Производња асфалтних мешавина KОЛОВОЗНЕ КОНСТРУКЦИЈЕ. Производња асфалтних мешавина по врућем поступку. Асфалтне базе. Типови асфалтних база

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Производња асфалтних мешавина KОЛОВОЗНЕ КОНСТРУКЦИЈЕ. Производња асфалтних мешавина по врућем поступку. Асфалтне базе. Типови асфалтних база"

Transcript

1 Производња асфалтних мешавина KОЛОВОЗНЕ КОНСТРУКЦИЈЕ V предавање Извођење и контрола квалитета изведених асфалтних радова По врућем поступку АБ, SMA БНС ДБНС Ливени асфалт Асфалтне мешавине по топломи полу топлом поступку (WMA Warm Mix Asphalt& Half-Warm MA) По хладномпоступку (везиво: разређени битумен или битуменска емулзија) Микро-асфалт, површинске обраде Маса за крпљење ударних рупа Застор за ниже категорисане путеве или превентивно одржавање Производња асфалтних мешавина по врућем поступку Асфалтне базе: Мобилне Стационарне По начину производње: Са дисконтинуалним процесом производње Дозирање и мешање у прекидима, по мешунзима (корпама) Са континуалним процесом производње Са системом за расејавање, врућим бункерима и мешалицом (класичан тип) Без система за расејавање, врућих бункера и мешалице, где се загревање агрегата, додавање везива и мешање обавља у једном бубњу Асфалтне базе Основна функција: Произвести квалитетну асфалтну мешавину која садржи одговарајуће количине битумена и минералног материјала и задовољава техничке услове Основни делови: Депоније за агрегат Цистерне за битумен Силоси за камено брашно Предозатори Дозирање: - струганог асфалта -адитива Бубањ за сушење Систем за отпрашивање Сита Мешалица Бункери Типови асфалтних база Асфалтна база са дисконтинуалним процесом производње типична организација Са дисконтинуалним процесом производње Са континуалним процесом производње Предозатори Транспортна трака Цистерна за битумен Бубањ за сушење Мешалица Пламеник - грејач Транспортна трака за загрејани агрегат Бункер за врућу асфалтну масу, дипл.инж. 1

2 Асфалтна база са континуалним процесом производње типична организација Предозатори Транспортне траке Цистерна за битумен Бубањ за сушење Грејач Бункер за врућу асфалтну масу Производни процес у асфалтним базама Лагеровање битумена Депоновање агрегата, силоси за камено брашно Претходно дозирање Загревање и сушење агрегата Отпрашивање Просејавање Прихват врућих фракција Одмеравање и мешање каменог материјала и битумена Лагеровање асфалтне мешавине Цистерне за битумен Депоновање агрегата Депоновање агрегата, дипл.инж.

3 V предавање Силоси за камено брашно Претходно дозирање Предозатори Покретна трака Предозирање Претходно дозирање Предозатори Покретна трака Претходно дозирање, дипл.инж. Дозирање гранула 3

4 Загревање и сушење агрегата Загревање и сушење агрегата Отпрашивање Отпрашивање 74 микрона До 8% укупне масе мин. материјала у бубњу за сушење <0,5 mm повратно камено брашно Не сме се испустити у атмосферу Отпрашивање поступак уклањања и складиштења ситних честица помоћу колектора прашине Врсте колектора: Циклонски - конусни Колектор по влажном поступку Фабрички филтер колектор 30 микрона 10 микрона 5 микрона 1 микрона Циклонски (80-90%) Вишеконусни (80-90%) По влажном поступку (90-96%) Фабрички филтер колектор Отпрашивање Просејавање Поступак отпрашивања Једностепени Вишестепени Вибрациони систем са 3-5 сита Број бункера = броју сита = броју фракција Сита на бази имају већи отвор због нагиба и кретања агрегата по ситу, дипл.инж. 4

5 Просејавање Просејавање Сита: Отвор лабораторијског сита (mm) Отвор сита на асфалтној бази (mm) , Ибер 14 mm 11 mm 5 mm 3 mm 11, ,4 6 31,5 35,5 8/11 4/8 /4 0/ Просејавање, вагање и мешање Дистрибуција асфалтне мешавине Транспортна трака за загрејани агрегат Вибрациони систем сита Директно из мешалице: Из силоса: Додавање филера Додавање битумена Мешалица Предозатори Дистрибуција асфалтне мешавине Командни центар -контрола процеса производње, дипл.инж. 5

