ttl ТЕОРИЈА КРЕТАЊА ВОЗИЛА гусенична возила, динамика кретања, Теорија кретања возила Предавање 3.2
|
|
- Ἐπίκτητος Αντωνοπούλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање 3.2 гусенична возила, динамика кретања,
2 При мировању кретног механизма гусенични ланац има почетну силу затезања z. При кретању на погонски точак гусенице се доводи обртни момент M o услед чега се оптерећење погонског дела гусенице увећавазаобимнусилу o тако да је, за мале углове, проходности имамо једнакост: = + p1 p2 o y где је: - сила у огранку гусенице који наилази на погонски точак (ланчаник), p2 - сила у огранку гусенице који силази са погонског точка (ланчаник. M o p2 r p x - npy /2 np np npx nz nzx W f /2 nz nzy z2 M zi x M zt r z y
3 Из петходне једначине следи да је: где је: M о - обртни момент који делује на погонском точку (ланчанику) гусеничног кретног маеханизма, r p - полупречник погонског точка. p2 z2 + p1 M o = G=mg r p p2 o M zi M zt r z следи да је: - W f o = M r p o = p1 p2 y x npy /2 np np npx nz nzx /2 nz nzy x y
4 За затезни точак наилазећи огранак гусенице је уствари силазећи огранак са погонског точка, тако да је: p2 = z2. Разлика сила у гусеници на затезном точку даје моменат који је једнак суми момента M zi који настаје услед инерције окретања затезног точка и момента M zt услед сила трења у лежиштима затезног точка: ( )r = M + M z1 z2 z zi zt p2 z2 M o r p x y - W f /2 /2 npy np npx nz nzx np nz M zi nzy одакле следи: zi zt z2 = z1 rz где је: - сила у огранку гусенице који силази са затезног точка, r z - полупречник затезног точка. G=mg M + x M M zt r z y
5 Из шеме се види да је резултујућа сила која делује на вучни део гусенице, једнака разлици сила - иима смер силе. Ова разлика сила представља резултујућу силу на вучном делу гусенице којој се супродсавља тангенцијална реакција (сила пријањањ подлоге ослањања, са смером деловања у правцу кретања гусеничног кретног механизматакодаје: μ = p 1 z1 p2 z2 M zt M o r z r p M zi p1 x y - W f /2 /2 npy np npx G=mg nz nzx np nz nzy x y
6 То показује да се тангенцијална реакција подлоге у виду потисних сила преноси преко лежишта носећих ваљака и погонског точка на костур гусеничног кретног механизма остварујући силу вуче машине. Оптерећења гусеничног ланца се преко погонског и затезног точкова и носећих ваљака преноси на костур машине. M o p2 r p G=mg z2 M zi M zt r z Збир свих уздужних (хоризонталних) компонената сила у осама - W f носећих ваљака npx, nzx, погонског x и затезног точка x по величини je једнака реакцији подлоге. y x npy /2 np npx np nz /2 nzy nz nzx x y
7 Реакција подлоге је уствари сила пријањања гусеница на подлогу и може се изразити једначином: μ = μ mg + 2bh τ c где је: μ c - коефицијент трења гусеница о подлогу ослањања, m - маса машине, b - ширина папуче гусенице, h r - висина ребра папуче гусенице, τ - напон смицања подлоге, z r - број ребара гусенице у контакту са подлогом. r z r p2 M o r p x y - W f /2 /2 npy np npx G=mg nz nzx np nz z2 M zt r z M zi nzy x y
8 = μ mg μ p - сила пријањања Ако се последња једначина μ подели са тежином машине mg добија се: где је: = μ mg + 2bh τ c μ p = μ c + μ p - коефицијент пријањања гусеница на подлогу, μ τ - коефицијент отпора смицања подлоге при кретању гусеница r μ τ z r p2 M o r p x y - W f /2 /2 npy np npx G=mg nz nzx z1 np nz p1 z2 M zt r z M zi nzy x y
9 Динамика гусеничног 2bh r τ z r μ = μ mg + 2bh τ c r z r μ c mg гњечење смицање ломљење
10 mg mg = μcmg + τ μ A A A Пластична подлога (влажна глина, блато,..) μ = τ A mg μ = τ A mg Тарна подлога (песак,..) μ = μcmg mg μ = μ c mg mg Мешовита подлога (оранице,..) μ = τ A μ = μcmg + τ A mg μ = τ A = μcmg + τ A μ mg
