG) where u = 2. Using Propositions 2 & 3, ν 2a + ν 2b = 1. µ 1 (u, χ 3, ) = 1 2 (4γ + 52) 0; µ 0(u, χ 3, ) = 1 2 ( 4γ + 52) 0 where γ = 3ν 2a ν 2b. Clearly γ {k 13 k 13}. It follows that the only possible integer solutions for (ν 2a, ν 2b ) are listed in part (iii) of Theorem 3. Case (ii). Let u V (ZG) where u = 3. By Proposition 2, ν kx = 0 for all kx {2a, 2b, 4a, 4b, 4c, 5a, 6a, 8a, 8b, 8c, 10a, 12a, 13a, 16a, 16b, 4d, 4e, 4f, 4g, 8d, 8e, 12b, 12c, 16c, 16d, 20a, 20b}. Therefore, u is rationally conjugated to some element g G by Proposition 4.

12 12 JOE GILDEA Case (iii). Let u V (ZG) where u = 5. By Proposition 2, ν kx = 0 for all kx {2a, 2b, 3a, 4a, 4b, 4c, 6a, 8a, 8b, 8c, 10a, 12a, 13a, 16a, 16b, 4d, 4e, 4f, 4g, 8d, 8e, 12b, 12c, 16c, 16d, 20a, 20b}. Therefore, u is rationally conjugated to some element g G by Proposition 4. Case (iv). Let u V (ZG) where u = 10. Using Propositions 2 & 3, ν 2a + ν 2b + ν 5a + ν 10a = 1. Let γ 1 = 6ν 2a 2ν 2b ν 5a + ν 10a, γ 2 = 14ν 2a 2ν 2b + 3ν 5a ν 10a, γ 3 = 5ν 2a + ν 2b, γ 4 = 5ν 2a 11ν 2b and γ 5 = 31ν 2a + 15ν 2b + ν 5a + ν 10a. We shall now separately consider the following cases involving χ(u n ) for n {2, 5}: χ(u 5 ) = m 1 χ(2a) + m 2 χ(2b) and χ(u 2 ) = χ(5a) where (m 1, m 2 ) {(1, 0), (0, 1), ( 1, 2)}. µ 0 (u, χ 3, ) = 1 10 ( 8γ 1 + k 1 ) 0; µ 5 (u, χ 3, ) = 1 10 (8γ 1 + k 2 ) 0; µ 0 (u, χ 8, ) = 1 10 (4γ 2 + k 3 ) 0; µ 1 (u, χ 8, ) = 1 10 (γ 2 + k 4 ) 0; µ 5 (u, χ 8, ) = 1 10 ( 4γ 2 + k 5 ) 0; µ 0 (u, χ 10, ) = 1 10 ( 16γ 3 + k 6 ) 0; µ 5 (u, χ 10, ) = 1 10 (16γ 3 + k 7 ) 0; µ 0 (u, χ 14, ) = 1 10 (4γ 4 + k 8 ) 0; µ 5 (u, χ 14, ) = 1 10 ( 4γ 4 + k 9 ) 0 where the values for k i s and corresponding (m 1, m 2 ) values are as follows: (m 1, m 2 ) (k 1, k 2, k 3, k 4, k 5, k 6, k 7, k 8, k 9 ) (1, 0) (48, 72, 104, 61, 76, 280, 320, 386, 324) (0, 1) (64, 56, 88, 77, 92, 296, 304, 370, 340) ( 1, 2) (80, 40, 72, 93, 108, 312, 288, 354, 356) It follows that the only possible integer solutions for (ν 2a, ν 2b, ν 13a ) are (0, 0, 5, 4), (0, 0, 0, 1), ( 1, 1, 0, 1), (1, 1, 0, 1), (0, 4, 5, 0), (0, 2, 0, 1), ( 1, 3, 5, 0), ( 1, 3, 0, 5) and (2, 2, 0, 3) in all cases. χ(u 5 ) = 2χ(2a) χ(2b) and χ(u 2 ) = χ(5a). µ 2 (u, χ 3, ) = 1 10 (2γ ) 0; µ 0 (u, χ 3, ) = 1 10 ( 8γ ) 0; µ 0 (u, χ 8, ) = 1 10 (4γ ) 0; µ 5 (u, χ 8, ) = 1 10 ( 4γ ) 0; µ 1 (u, χ 8, ) = 1 10 (γ ) 0; µ 5 (u, χ 10, ) = 1 10 (16γ ) 0; µ 0 (u, χ 10, ) = 1 10 ( 16γ ) 0; µ 0 (u, χ 12, ) = 1 10 (4γ ) 0; µ 0 (u, χ 14, ) = 1 10 (4γ ) 0. Clearly γ 1 { 11, 6, 1, 4}, γ 2 {4 + 5k 5 k 2} and γ 3 {4 + 5k 5 k 2}. It follows that the only possible integer solutions for (ν 2a, ν 2b, ν 13a ) are ( 1, 1, 0, 3), ( 1, 1, 5, 2), (0, 4, 5, 2) and (0, 4, 0, 3). χ(u 5 ) = 2χ(2a) + 3χ(2b) and χ(u 2 ) = χ(5a). µ 5 (u, χ 3, ) = 1 10 (8γ ) 0; µ 1 (u, χ 3, ) = 1 10 ( 2γ ) 0; µ 0 (u, χ 8, ) = 1 10 (4γ ) 0; µ 5 (u, χ 8, ) = 1 10 ( 4γ ) 0; µ 1 (u, χ 8, ) = 1 10 (γ ) 0; µ 5 (u, χ 10, ) = 1 10 (16γ ) 0; µ 0 (u, χ 10, ) = 1 10 ( 16γ ) 0; µ 0 (u, χ 12, ) = 1 10 (4γ ) 0; µ 0 (u, χ 14, ) = 1 10 (4γ ) 0. Clearly γ 1 { 3, 2, 7}, γ 2 { 9, 1, 11, 21, 31} and γ 3 {3 + 5k 4 k 3}. It follows that the only possible integer solutions for (ν 2a, ν 2b, ν 13a ) are (0, 2, 0, 3), (0, 2, 5, 2), (1, 3, 5, 2) and (1, 3, 0, 3).