6 Транспорт, уграђивање и збијање асфалтне мешавине Различити типови камиона за транспорт Температура је критична! Транспорт асфалтне мешавине Уграђивање помоћу финишера Камиони са термо сандуком макс. 100 kmили макс. часа Обични камиони макс. 70 kmили макс. 1.5 час Транспорт мешавине кроз финишер Уграђивање помоћу финишера Пријемни кош Подешавање дебљине слоја Ваљци за гурање камиона Пужни транспортери Вибрациона плоча, дипл.инж. 6

7 Збијање Потребна је добра збијеност: да би се спречило даље збијање да би се обезбедила чврстоћа на смицање и отпорност на колотраге да би се обезбедила водонепропусност да би се спречило претерано старење -оксидација битумена Фактори који утичу на збијање Фактори околине Карактеристике мешавине Фактори везани за изградњу Фактори околине Температура подлоге Температура ваздуха Ветар Осунчаност Карактеристике мешавине Агрегат Гранулометријски састав Максимална величина зрна Облик Проценат изломљених зрна Запремина Везиво Хемијске карактеристике Физичке карактеристике Количина Извођење радова Ваљци Тип и број ваљака Брзина и правовременост ваљања Број прелаза Дебљина слоја Карактеристике градилишта Температура справљања мешавине Транспортна даљина и време Носивост подлоге Температура је критична! Сувише хладна маса немогуће збијање због великог вискозитета мешавине (отпора) Сувише топла маса немогуће ваљање БИТ 60(50/70) o C производња асфалтне масе o C иницијално збијање o C додатно збијање o C завршна обрада Pavecool, дипл.инж. 7

8 Ваљци На почетку збијања Дубина збијања Виша ивица коловоза На крају збијања Подела по врсти пнеуматика и начину рада Вибрациони Пнеуматски Глатки Подела по маси Нижа ивица коловоза Ваљци Ваљци Вибрациони Иницијално збијање Два мода рада: Статички (маса ваљка и точкова) Динамички (помоћу ексцентричног оптерећења монтираног у точковима) Пнеуматски Средњи, између вибрационих и глатких ваљака 4-5 глатких гума на осовини Сила збијања је функција: Оптерећења точкова(маса и до15 t) Притиска и врсте гума (4-8,5 MPa) Дубине утискивања гума у асфалтни слој Ваљци Глатки (за завршну фазу ваљања) Челични точкови, најчешће или 3 Оптерећење 3 1 t Интелигентно збијање Вибрациони ваљци са мерењем збијености слоја / системом за контролу збијености и са системом повезаним са GPS-ом Подешава ниво збијања у зависности од измерене крутости збијеног слоја Региструје крутост на мапама у боји применом GPS технологије, дипл.инж. 8

9 Интелигентно збијање - Затворен циклус Вибрационо збијање Промена ефекта збијања Мења правац вибрација, а амплитуда остаје константна Мерење крутости Прилагођавање ефекта збијања Maximum Minimum Примена GPS-a Мешавине по топлом поступку Warm Mix Asphalt (WMA) мешавине по топлом поступку Температура мешања и уграђивања o C Half Warm Mix Asphalt Температура мешања и уграђивања < 100 o C Warm Mix Asphalt -WMA Почетак развоја крајем XX века (1997.) Снижавање вискозитета битумена у додиру са агрегатом применом адитива Адитиви На бази стварања пенушавог битумена Advera Aspha min WAM Foam BP... Хемијски модификатори Evoterm (Mead/Westvaco) Rediset (Akzo Nobel) Sasobit (Sasol)... Warm Mix Asphalt -WMA Латентна топлота испаравања Мешавина по хладном поступку Температура, o C Грејање Испаравање Сушење, дипл.инж. 9

10 Предности WMA Смањење испарења - WMA Мање испарења(30 90 %) Мања потрoшња енергије (до 30 %) Мање хабање асфалтног постројења Успорено старење везива Раније пуштање у саобраћај Асфалтирање по хладном времену Помаже збијању крутих мешавина Контролна мешавина T=160 o C WMA T=130 o C Смањењe испарења - WMA Смањење испарења WMA Advera T=10 o C Kontrolna mešavina T=160 o C Контрола квалитета изведених радова Вађење кернова из готовог коловоза Текућа контрола Супер контрола Контрола: Произведене асфалтне мешавине Садржај и врста везива Гранулометријски састав Запреминска структура (садржај шупљина) Стабилнoст и течење Уграђеног асфалтног слоја Дебљина слоја Збијеност и садржај шупљина, дипл.инж. 10