11 Коефицијент приањања пнеуматика Врста и стање подлоге μ p μ p = μ c + μ τ асфалт, сув асфалт, мокар Коефицијент приањања гусеница Врста и стање подлоге μ p бетон, сув бетон, мокар дрвена коцка сув утабан пут, глинасто земљиште 0, сув утабан пут, глинасто земљиште 0.80 сув утабан пут, пешчано земљиште 0, сув утабан пут, пешчано земљиште 0.70 ливада, покошена, влажна 0, ливада, покошена, влажна 0.70 ливада, некошена, влажна 0, ливада, некошена, влажна 0.50 стрњика, сува (глинасто земљиште) стрњика, сува (глинасто земљиште) 0.70 стрњика, влажна (глинасто земљиште) стрњика, влажна (глинасто земљиште) 0.60 стрњика (пешчано земљиште) стрњика (пешчано земљиште) 0.60 ораница ораница песак, влажан 0, песак, влажан песак, сув песак, сув земљани пут, лош (блато) земљани пут, лош (блато) 0.10 утабан пут снегом 0, утабан пут снегом
12 Нормалне компенетне y,y, npy, nzy сила које напрежу осе погонских и затезних точкова, као и осе задњих и предњих носећих ваљака, образују у вертикалној равни систем сила који утиче на прерасподелу нормалних реакција површине ослањања возила. p2 M o r p x y - W f /2 /2 npy np npx G=mg nz nzx np nz z2 M zt r z M zi nzy x y
13 Извођење гусеничног ослоно може бити са задњим (сл. и са предњим (сл.б) положајем погонских точкова посматрано у односу на правац брзине кретања машине. У оба случаја карактер промене сила затезања гусенице по контури није једнак. б)
14 са задњим положајем погонских точкова уовомслучају(сл. горњи слободни огранак гусенице има малу величину оптерећења од хоризонталних сила условљених само сопственим угибом гусениничног ланца. Када се гусенични ланац приближава погонском точку, затезање гусеничног ланца почиње да расте, достижући максимум наиласком на погонски точак. б)
15 са предњим положајем погонских точкова уовомслучају(сл.б) највећа затезања настају на горњем огранку гусенице, смањујући се приближавањем носећем ваљку, где се уравнотежавају са тангенцијалном реакцијом подлоге. Варијанта гусеничног ослоно са предњим погонским точковима захтева у начелу веће затезање гусеница иимавеће оптерећење ланца. б)
16 Силе у захвату ланчаника и ланца гусенице При захвату ланчаника и чланка ланца гусенице настају узајамна оптерећења уз истовремено релативно кретање зуба ланчаника и чауре сегмента ланца и релативно кретање чауре и осовинице сегмента ланца. Као последица оптерећења и релативних кретања, настаје хабање додирних елемената, посебно чауре и осовинице при чему се, због повећања зазора у споју, повећава корак сегмента ланца а на тај начин и укупна дужина ланаца. Да би се одржало правилно кретање гусенице и при нежељеном повећању дужине ланца кретни механизми имају затезни уређај који омогућује потребно померање затезног точка и на тај начин одржава неопходну силу затезања ланаца. чланак I v чланак II ω б)
17 Силе у захвату ланчаника и ланца гусенице За анализу сила које настају у захвату погонског ланчаника и гусеничног ланаца, при окретању ланчаника у оба смера, развијен је модел са следећим претпоставкама: v ω на ланчаник и ланац делују само силе у подужној равни гесенице xy угаона брзина погонског ланчаника је константна, занемарују се инерцијалне силе и сопствена тежина ланца, смер силе у ланцу k се не мења при уласку у захват, средишта зглобова ланца леже на подеоном пречнику ланчаника. чланак I чланак II б)
18 Силе у захвату ланчаника и ланца гусенице Према мерењима, време уласка у захват ланчаника и ланаца износи око 250 ms, за брзину кретања машине око 3 km/h, од тога само време удара ланчаника о ланац износи око 140 ms. силауланцу k, сила нормална на бок зуба ланчаника z, сила у зглобу сегмента ланца који се спреже са ланчаником k1, v ω Због малог времена удара занемарене су инерцијалне силе и примењен статички матеметички модел којим су обухвађене следеће силе спрезања: чланак I чланак II б)