13 TORSION UNITS 13 χ(u 5 ) = 3χ(2a) 2χ(2b) and χ(u 2 ) = χ(5a). µ 2 (u, χ 3, ) = 1 10 (2γ 1 + 6) 0; µ 0 (u, χ 3, ) = 1 10 ( 8γ ) 0; µ 1 (u, χ 8, ) = 1 10 (γ ) 0; µ 5 (u, χ 8, ) = 1 10 ( 4γ ) 0; µ 5 (u, χ 10, ) = 1 10 (16γ ) 0; µ 0 (u, χ 10, ) = 1 10 ( 16γ ) 0; µ 0 (u, χ 14, ) = 1 10 (4γ ) 0. Clearly γ 1 { 3, 2} γ 2 { 29, 19, 9, 1, 11} and γ 3 {3 + 5k 5 k 2}. It follows that the only possible integer solutions for (ν 2a, ν 2b, ν 13a ) are ( 2, 2, 0, 5) and (1, 3, 0, 3). χ(u 5 ) = 3χ(2a) + 4χ(2b) and χ(u 2 ) = χ(5a). µ 5 (u, χ 3, ) = 1 10 (8γ 1 + 8) 0; µ 1 (u, χ 3, ) = 1 10 ( 2γ 1 2) 0; µ 0 (u, χ 8, ) = 1 10 (4γ ) 0; µ 2 (u, χ 8, ) = 1 10 ( γ ) 0; µ 5 (u, χ 10, ) = 1 10 (16γ ) 0; µ 0 (u, χ 10, ) = 1 10 ( 16γ ) 0; µ 0 (u, χ 14, ) = 1 10 (4γ ) 0; µ 5 (u, χ 14, ) = 1 10 ( 4γ ) 0. Clearly γ 1 = 1, γ 2 { 5, 5, 15, 25} and γ 3 {4 + 5k 4 k 3}. It follows that there are no possible integer solutions for (ν 2a, ν 2b, ν 13a ) in this case. Case (v). Let u V (ZG) where u = 13. By Proposition 2, ν kx = 0 for all kx {2a, 2b, 3a, 4a, 4b, 4c, 5a, 6a, 8a, 8b, 8c, 10a, 12a, 16a, 16b, 4d, 4e, 4f, 4g, 8d, 8e, 12b, 12c, 16c, 16d, 20a, 20b}. Therefore, u is rationally conjugated to some element g G by Proposition 4. Case (vi). Let u V (ZG) where u = 15. Using Propositions 2 & 3, ν 3a + ν 5a = 1. µ 5 (u, χ 3, ) = 1 15 (8γ + 62) 0; µ 0(u, χ 3, ) = 1 15 ( 16γ + 56) 0 where γ = ν 3a ν 5a. Clearly γ = 4 and there are no possible integer solutions for (ν 3a, ν 5a ). Case (vii). Let u V (ZG) where u = 26. Using Propositions 2 & 3, ν 2a + ν 2b + ν 13a = 1. Let γ 1 = 3ν 2a ν 2b, γ 2 = 7ν 2a ν 2b and γ 3 = 20ν 2a 4ν 2b +ν 13a. We shall now separately consider the following cases involving χ(u n ) for n {2, 13}: χ(u 13 ) = m 1 χ(2a) + m 2 χ(2b) and χ(u 2 ) = χ(13a) where (m 1, m 2 ) {(1, 0), (2, 1), ( 1, 2), ( 2, 3)}. µ 13 (u, χ 3, ) = 1 26 (48γ 1 + k 1 ) 0; µ 0 (u, χ 3, ) = 1 26 ( 48γ 1 + k 2 ) 0 where (k 1, k 2 ) = (64, 40) when (m 1, m 2 ) = (1, 0), (k 1, k 2 ) = (80, 24) when (m 1, m 2 ) = (2, 1), (k 1, k 2 ) = (32, 72) when (m 1, m 2 ) = ( 1, 2) and (k 1, k 2 ) = (16, 80) when (m 1, m 2 ) = ( 2, 3). It follows that there are no possible integer solutions for (ν 2a, ν 2b, ν 13a ) in all cases. χ(u 13 ) = 3χ(2a) + 4χ(2b) and χ(u 2 ) = χ(13a). µ 13 (u, χ 3, ) = 1 26 (48γ 1) 0; µ 1 (u, χ 3, ) = 1 26 ( 4γ 1) 0; µ 0 (u, χ 8, ) = 1 26 (24γ ) 0; µ 13 (u, χ 8, ) = 1 26 ( 24γ ) 0. It follows that there are no possible integer solutions for (ν 2a, ν 2b, ν 13a ). χ(u 13 ) = χ(2b) and χ(u 2 ) = χ(13a). µ 13 (u, χ 3, ) = 1 26 (48γ ) 0; µ 0 (u, χ 3, ) = 1 26 ( 48γ ) 0; µ 0 (u, χ 8, ) = 1 26 (24γ ) 0; µ 13 (u, χ 8, ) = 1 26 ( 24γ ) 0; µ 1 (u, χ 10, ) = 1 26 (γ ) 0.