11 Контрола збијености и процента заосталих шупљина Проценат заосталих шупљина изузетно значајан параметар за трајност коловоза Сваки проценат шупљина изнад 7-8% - умањење трајности за 10 % Мешавине по принципу асфалт-бетона: 3 8 % шупљина Одређивање збијености слоја на терену Уређај базиран на мерењу простирања радиоактивних гама зрака кроз завршни слој Уређај заснован на мерењу диелектричне константе V Z = 1 Z m, is 100 % Š, is max ( V V ) Одређивање збијености слоја лабораторијским испитивањем Степен збијености S Z Z = Z m, is m 100 где је: S Z степен збијености, % Z m,is запреминска маса збијеног слоја (kg/m 3 ) Z m запреминска маса узорка по Маршалу, (kg/m 3 ) Критеријум по SRPS-у: % Мало статистике Коју расподелу применити? Нормална расподела/стандардна нормална расподела Узорак >0 30мерења Студентова t расподела Узорак < 0 Нормална расподела Нормална расподела y Основни параметри Средња вредност Стандардна девијација Коефицијент варијације -n број мерења -x појединачно мерење x µ = n σ = σ CV = µ ( x µ ) n 1 y = σ 1 e π ( x µ ) σ μ ±σ 68.7% μ ±σ 95.45% μ ±3σ 99.73% μ ±4σ 99.99% x, дипл.инж. 11

12 Стандардна нормална расподела Површина испод криве стандардне нормалне расподеле Трансформација: y z = x µ σ z = - средња вредност µ Z = 0 - ст.дев. σ Z = 1 1 e π z Z Површина - до z Пример шупљине у асф.меш. µ = 3.51 % σ = 0.47 % Број узорака σ µ ± σ 68.7 % µ ± σ % µ ± 3σ % σ µ More σ VS (%) σ Z d = (-3.51)/0.47= P d = =0.07 % 8 7 P = P g -P d =99.84 % 6 5 P g = 99.9 % σ σ More P d = 0.07 % Број узорака Пример шупљине у асф.меш. VS (%) Z g = (5-3.51)/0.47= P g = =99.9 % Пример збијеност Z d = ( )/1.4=-1.86 P d = =9.9 % P = =90.08 % 7 6 Б рој yзорака σ 0 P d = 9.9 % More Збијеност (%), дипл.инж. 1

в.проф.др Горан Младеновић 1

в.проф.др Горан Младеновић 1 I предавање 29..215. Пројектовање асфалтних мешавина KОЛОВОЗНЕ КОНСТРУКЦИЈЕ I предавање Пројектовање минералних и асфалтних мешавина Циљ Пројектовати економичну мешавину минералног материјала (агрегата)

Διαβάστε περισσότερα

KОЛОВОЗНЕ КОНСТРУКЦИЈЕ. Принципи хармонизације. Рад на хармонизованим стандардима у оквиру CEN-a

KОЛОВОЗНЕ КОНСТРУКЦИЈЕ. Принципи хармонизације. Рад на хармонизованим стандардима у оквиру CEN-a KОЛОВОЗНЕ КОНСТРУКЦИЈЕ VI предавање Пројектовање и контрола квалитета асфалтних мешавина у складу са новим Европским нормама шк. 2015/16 год. Нови приступ стандардизацији у EU почев од 1985. године Циљ:

Διαβάστε περισσότερα

Питања за усмени испит из ТЕХНОЛОГИЈЕ БЕТОНА

Питања за усмени испит из ТЕХНОЛОГИЈЕ БЕТОНА Питања за усмени испит из ТЕХНОЛОГИЈЕ БЕТОНА Компоненте бетона 1 Агрегат као компонента бетона: предности и мане природног (речног), односно вештачког (дробљеног) агрегата, према њиховим основним својствима.

Διαβάστε περισσότερα

Поступак анализе/прорачуна KОЛОВОЗНЕ КОНСТРУКЦИЈЕ. Врсте материјала Застор АБ SMA Порозни асфалт... Карактеристике материјала

Поступак анализе/прорачуна KОЛОВОЗНЕ КОНСТРУКЦИЈЕ. Врсте материјала Застор АБ SMA Порозни асфалт... Карактеристике материјала 4..07. Поступак анализе/прорачуна KОЛОВОЗНЕ КОНСТРУКЦИЈЕ X предавање Аналитички поступци за пројектовање флексибилних MET - Метода еквивалентних дебљина шк. 07/8 год. Усвојена коловозна конструкција врсте

Διαβάστε περισσότερα

III предавање

III предавање KОЛОВОЗНЕ КОНСТРУКЦИЈЕ III предавање Камени агрегат за израду асфалтних слојева коловозне конструкције Камени агрегат за производњу асфалтних мешавина Агрегат - Минерални материјал (камено брашно, песак,

Διαβάστε περισσότερα

VI предавање - SUPERPAVE

VI предавање - SUPERPAVE KОЛОВОЗНЕ КОНСТРУКЦИЈЕ VI предавање SUPERPAVE шк. 2017/18 год. Метода SUPERPAVE (USA) 1987-1993 Strategic Highway Research Program (SHRP) истраживачки пројекат са буџетом од 50 мил. $ Основно питање: Зашто