19 Силе у захвату ланчаника и ланца гусенице сила трења између зуба ланчаника и чауре сегмента ланца μ z z, сила трења између чауре и осовинице сегмента ланца μ b k1. коефицијент трења између зуба ланчаника и чауре сегмента ланца је μ z, коефицијент трења између осовинице и чауре сегмента ланца гусенице μ b. б) Према мерењима, време уласка у захват ланчаника и ланаца износи око 250 ms, за брзину кретања машине око 3 km/h, од тога само време удара ланчаника о ланац износи око 140 ms. Због малог времена удара занемарене су инерцијалне силе и примењен статички матеметички модел којим су обухвађене следеће силе спрезања: чланак I v ω в)
20 Силе у захвату ланчаника и ланца гусенице За чланак I ланца гусенице, који се спреже са ланчаником при кретању машине напред, могу се написати статички услови равнотеже у облику: где је: ρ=arctgμ b - угао трења између осовинице и чауре сегмента ланца гусенице, d 2 - пречник осовинице сегмента ланца, h - висина подизања зглоба ланца, n, r - нормална и тангентна компонента силе k1. чланак I v чланак II ω cos ρ sinρ - sinρ cosρ 0-0,5d k h n r = 0 0 k
21 Силе у захвату ланчаника и ланца гусенице За чланак I ланца гусенице, који се спреже са ланчаником при кретању машине напред, могу се написати статички услови равнотеже у облику: У пртходној једначини, прваколонаматрицеодносисенаравнотежусилазаосуx: Xi=0. другаколонаматицеодносисенаравнотежусилазаосуy: Yi=0, а трећа колона матрице за равнотежу момената Mi=0, за осу зглоба којим се везују чланак I ичланакii. чланак I v чланак II ω cos ρ sinρ - sinρ cosρ 0-0,5d k h n r = 0 0 k
22 Силе у захвату ланчаника и ланца гусенице За чланак I ланца гусенице, који се спреже са ланчаником при кретању машине уназад, могу се написати ако се занемари трење (μ z =μ b =0) коришћењем последње једначинеможесе одредити сила на зубу ланчаника: чланак I и у зглобу чланка који улази у захват: k1 = k sin( 0,5τ + γ sin( τ + γ ϕ ) б) v ω w w ) z = k sin( 0,5τ + ϕ ) sin( τ + γ ) w в)
23 Силе у захвату ланчаника и ланца гусенице У претходним једначинама фигуришу: угао који одговара кораку ланца на подеоном пречнику ланчаника има вредност τ = 4π z где је: z - број зуба ланчаника При анализи тренутни угао окретања ланчаника ϕ се креће у границама: τ < ϕ < 2 τ 2 угао нормале на додирну раван ланчаника и чауре ланаца одређен је једначином: чланак I γ w τ τ = γ ( + δ ) = δ 4 2 v ω б) в)
24 1.5 геометријске величие ланчаника коришћене у претходној динамичкој анализи сила у захвату ланчаника и ланца гусенице угао нормале на додирну раван ланчаника и чауре ланаца одређен је једначином: γ w τ τ = γ ( + δ ) = δ 4 2 подеони пречник ланчаника: t d = = 2r 2π sin( ) z где је: t - корак чланка ланца, z - број зуба ланчаника, r - подеони полупречник ланчаника t t t 1.4
25
налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА
Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем
ttl ТЕОРИЈА КРЕТАЊА ВОЗИЛА гусенични ослоно-кретни механизми возила, структура Теорија кретања возила предавање 1.4
ТЕОРИЈА КРЕТАЊА ВОЗИЛА предавање. гусенични ослоно-кретни механизми возила, структура Гусенични кретни механизми а) концепције: са једним паром гусеница б) са више пари гусеница в) Сл.. Гусенични кретни
Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу
Теорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
Осцилације система са једним степеном слободе кретања
03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)
Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.
VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне
ttl КОНСТРУИСАЊЕ МОБИЛНИХ МАШИНА манипулатори машина, полужни погонски механизми Конструисање мобилних машина Седмо предавање
КОНСТРУИСАЊЕ МОБИЛНИХ МАШИНА Седмо предавање манипулатори машина, полужни погонски механизми проф. др Драгослав Јаношевић Кнематички ланци: манипулатори а) L 3 L n L n+1 Ez { L1,L2 a) прости, б) разгранати,
Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.
Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,
1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни
Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:
Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом
ttl ПОГОНСКИ СИСТЕМИ погони манипулатора са хидроцилиндрима, полужни погонски механизми, Погонски системи Једанаесто предавање
ПОГОНСКИ СИСТЕМИ Једанаесто предавање погони манипулатора са хидроцилиндрима, полужни погонски механизми, МАНИПУЛАТОРИ прости равански A O 2 Техника конструисања МАНИПУЛАТОРИ прости просторни V X 3 V могући
Предмет: Задатак 4: Слика 1.0
Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +
г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
Ротационо симетрична деформација средње површи ротационе љуске
Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну
МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА
Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два
КОЧЕЊЕ МОТОРНИХ ВОЗИЛА ЗАКОНИ КРЕТАЊА КОЧЕНОГ ВОЗИЛА
Универзитет у Београду - Саобраћајни факултет Предмет: ВОЗНА ДИНАМИКА; проф. др Властимир Дедовић Предавање 6 КОЧЕЊЕ МОТОРНИХ ВОЗИЛА ЗАКОНИ КРЕТАЊА КОЧЕНОГ ВОЗИЛА Школска година 03 / 04 Београд, Април
b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:
Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног
6.2. Симетрала дужи. Примена
6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем
МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. тракасти транспортери, капацитет - учинак, главни отпори кретања. Машине непрекидног транспорта. предавање 2.
МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА предавање.3 тракасти транспортери, капацитет учинак, главни отпори кретања Капацитет Капацитет представља полазни параметар при прорачуну транспортера задаје се пројектним
& 2. Брзина. (слика 3). Током кратког временског интервала Δt тачка пређе пут Δs и изврши елементарни (бесконачно мали) померај Δ r
&. Брзина Да би се окарактерисало кретање материјалне тачке уводи се векторска величина брзина, коју одређује како интензитет кретања тако и његов правац и смер у датом моменту времена. Претпоставимо да
10.3. Запремина праве купе
0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка
Слика 1. Слика 1.2 Слика 1.1
За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 004 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор 100 VA има напон и реактансу кратког споја u 4% и x % респективно При номиналном оптерећењу
2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА
. колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност
6.5 Површина круга и његових делова
7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност
2.4. Сила трења. Зашто се јавља трење?