14 14 JOE GILDEA It follows that there are no possible integer solutions for (ν 2a, ν 2b, ν 13a ). χ(u 13 ) = 3χ(2a) 2χ(2b) and χ(u 2 ) = χ(13a). µ 2 (u, χ 3, ) = 1 26 (4γ 1 + 8) 0; µ 0 (u, χ 3, ) = 1 26 ( 48γ 1 + 8) 0; µ 0 (u, χ 8, ) = 1 26 (24γ ) 0; µ 13 (u, χ 8, ) = 1 26 ( 24γ ) 0. It follows that there are no possible integer solutions for (ν 2a, ν 2b, ν 13a ). Case (viii). Let u V (ZG) where u = 39. Using Propositions 2 & 3, ν 3a + ν 13a = 1. µ 13 (u, χ 3, ) = 1 39 (24ν 3a + 54) 0; µ 0 (u, χ 3, ) = 1 39 ( 48ν 3a + 48) 0; µ 1 (u, χ 3, ) = 1 39 ( 2ν 3a + 54) 0. Clearly ν 3a = 1 and there are no possible integer solutions for (ν 3a, ν 5a ). Case (ix). Let u V (ZG) where u = 65. Using Propositions 2 & 3, ν 5a + ν 13a = 1. µ 0 (u, χ 3, ) = 1 65 (96ν 5a + 60) 0; µ 13 (u, χ 3, ) = 1 65 ( 24ν 5a + 50) 0; Clearly there are no possible integer solutions for (ν 5a, ν 13a ). We shall now consider the prime graph of G = 2 F 4 (2). Again, G contains elements of order 6 and 10. Therefore [2, 3] and [2, 5] are adjacent in π(g) and consequently adjacent in π(v (ZG)). Clearly π(g) = π(v (ZG)), since there are no torsion units of order 15, 26, 39 and 65 in V (ZG). This completes the proof. References [1] V. A. Artamonov and A. A. Bovdi, Integral group rings: groups of invertible elements and classical K-theory, Algebra. Topology. Geometry, Vol. 27 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 3 43, 232 (Russian). Translated in J. Soviet Math. 57 (1991), no. 2, [2] A. Bachle and L. Margolis, Rational conjugacy of torsion units in integral group rings of non-solvable groups, arxiv: [3] V. Bovdi, A. Grishkov, and A. Konovalov, Kimmerle conjecture for the Held and O Nan sporadic simple groups, Sci. Math. Jpn. 69 (2009), no. 3, [4] V. Bovdi and M. Hertweck, Zassenhaus conjecture for central extensions of S 5, J. Group Theory 11 (2008), no. 1, [5] V. Bovdi, C. Höfert, and W. Kimmerle, On the first Zassenhaus conjecture for integral group rings, Publ. Math. Debrecen 65 (2004), no. 3-4, [6] V. Bovdi, E. Jespers, and A. B. Konovalov, Torsion units in integral group rings of Janko simple groups, Math. Comp. 80 (2011), no. 273, , DOI /S MR (2011j:20010) [7] V. Bovdi and A. B. Konovalov, Integral group ring of the first Mathieu simple group, Groups St. Andrews Vol. 1, London Math. Soc. Lecture Note Ser., vol. 339, Cambridge Univ. Press, Cambridge, 2007, pp [8] V. Bovdi and A. B. Konovalov, Integral group ring of the Mathieu simple group M 23, Comm. Algebra 36 (2008), no. 7, [9] V. Bovdi and A. B. Konovalov, Integral group ring of Rudvalis simple group, Ukraïn. Mat. Zh. 61 (2009), no. 1, 3 13 (English, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 61 (2009), no. 1, [10] V. Bovdi and A. B. Konovalov, Torsion units in integral group ring of Higman-Sims simple group, Studia Sci. Math. Hungar. 47 (2010), no. 1, [11] V. Bovdi and A. B. Konovalov, Integral group ring of the McLaughlin simple group, Algebra Discrete Math. 2 (2007), [12] V. Bovdi and A. B. Konovalov, Integral group ring of the Mathieu simple group M 24, J. Algebra Appl. 11 (2012), no. 1, , 10. [13] V. Bovdi, A. B. Konovalov, and S. Linton, Torsion units in integral group ring of the Mathieu simple group M 22, LMS J. Comput. Math. 11 (2008), [14] V. Bovdi, A. B. Konovalov, and S. Linton, Torsion units in integral group rings of Conway simple groups, Internat. J. Algebra Comput. 21 (2011), no. 4, [15] V. A. Bovdi, A. B. Konovalov, and E. N. Marcos, Integral group ring of the Suzuki sporadic simple group, Publ. Math. Debrecen 72 (2008), no. 3-4,