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

в.проф.др Горан Младеновић 1

в.проф.др Горан Младеновић 1 Камени агрегат за производњу асфалтних мешавина KОЛОВОЗНЕ КОНСТРУКЦИЈЕ III предавање Камени агрегат за израду асфалтних слојева коловозне конструкције Агрегат -Минерални материјал (камено брашно, песак,

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

КОЛОВОЗНЕ КОНСТРУКЦИЈЕ шк. 2017/18 год. в.проф.др Горан Младеновић 1

КОЛОВОЗНЕ КОНСТРУКЦИЈЕ шк. 2017/18 год. в.проф.др Горан Младеновић 1 KОЛОВОЗНЕ КОНСТРУКЦИЈЕ VII семестар Одсек за путеве, железнице и аеродроме шк. 2017/18 година Садржај предавања Техничка регулатива у области изградње и одржавања путева и фазе израде пројектне документације

Διαβάστε περισσότερα

I предавање

I предавање KОЛОВОЗНЕ КОНСТРУКЦИЈЕ VII семестар Одсек за путеве, железнице и аеродроме шк. 2016/17 година Техничка регулатива Стандарди Национални (SRPS) Европски (EN норме) Поступак хармонизације српких стандарда

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја

Διαβάστε περισσότερα

KОЛОВОЗНЕ КОНСТРУКЦИЈЕ. Квалитет (носивост) постељице. Климатско хидролошки услови. Квалитет (носивост) постељице. Квалитет (носивост) постељице

KОЛОВОЗНЕ КОНСТРУКЦИЈЕ. Квалитет (носивост) постељице. Климатско хидролошки услови. Квалитет (носивост) постељице. Квалитет (носивост) постељице Димензионисање коловозних конструкција према SRPS U.C4.01 KОЛОВОЗНЕ КОНСТРУКЦИЈЕ IX предавање Емпиријске методе за димензионисање флексибилних Метода SRPS U.C4.01/1981 Метода SRPS U.C4.015/1994 (AASHTO

Διαβάστε περισσότερα

Пешачки мостови. Метални мостови 1

Пешачки мостови. Метални мостови 1 Пешачки мостови Метални мостови 1 Особености пешачких мостова Мање оптерећење него код друмских мостова; Осетљиви су на вибрације. Неопходна је контрола SLS! Посебна динамичка анализа се захтева када је:

Διαβάστε περισσότερα

в.проф.др Горан Младеновић 1

в.проф.др Горан Младеновић 1 KОЛОВОЗНЕ КОНСТРУКЦИЈЕ II предавање Битумен и везива на бази битумена Везива за материјале у слојевима коловозних конструкција Врсте везива Хидраулична (цемент) Угљоводонична (битумен) Захтеви за угљоводонична

Διαβάστε περισσότερα

МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. Основе, принципипијелна решења. Машине непрекидног транспорта. предавање 1.1

МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. Основе, принципипијелна решења. Машине непрекидног транспорта. предавање 1.1 МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА предавање 1.1 Основе, принципипијелна решења Назив предмета: Наставник: Сарадник: МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА др Драгослав Јаношевић, ван. професор мр Саша Марковић Шифра

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

Закони термодинамике

Закони термодинамике Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо

Διαβάστε περισσότερα

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања

Διαβάστε περισσότερα

ВЈЕЖБЕ ИЗ ПРЕДМЕТА МЕХАНИКА ТЛА. вјежба број 4 Нормативна збијеност тла

ВЈЕЖБЕ ИЗ ПРЕДМЕТА МЕХАНИКА ТЛА. вјежба број 4 Нормативна збијеност тла -23- НОРМАТИВНА ЗБИЈЕНОСТ ТЛА Три фазе у тлу, минерална зрна и поре испуњене ваздухом односно водом, могу бити распоређени на много различитих начина. Структура крупнозрног тла се може представити куглицама

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем

Διαβάστε περισσότερα

КОЛОВОЗНЕ КОНСТРУКЦИЈЕ шк. 2016/17 година в.проф.др Горан Младеновић, дипл.инж. 1

КОЛОВОЗНЕ КОНСТРУКЦИЈЕ шк. 2016/17 година в.проф.др Горан Младеновић, дипл.инж. 1 Димензионисање коловозних конструкција KОЛОВОЗНЕ КОНСТРУКЦИЈЕ VIII предавање Димензионисање коловозних конструкција Анализа саобраћајног оптерећења шк. 2016/17 год. Типови коловозних конструкција Флексибилне

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ

Διαβάστε περισσότερα

II предавање

II предавање KОЛОВОЗНЕ КОНСТРУКЦИЈЕ II предавање Битумен и везива на бази а Везива за материјале у слојевима коловозних конструкција Врсте везива Хидраулична (цемент) Угљоводонична () Захтеви за угљоводонична везива

Διαβάστε περισσότερα

ДИЈАГРАМИ И ТАБЛИЦЕ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ОДСЕК ЗА ПРОИЗВОДНО МАШИНСТВО ПРОЈЕКТОВАЊЕ ТЕХНОЛОГИЈЕ ТЕРМИЧКЕ ОБРАДЕ. Приредио: Александар Милетић

ДИЈАГРАМИ И ТАБЛИЦЕ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ОДСЕК ЗА ПРОИЗВОДНО МАШИНСТВО ПРОЈЕКТОВАЊЕ ТЕХНОЛОГИЈЕ ТЕРМИЧКЕ ОБРАДЕ. Приредио: Александар Милетић - ПТО ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ОДСЕК ЗА ПРОИЗВОДНО МАШИНСТВО ПРОЈЕКТОВАЊЕ ТЕХНОЛОГИЈЕ ТЕРМИЧКЕ ОБРАДЕ ДИЈАГРАМИ И ТАБЛИЦЕ Приредио: Александар Милетић 1 С т р а н а - ПТО Садржај Пренос топлоте... 3 Цементација...15

Διαβάστε περισσότερα

МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. тракасти транспортери, капацитет - учинак, главни отпори кретања. Машине непрекидног транспорта. предавање 2.

МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. тракасти транспортери, капацитет - учинак, главни отпори кретања. Машине непрекидног транспорта. предавање 2. МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА предавање.3 тракасти транспортери, капацитет учинак, главни отпори кретања Капацитет Капацитет представља полазни параметар при прорачуну транспортера задаје се пројектним

Διαβάστε περισσότερα

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације

Διαβάστε περισσότερα

ФИЗИКА Час број 11 Понедељак, 8. децембар, Aвогадров закон. Увод. Авогадров закон. Гасовито агрегатно стање

ФИЗИКА Час број 11 Понедељак, 8. децембар, Aвогадров закон. Увод. Авогадров закон. Гасовито агрегатно стање ФИЗИКА Час број Понедељак, 8. децембар, 008 Једначина стања идеалног и реалног гаса Притисак и температура гаса Молекуларно кинетичка теорија идеалног гаса Болцманова и Максвелова расподела Средњи слободни

Διαβάστε περισσότερα

У к у п н о :

У к у п н о : ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Седми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. КРЕТАЊЕ И

Διαβάστε περισσότερα

Упутство за избор домаћих задатака

Упутство за избор домаћих задатака Упутство за избор домаћих задатака Студент од изабраних задатака области Математике 2: Комбинаторика, Вероватноћа и статистика бира по 20 задатака. Студент може бирати задатке помоћу програмског пакета

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

КОЛОВОЗНЕ КОНСТРУКЦИЈЕ шк. 2015/16 година в.проф.др Горан Младеновић, дипл.инж. 1

КОЛОВОЗНЕ КОНСТРУКЦИЈЕ шк. 2015/16 година в.проф.др Горан Младеновић, дипл.инж. 1 Димензионисање коловозних конструкција KОЛОВОЗНЕ КОНСТРУКЦИЈЕ VIII предавање Димензионисање коловозних конструкција Анализа саобраћајног оптерећења шк. 2015/16 год. Типови коловозних конструкција Флексибилне

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ПРЕДМЕТА ОСНОВИ МЕХАНИКЕ ФЛУИДА

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ПРЕДМЕТА ОСНОВИ МЕХАНИКЕ ФЛУИДА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ПРЕДМЕТА ОСНОВИ МЕХАНИКЕ ФЛУИДА Студент: Број индекса: Оверио: Нови Сад 014 1. СТРУЈАЊЕ ТЕЧНОСТИ 1.1 Опис лабораторијског постројења Лабораторијска вежба урадиће се на лабораторијском

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Осцилације система са једним степеном слободе кретања

Осцилације система са једним степеном слободе кретања 03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

Писмени испит из Метода коначних елемената

Писмени испит из Метода коначних елемената Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

УПОТРЕБА ЕЛЕКТРОФИЛТЕРСКОГ ПЕПЕЛА У ИЗГРАДЊИ САОБРАЋАЈНИЦА

УПОТРЕБА ЕЛЕКТРОФИЛТЕРСКОГ ПЕПЕЛА У ИЗГРАДЊИ САОБРАЋАЈНИЦА DOI: 10.7251/JEPMSR1507125T UDK: 662.613.11:625.712 Стручни рад УПОТРЕБА ЕЛЕКТРОФИЛТЕРСКОГ ПЕПЕЛА У ИЗГРАДЊИ САОБРАЋАЈНИЦА Горан Тадић 1, Миладин Глигорић 1, Александар Дошић 1, Раденко Грујић 2 gtadic.tf@gmail.com

Διαβάστε περισσότερα

Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА. Влажен воздух 3/22/2014

Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА. Влажен воздух 3/22/2014 Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА Влажен воздух 1 1 Влажен воздух Влажен воздух смеша од сув воздух и водена пареа Водената пареа во влажниот воздух е претежно во прегреана состојба идеален гас.

Διαβάστε περισσότερα

I Наставни план - ЗЛАТАР

I Наставни план - ЗЛАТАР I Наставни план - ЗЛААР I РАЗРЕД II РАЗРЕД III РАЗРЕД УКУО недељно годишње недељно годишње недељно годишње годишње Σ А1: ОАЕЗНИ ОПШЕОРАЗОНИ ПРЕДМЕИ 2 5 25 5 2 1. Српски језик и књижевност 2 2 4 2 2 1.1

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

МОБИЛНЕ МАШИНЕ I. ttl. хидростатички системи, хидростатичке компоненте: вентили, главни разводници, командни разводници.

МОБИЛНЕ МАШИНЕ I. ttl. хидростатички системи, хидростатичке компоненте: вентили, главни разводници, командни разводници. МОБИЛНЕ МАШИНЕ I предавање 8.2 \ хидростатички системи, хидростатичке компоненте: вентили, главни разводници, командни разводници Хидростатички погонски системи N e M e e N h p Q F M m m v m m F o M v

Διαβάστε περισσότερα

41 ГОДИНА ГРАЂЕВИНСКОГ ФАКУЛТЕТА СУБОТИЦА

41 ГОДИНА ГРАЂЕВИНСКОГ ФАКУЛТЕТА СУБОТИЦА 41 ГОДИНА ГРАЂЕВИНСКОГ ФАКУЛТЕТА СУБОТИЦА Међународна конференција Савремена достигнућа у грађевинарству 24. април 2015. Суботица, СРБИЈА ТРАНСПОРТ НАНОСА И ПРОМЕНА КОТЕ ДНА У МРЕЖИ ОТВОРЕНИХ ТОКОВА Мирјана

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

1. Функција интензитета отказа и век трајања система

1. Функција интензитета отказа и век трајања система f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

КОЧЕЊЕ МОТОРНИХ ВОЗИЛА РАСПОДЕЛЕ СИЛА КОЧЕЊА

КОЧЕЊЕ МОТОРНИХ ВОЗИЛА РАСПОДЕЛЕ СИЛА КОЧЕЊА Универзитет у Београду - Саобраћајни факултет Предмет: ВОЗНА ДИНАМИКА; проф. др Властимир Дедовић Предавање 7 КОЧЕЊЕ МОТОРНИХ ВОЗИЛА РАСПОДЕЛЕ СИЛА КОЧЕЊА Школска година 03 / 04 Београд, Април 04. Кочење

Διαβάστε περισσότερα

Тест за 7. разред. Шифра ученика

Тест за 7. разред. Шифра ученика Министарство просвете Републике Србије Српско хемијско друштво Окружно/градско/међуокружно такмичење из хемије 28. март 2009. године Тест за 7. разред Шифра ученика Пажљиво прочитај текстове задатака.

Διαβάστε περισσότερα

а) Определување кружна фреквенција на слободни пригушени осцилации ωd ωn = ω б) Определување периода на слободни пригушени осцилации

а) Определување кружна фреквенција на слободни пригушени осцилации ωd ωn = ω б) Определување периода на слободни пригушени осцилации Динамика и стабилност на конструкции Задача 5.7 За дадената армирано бетонска конструкција од задачата 5. и пресметаните динамички карактеристики: кружна фреквенција и периода на слободните непригушени

Διαβάστε περισσότερα

ИНФОРМАТИКА У ЗДРАВСТВУ

ИНФОРМАТИКА У ЗДРАВСТВУ ИНФОРМАТИКА У ЗДРАВСТВУ ОСНОВНЕ СТРУКОВНЕ СТУДИЈЕ СТРУКОВНА МЕДИЦИНСКА СЕСТРА СТРУКОВНИ ФИЗИОТЕРАПЕУТ ДРУГА ГОДИНА СТУДИЈА школска 2017/2018. Предмет: ИНФОРМАТИКА У ЗДРАВСТВУ Предмет се вреднује са 3

Διαβάστε περισσότερα

ttl ТЕОРИЈА КРЕТАЊА ВОЗИЛА гусенична возила, динамика кретања, Теорија кретања возила Предавање 3.2

ttl ТЕОРИЈА КРЕТАЊА ВОЗИЛА гусенична возила, динамика кретања, Теорија кретања возила Предавање 3.2 ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање 3.2 гусенична возила, динамика кретања, При мировању кретног механизма гусенични ланац има почетну силу затезања z. При кретању на погонски точак гусенице се доводи обртни

Διαβάστε περισσότερα

УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ

УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ Тематско поглавље 5.2 УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ Проф. др Велиборка Богдановић Грађевинско-архитектонски факултет Универзитета у Нишу УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ Пример прорачуна топлотно-заштитних својстава

Διαβάστε περισσότερα

Еластичне и пластичне деформације рекристализација

Еластичне и пластичне деформације рекристализација Машински материјали Предавање број 4 Понашање метала при деловању спољних силаеластична деформација, пластична деформација, рекристализација, обрада деформисањем у хладном и топлом стању. Својства метала

Διαβάστε περισσότερα

Могућности и планови ЕПС на пољу напонско реактивне подршке. Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије

Могућности и планови ЕПС на пољу напонско реактивне подршке. Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије Могућности и планови ЕПС на пољу напонско реактивне подршке Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије 1 Обавезе ЈП ЕПС као КПС... ЗАКОН О ЕНЕРГЕТИЦИ ЧЛАН 94. Енергетски

Διαβάστε περισσότερα

ПОСТУПЦИ ЗА ПРОЦЕНУ РИЗИКА ОД ПОЖАРА. др Иван АРАНЂЕЛОВИЋ др Раденко РАЈИЋ Марко САВАНОВИЋ

ПОСТУПЦИ ЗА ПРОЦЕНУ РИЗИКА ОД ПОЖАРА. др Иван АРАНЂЕЛОВИЋ др Раденко РАЈИЋ Марко САВАНОВИЋ ПОСТУПЦИ ЗА ПРОЦЕНУ РИЗИКА ОД ПОЖАРА др Иван АРАНЂЕЛОВИЋ др Раденко РАЈИЋ Марко САВАНОВИЋ Процена пожарних ризика је законска обавеза члан 42 Закона о заштити од пожара члан 8 Правилника о начину израде

Διαβάστε περισσότερα

ИНТЕГРИСАНЕ АКАДЕМСКЕ СТУДИЈЕ ФАРМАЦИЈЕ

ИНТЕГРИСАНЕ АКАДЕМСКЕ СТУДИЈЕ ФАРМАЦИЈЕ ИНТЕГРИСАНЕ АКАДЕМСКЕ СТУДИЈЕ ФАРМАЦИЈЕ ТРЕЋА ГОДИНА СТУДИЈА СТАТИСТИКА У ФАРМАЦИЈИ школска 2016/2017. Предмет: СТАТИСТИКА У ФАРМАЦИЈИ Предмет се вреднује са 6 ЕСПБ. Недељно има 6 часова активне наставе

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

3. Емпиријске формуле за израчунавање испаравања (4)

3. Емпиријске формуле за израчунавање испаравања (4) 3.1 3. Емпиријске формуле за израчунавање испаравања (4) 3.1 Основни појмови o испаравању 3.2 Кружење воде у природи У атмосфери водена пара затвара један круг који је познат под именом кружење воде или

Διαβάστε περισσότερα

КОЧЕЊЕ МОТОРНИХ ВОЗИЛА ЗАКОНИ КРЕТАЊА КОЧЕНОГ ВОЗИЛА

КОЧЕЊЕ МОТОРНИХ ВОЗИЛА ЗАКОНИ КРЕТАЊА КОЧЕНОГ ВОЗИЛА Универзитет у Београду - Саобраћајни факултет Предмет: ВОЗНА ДИНАМИКА; проф. др Властимир Дедовић Предавање 6 КОЧЕЊЕ МОТОРНИХ ВОЗИЛА ЗАКОНИ КРЕТАЊА КОЧЕНОГ ВОЗИЛА Школска година 03 / 04 Београд, Април

Διαβάστε περισσότερα

Висока техничка школа струковних студија Београд Математика 2 Интервали поверења и линеарна регресија предавач: др Мићо Милетић

Висока техничка школа струковних студија Београд Математика 2 Интервали поверења и линеарна регресија предавач: др Мићо Милетић Математика Интервали поверења и линеарна регресија предавач: др Мићо Милетић Интервали поверења Тачкасте оцене параметара основног скупа могу се сматрати као приликом обраде узорка. Њихов недостатак је