2.4. Сила трења Ако горње тело клизи по доњем телу удесно, онда сила трења на њега делује улево, а на доње тело удесно! а) б) сл. 2.31 Ако возач аутомобила у току кретања угаси мотор, брзина аутомобила
Писмени испит из Метода коначних елемената
Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан
TAЧКАСТА НАЕЛЕКТРИСАЊА
TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
МАШИНСКИ ЕЛЕМЕНТИ II
Машински факултет Универзитета у Београду/ Машински елементи / Предавање МАШИНСКИ ЕЛЕМЕНТИ II Механички преносници снаге Механички преносници снаге (ПС) представљају машинску групу која у машинском систему
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45
Машински факултет Универзитета у Београду/ Машински елементи 2/ Предавање 8 2
Машински факултет Универзитета у Београду/ Машински елементи / Предавање 8 КАИШНИ (РЕМЕНИ) ПРЕНОСНИЦИ УВОД Каишни (ремени) преносници као и ланчани преносници убрајају се у групу посредних еластичних преносника
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни
Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:
Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине
6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23
6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,
Анализа Петријевих мрежа
Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,
8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези
Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте
КОЧЕЊЕ МОТОРНИХ ВОЗИЛА РАСПОДЕЛЕ СИЛА КОЧЕЊА
Универзитет у Београду - Саобраћајни факултет Предмет: ВОЗНА ДИНАМИКА; проф. др Властимир Дедовић Предавање 7 КОЧЕЊЕ МОТОРНИХ ВОЗИЛА РАСПОДЕЛЕ СИЛА КОЧЕЊА Школска година 03 / 04 Београд, Април 04. Кочење
Еластичне и пластичне деформације рекристализација
Машински материјали Предавање број 4 Понашање метала при деловању спољних силаеластична деформација, пластична деформација, рекристализација, обрада деформисањем у хладном и топлом стању. Својства метала
Теорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,
Семинарски рад из линеарне алгебре
Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити
ФИЗИКА. Динамика. Силе су вектори. Динамика
ФИЗИКА Динамика Сила Њутнови закони кретања Тежина, трење и друге силе Основне силе у природи Статика 1 Динамика При описивању кретања се користе још две величине, маса и сила. Даје везу између кретања
Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ П Група
УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 0/0. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ П Група СЕНТА.0.0.. Играчи билијара су познати по извођењу специфичних удараца
2.3. Решавање линеарних једначина с једном непознатом
. Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0
I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )
Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P
РИЗИК ОД МЕХАНИЧКИХ ДЕЈСТАВА
Ризик од механичких дјстава Увод РИЗИК ОД МЕХАНИЧКИХ ДЕЈСТАВА Ризик је вероватноћа настанка повреде, обољења или оштећења здравља запосленог услед опасности; ризик на раду се односи на могућност и на тежину
Машински факултет Универзитета у Београду/ Машински елементи 2/ Предавање 10
Машински факултет Универзитета у Београду/ Машински елементи / Предавање 0 Ланчани преносници се убрајају у групу принудних посредних преносника, код којих се пренос снаге остварује савитљивим елементима
L кплп (Калем у кплу прпстпперипдичне струје)
L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве
Енергетски трансформатори рачунске вежбе
16. Трофазни трансформатор снаге S n = 400 kva има временску константу загревања T = 4 h, средњи пораст температуре после једночасовног рада са номиналним оптерећењем Â " =14 и максимални степен искоришћења
ttl ХИДРАУЛИЧКИ И ПНЕУМАТИЧКИ СИСТЕМИ ВОЗИЛА хидродинамичке спојнице, хидродинамички претварачи Хидраулички и пнеуматички системи возила Предавање 2.
ХИДРАУЛИЧКИ И ПНЕУМАТИЧКИ СИСТЕМИ ВОЗИЛА Предавање. хидродинамичке спојнице, хидродинамички претварачи Хидродинамички преносници Хидродинамичким преносницима припадају: хидродинамичке спојнице, хидродинамички
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 008 ТРАНСФОРМАТОРИ Једнофазни регулациони трансформатор направљен је као аутотрансформатор Примар је прикључен на напон 0 V Сви губици засићење
МИЋО М. МИТРОВИЋ Практикум ФИЗИКА 7 збирка задатака и експерименталних вежби из физике за седми разред основне школе САЗНАЊЕ Београд, 2013.