15 TORSION UNITS 15 [16] V. Bovdi, A. B. Konovalov, and S. Siciliano, Integral group ring of the Mathieu simple group M 12, Rend. Circ. Mat. Palermo (2) 56 (2007), no. 1, [17] J. A. Cohn and D. Livingstone, On the structure of group algebras. I, Canad. J. Math. 17 (1965), [18] M. Caicedo, L. Margolis, and Á. del Río, Zassenhaus conjecture for cyclic-by-abelian groups, J. Lond. Math. Soc. (2) 88 (2013), no. 1, MR , Zbl [19] J. Gildea, Zassenhaus conjecture for integral group ring of simple linear groups, J. Algebra Appl. 12 (2013), no. 6, , 10. [20] M. Hertweck, On the torsion units of some integral group rings, Algebra Colloq. 13 (2006), no. 2, [21] M. Hertweck, Zassenhaus conjecture for A 6, Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no. 2, [22] M. Hertweck, Partial augmentations and Brauer character values of torsion units in group rings, ( (2007). [23] M. Hertweck, C. Höfert, and W. Kimmerle, Finite groups of units and their composition factors in the integral group rings of the group PSL(2, q), J. Group Theory 12 (2009), no. 6, [24] C. Höfert and W. Kimmerle, On torsion units of integral group rings of groups of small order, Groups, rings and group rings, Lect. Notes Pure Appl. Math., vol. 248, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp [25] The GAP Group, GAP- Groups, Algorithms and Programming, version ( [26] W. Kimmerle, On the prime graph of the unit group of integral group rings of finite groups, Groups, rings and algebras, Contemp. Math., vol. 420, Amer. Math. Soc., Providence, RI, 2006, pp MR (2007m:16040) [27] V. Bovdi, A. Konovalov, R. Rossmanith, and C. Schneider, LAGUNA Lie AlGebras and UNits of group Algebras, Version 3.5.0; 2009 (andrews.ac.uk/ alexk/laguna.htm [28] I. S. Luthar and I. B. S. Passi, Zassenhaus conjecture for A 5, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), no. 1, 1 5. [29] I. S. Luthar and Poonam Trama, Zassenhaus conjecture for S 5, Comm. Algebra 19 (1991), no. 8, [30] L. Margolis, A Sylow theorem for the integral group ring of P SL(2, q), arxiv: [31] Mini-Workshop, Arithmetik von Gruppenringen, Oberwolfach Rep. 4 (2007), no. 4, , Abstracts from the mini-workshop held November 25 December 1, 2007, Organized by E. Jespers, Z. Marciniak, G. Nebe and W. Kimmerle, Oberwolfach Reports. Vol. 4, no. 4. MR [32] R. Ree, A family of simple groups associated with the simple Lie algebra of type (F 4 ), Bull. Amer. Math. Soc. 67 (1961), [33] K. Roggenkamp and L. Scott, Isomorphisms of p-adic group rings, Ann. of Math. (2) 126 (1987), no. 3, , DOI / MR (89b:20021) [34] A. Rosa, Torsion units of integral group ring of the simple group S 4 (4), Miskolc Math. Notes 16 (2015), no. 1, MR [35] M. Salim, Torsion units in the integral group ring of the alternating group of degree 6, Comm. Algebra 35 (2007), no. 12, , DOI / [36] M. Salim, Kimmerle s conjecture for integral group rings of some alternating groups, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 27 (2011), no. 1, MR (2012k:16052), Zbl [37] M. Salim, The prime graph conjecture for integral group rings of some alternating groups, Int. J. Group Theory 2 (2013), no. 1, MR , Zbl [38] R. Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 9 (1959), [39] J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2) 80 (1964), [40] A. Weiss, Rigidity of p-adic p-torsion, Ann. of Math. (2) 127 (1988), no. 2, , DOI / MR (89g:20010) [41] H. Zassenhaus, On the torsion units of finite group rings, Studies in mathematics (in honor of A. Almeida Costa) (Portuguese), Instituto de Alta Cultura, Lisbon, 1974, pp Department of Mathematics, Faculty of Science and Engineering, University of Chester, England address: j.gildea@chester.ac.uk