Διαβάστε περισσότερα

A.D. ZAŠTITA NA RADU I ZAŠTITA ŽIVOTNE SREDINE BEOGRAD Beograd, Deskaševa 7 LABORATORIJA ZA BUKU, VIBRACIJE I SUDOVE POD PRITISKOM OПШТИНА ИНЂИЈА

A.D. ZAŠTITA NA RADU I ZAŠTITA ŽIVOTNE SREDINE BEOGRAD Beograd, Deskaševa 7 LABORATORIJA ZA BUKU, VIBRACIJE I SUDOVE POD PRITISKOM OПШТИНА ИНЂИЈА A.D. ZAŠTITA NA RADU I ZAŠTITA ŽIVOTNE SREDINE BEOGRAD Beograd, Deskaševa 7 LABORATORIJA ZA BUKU, VIBRACIJE I SUDOVE POD PRITISKOM Tel: 011/2418-155 Faks: 011/2418-992 Web: www.zastitabeograd.com E-mail:

Διαβάστε περισσότερα

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству. април 016. Суботица, СРБИЈА УТИЦАЈ САДРЖАЈА ВЛАГЕ НА КОЕФИЦИЈЕНТ ТОПЛОТНЕ ПРОВОДНОСТИ БЕТОНА Марина Ашкрабић 1 Јована Јосиповић Зорана

Διαβάστε περισσότερα

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5 ШЕСТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: ЗАВРШНИ РАД Предмет се вреднује са 6 ЕСПБ. НАСТАВНИЦИ И САРАДНИЦИ: РБ Име и презиме Email адреса звање 1. Јасмина Кнежевић

Διαβάστε περισσότερα

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Прва година ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА Г1: ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА 10 ЕСПБ бодова. Недељно има 20 часова

Διαβάστε περισσότερα

ТЕХНИЧКО УПУТСТВО О НАЧИНУ ИСПИТИВАЊА И ПОСТУПКУ ОЦЕЊИВАЊА УСАГЛАШЕНОСТИ САОБРАЋАЈНИХ ЗНАКОВА СА ЗАХТЕВИМА СТАНДАРДА

ТЕХНИЧКО УПУТСТВО О НАЧИНУ ИСПИТИВАЊА И ПОСТУПКУ ОЦЕЊИВАЊА УСАГЛАШЕНОСТИ САОБРАЋАЈНИХ ЗНАКОВА СА ЗАХТЕВИМА СТАНДАРДА Булевар Краља Александра 282, Београд Број: БС 05 ТЕХНИЧКО УПУТСТВО О НАЧИНУ ИСПИТИВАЊА И ПОСТУПКУ ОЦЕЊИВАЊА УСАГЛАШЕНОСТИ САОБРАЋАЈНИХ ЗНАКОВА СА ЗАХТЕВИМА СТАНДАРДА НА ДРЖАВНИМ ПУТЕВИМА РЕПУБЛИКЕ СРБИЈЕ

Διαβάστε περισσότερα

Врсте замора Нискоциклични замор Високоциклични замор

Врсте замора Нискоциклични замор Високоциклични замор Замор Врсте замора Нискоциклични замор велике пластичне деформације (превијање) мали број циклуса (нпр. услед сеизмичких утицаја); Високоциклични замор еластично понашање (напрезања испод границе развлачења)

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3 МАТЕМАТИЧКИ ЛИСТ 07/8. бр. LII- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ . III разред. Обим правоугаоника је 6cm + 4cm = cm + 8cm = 0cm. Обим троугла је 7cm + 5cm + cm =

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

РЕЦИКЛАЖА И ОДРЖИВИ РАЗВОЈ UDK : Научни рад

РЕЦИКЛАЖА И ОДРЖИВИ РАЗВОЈ UDK : Научни рад РЕЦИКЛАЖА И ОДРЖИВИ РАЗВОЈ UDK 628.477:666.91 Научни рад Технички факултет у Бору Универзитета у Београду, В. Ј. 12, 19210 Бор, Србија Катедра за минералне и рециклажне технологије Тел. +381 30 424 555,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ОДГОВОРИ И РЕШЕЊА ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ

Διαβάστε περισσότερα

Теорија одлучивања. Анализа ризика

Теорија одлучивања. Анализа ризика Теорија одлучивања Анализа ризика Циљеви предавања Упознавање са процесом анализе ризика Моделовање ризика Монте-Карло Симулација Предности и недостаци анализе ризика 2 Дефиниција ризика (квалитативни

Διαβάστε περισσότερα

L кплп (Калем у кплу прпстпперипдичне струје)

L кплп (Калем у кплу прпстпперипдичне струје) L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве

Διαβάστε περισσότερα

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака

Διαβάστε περισσότερα

Примена првог извода функције

Примена првог извода функције Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први

Διαβάστε περισσότερα