МИЋО М МИТРОВИЋ Практикум ФИЗИКА 7 збирка задатака и експерименталних вежби из физике за седми разред основне школе САЗНАЊЕ Београд, 1 ПРАКТИКУМ ФИЗИКА 7 Збирка задатака и експерименталних вежби из физике
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
Кинематика и динамика у структуралном инжењерству, Звонко Ракарић, Механика 2, грађевинарство, Факултет техничких наука, Нови Сад,2017
КИНЕМАТИКА ТЕЛА МЕХАНИКА 2 ГРАЂЕВИНАРСТВО ФТН НОВИ САД Верзија 3 Октобар 207 ГЛАВА V КИНЕМАТИКА КРУТОГ ТЕЛА 5. УВОД У претходним Поглављима смо научили како да се у потпуности дефинише кретање једне (било
ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце
РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез
СТАБИЛНОСТ ТРАКТОРА У КРИВИНИ
POLJOPRIVREDNA EHNIKA Godina XXXIV Broj 1, decembar 2009. Strane: 47-52 Poljoprivredni fakultet Institut za poljoprivrednu tehniku UDK: 631.1 СТАБИЛНОСТ ТРАКТОРА У КРИВИНИ Пољопривредни факултет, Београд
Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.
СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА
Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља
Универзитет у Машински факултет Београду Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља -семинарски рад- ментор: Александар Томић Милош Живановић 65/
Статика флуида. Хидростатички притисак
Статика флуида Проучавање флуида у стању мировања најстарија је дисциплина механике флуида, што обавезује на познавање свих проблема ове области. Појмови уведени у статици флуида: спољашње силе, притисак
Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала
Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја
Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност,
Температурно стабилан отпорник састоји се од два једнака цилиндрична дела начињена од различитих материјала (гвожђе и графит) У ком односу стоје отпорности ова два дела отпорника ако се претпостави да
61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао
ЗАДАЦИ ЗА САМОСТАЛНИ РАД Задаци за самостлни рад намењени су првенствено ученицима који се припремају за полагање завршног испита из математике на крају обавезног основног образовања. Задаци су одабрани
p /[10 Pa] 102,8 104,9 106,2 107,9 108,7 109,4 r / 1,1 1,3 1,5 2,0 2,5 3,4
. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 9/. ГОДИНЕ II РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Србије ЗАДАЦИ ГИМНАЗИЈА ВЕЉКО ПЕТРОВИЋ СОМБОР,.... Хомогена кугла
ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
У к у п н о :
ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Седми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. КРЕТАЊЕ И
ПУЖНИ ПАРОВИ Основне карактеристике и подела
Машински факултет Универзитета у Београду/ Машински елементи / Предавање 7 ПУЖНИ ПАРОВИ Основне карактеристике и подела Пужни парови су хиперболоидни зупчасти парови чије се осе мимоилазе под углом од
Вежба бр. 1 СПЕЦИФИЧНА ТЕЖИНА. Рударско-геолошки факултет. γs = [(4) / (8)] Катедра за механику стена Београд
Рударско-геолошки факултет Вежба бр. СПЕЦИФИЧНА ТЕЖИНА Остали подаци: Редни број Ознака узорка Пикнометар број Маса суве пробе Ws (g) Маса пикнометра пуног воде Ww (g) Ws Ww () (5) Маса пикнометра, воде
3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни
ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује
АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2
АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла
ФИЗИКА Час број 11 Понедељак, 8. децембар, Aвогадров закон. Увод. Авогадров закон. Гасовито агрегатно стање
ФИЗИКА Час број Понедељак, 8. децембар, 008 Једначина стања идеалног и реалног гаса Притисак и температура гаса Молекуларно кинетичка теорија идеалног гаса Болцманова и Максвелова расподела Средњи слободни
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО
T. max Т / [K] p /[ 10 Pa] 1,01 1,23 1,74 2,39 3,21 4,42 5,87 7,74 9,35 11,60
II РАЗРЕД 49. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ /. ГОДИНЕ Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ ФИЗИЧКИ ФАКУЛТЕТ БЕОГРАД 9.4... Малу плочицу,
ТЕХНИЧКА МЕХАНИКА Проф. Др Драган Т. Стојиљковић Мр Дарко Михајлов, асистент
Техничка Механика ТЕХНИЧКА МЕХАНИКА Проф. Др Драган Т. Стојиљковић Мр Дарко Михајлов, асистент Техничка Механика ОСНОВНИ ПОЈМОВИ МЕХАНИКЕ ПОДЕЛА МЕХАНИКЕ Процеси у Васељени (Универзуму) представљају непрекидно
0 нека се налази у равнотежи (Сл. ).
УВОД Отпорност материјала је део механике деформабилног тела, који изучава стање напона и деформације чврстог тела при различитим дејствима, увођењем извесних претпоставки и поједностављених математичких
РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА
РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,
ПРИЈЕМНИ ИСПИТ. Јун 2003.
Природно-математички факултет 7 ПРИЈЕМНИ ИСПИТ Јун 00.. Одредити све вредности параметра m за које су оба решења једначине x x + m( m 4) = 0 (a) реална; (b) реална и позитивна. Решење: (а) [ 5, + (б) [
МАТЕМАТИЧКИ ЛИСТ 2016/17. бр. LI-4
МАТЕМАТИЧКИ ЛИСТ 06/7. бр. LI-4 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред. а) 50 4 = 00; б) 0 5 = 650; в) 0 6 = 6; г) 4 = 94; д) 60 : = 0; ђ) 0 : = 40; е) 648 :
МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ. Осиловање
МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ Понедељак, 29. децембар, 2010 Хуков закон Период и фреквенција осциловања Просто хармонијско кретање Просто клатно Енергија простог хармонијског осцилатора Веза са униформним кретањем
ЗУПЧАСТИ ПРЕНОСНИЦИ СНАГЕ
ЗУПЧАСТИ ПРЕНОСНИЦИ СНАГЕ Зупчасти преносници снаге су непосредни принудни преносници који врше пренос и трансформацију снаге од погонске до радне машине посредством зупчастих парова. Према облику кинематских
Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)
ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити
ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ
Универзитет у Крагујевцу Машински факултет Краљево ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ Краљево, март 011. године 1 Публикација Збирка решених задатака за пријемни испит из математике
Координатни системи у физици и ОЕТ-у
Материјал Студентске организације Електрон ТРЕЋА ГЛАВА Координатни системи у физици и ОЕТ-у Припремио Милош Петровић 1 -Студентска организација ЕЛЕКТРОН- 1.ДЕКАРТОВ КООРДИНАТНИ СИСТЕМ Декартов координанти
3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ
3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ Подсетимо се. Шта је сила еластичности? У ком смеру она делује? Од свих еластичних тела која смо до сада помињали, за нас је посебно интересантна опруга. Постоје разне опруге,
7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде
математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
ТРОУГАО. права p садржи теме C и сече страницу. . Одредити највећи угао троугла ако је ABC
ТРОУГАО 1. У троуглу АВС израчунати оштар угао између: а)симетрале углова код А и В ако је угао код А 84 а код С 43 б)симетрале углова код А и В ако је угао код С 40 в)између симетрале угла код А и висине
КОМПЛЕКСНИ БРОЈЕВИ. Формуле: 1. Написати комплексне бројеве у тригонометријском облику. II. z i. II. z
КОМПЛЕКСНИ БРОЈЕВИ z ib, Re( z), b Im( z), z ib b b z r b,( ) : cos,si, tg z r(cos i si ) r r k k z r (cos i si ), z r (cos i si ) z r (cos i si ), z r (cos i si ) z z r r (cos( ) i si( )), z z r (cos(
1 Поларизација диелектрика и врсте поларизације
Поларизација диелектрика и врсте поларизације Диелектрични материјали су изолатори са специфичном отпорношћу од 6 Ωm до 8 Ωm Код њих се електрони и на температури апсолутне нуле налазе искључиво у валентној