Torsion units for a Ree group, Tits group and a Steinberg triality group

Torsion units for a Ree group, Tits group and a Steinberg triality group Rend. Circ. Mat. Palermo (2016) 65:139 157 DOI 10.1007/s12215-015-0225-7 Torsion units for a Ree group, Tits group and a Steinberg triality group Joe Gildea 1 Received: 5 November 2015 / Accepted: 5 December

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Tevfik Bilgin, Necat Gorentas, and I. Gokhan Kelebek

Tevfik Bilgin, Necat Gorentas, and I. Gokhan Kelebek J Korean Math Soc 47 (010), No 6, pp 139 15 DOI 104134/JKMS010476139 CHARACTERIZATION OF CENTRAL UNITS OF ZA n Tevfik Bilgin, Necat Gorentas, and I Gokhan Kelebek Abstract The structure of V (Z(ZA n))

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

arxiv: v1 [math.ra] 19 Dec 2017

arxiv: v1 [math.ra] 19 Dec 2017 TWO-DIMENSIONAL LEFT RIGHT UNITAL ALGEBRAS OVER ALGEBRAICALLY CLOSED FIELDS AND R HAHMED UBEKBAEV IRAKHIMOV 3 arxiv:7673v [mathra] 9 Dec 7 Department of Math Faculty of Science UPM Selangor Malaysia &

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Tevfik Bilgin, Omer Kusmus, and Richard M. Low. r g g, where r g Z. g g g Gr r g.

Tevfik Bilgin, Omer Kusmus, and Richard M. Low. r g g, where r g Z. g g g Gr r g. Bull. Korean Math. Soc. 53 (2016), No. 4, pp. 1105 1112 http://dx.doi.org/10.4134/bkms.b150526 pissn: 1015-8634 / eissn: 2234-3016 A CHARACTERIZATION OF THE UNIT GROUP IN Z[T C 2 ] Tevfik Bilgin, Omer

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Units and the Unit Conjecture

Units and the Unit Conjecture Units and the Unit Conjecture Joint with Peter Pappas David A. Craven University of Oxford London Algebra Colloquium, 4th November, 2010 David A. Craven (University of Oxford) The Unit Conjecture 4th November,

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function March 22, 2013 References: A. Knapp, Lie Groups Beyond an Introduction. Ch V Fulton-Harris, Representation

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS Òðóäû ÁÃÒÓ 07 ñåðèÿ ñ. 9 54.765.... -. -. -. -. -. : -. N. P. Mozhey Belarusian State University of Inforatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS In this article we present

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα