ιανυσµατική ανάλυση Κεφάλαιο ιανυσµατική άλγεβρα Πράξεις µε διανύσµατα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ιανυσµατική ανάλυση Κεφάλαιο 1 1.1 ιανυσµατική άλγεβρα 1.1.1 Πράξεις µε διανύσµατα"

Transcript

1 Κεφάλαιο 1 ιανυσµατική ανάλυση 1.1 ιανυσµατική άλγεβρα Πράξεις µε διανύσµατα Αν περπατήσετε 4 µίλια προς τον βορρά και µετά 3 µίλια προς την ανατολή (Σχ. 1.1), θα έχετε διανύσει συνολικά 7 µίλια, αλλά δεν θα βρεθείτε σε 7 µίλια απόστασηαπό το σηµείο που ξεκινήσατε θα βρεθείτε µόνο σε 5. Χρειαζόµαστε µία άλγεβρα που να περιγράφει τέτοια µεγέθη, τα οποία, προφανώς, δεν προστίθενται µε τον συνηθισµένο τρόπο. Ο λόγος, φυσικά, που κάτι τέτοιο δεν συµβαίνει, είναι ότι οι µετατοπίσεις (τα ευθύγραµµα τµήµατα που συνδέουν ένα σηµείο µε ένα άλλο) έχουν όχι µόνο μέγεθος (µήκος ή µέτρο) αλλά και κατεύθυνση, και είναι ουσιώδες και τα δύο αυτά χαρακτηριστικά να λαµβάνονται υπ όψη όταν τις προσθέτετε. Τέτοιου είδους αντικείµενα ονοµάζονται διανύσµατα: άλλα παραδείγµατα είναι η ταχύτητα, η επιτάχυνση, η δύναµη και η ορµή. Αντιθέτως, ποσότητες που έχουν µέγεθος αλλά όχι κατεύθυνση ονοµάζονται βαθµωτά: Παραδείγµατα είναι η µάζα, το φορτίο, η πυκνότητα και η θερµοκρασία. Τα διανύσµατα θα τα συµβολίζω µε παχιά γράµµατα (A, B κ.λπ.) ενώ τα βαθµωτά 3 mi 4 mi 5 mi A A Σχήµα 1.1 Σχήµα 1.2 1

2 2 ΚΕΦΑΛΑΙΟ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ θα τα συµβολίζω µε πεζά γράµµατα. Το µέγεθος του διανύσµατος A γράφεται A ή, πιο απλά, A. Στα διαγράµµατα, τα διανύσµατα συµβολίζονται µε βέλη: το µήκος του βέλους αντιστοιχεί στο µέγεθος του διανύσµατος και η µύτη του βέλους δείχνει την κατεύθυνσή του. Το μείον A ( A) είναι ένα διάνυσµα µε µέγεθος ίσο µε του A αλλά µε αντίθετη κατεύθυνση (Σχ. 1.2). Σηµειώστε ότι τα διανύσµατα έχουν µέγεθος και κατεύθυνση αλλά δεν έχουν συγκεκριμένη θέση: µία µετατόπιση 4 µιλίων βόρεια της Ουάσιγκτον παριστάνεται από το ίδιο διάνυσµα µε µία µετατόπιση 4 µιλίων βόρεια της Βαλτιµόρης (αν αγνοήσουµε, βέβαια, την καµπυλότητα της επιφάνειας της Γης). Σ ένα διάγραµµα, λοιπόν, µπορείτε να µετατοπίζετε το βέλος όπως θέλετε, από τη στιγµή που δεν αλλάζετε το µήκος του ή την κατεύθυνσή του (παράλληλη µετατόπιση). Ορίζουµε τέσσερις πράξεις µε διανύσµατα: την πρόσθεση και τα τρία είδη του πολλαπλασιασµού. (i) Πρόσθεση δύο διανυσµάτων: Τοποθετήστε την ουρά του B στη µύτη του A το άθροισµα A + B είναι το διάνυσµα που δείχνει από την ουρά του A στη µύτη του B (Σχ. 1.3). (Ο κανόνας αυτός αποτελεί γενίκευση της ευνόητης διαδικασίας συνδυασµού δύο µετατοπίσεων.) Η πρόσθεση είναι αντιμεταθετική: A + B = B + A. 3 µίλια ανατολικά µετά από 4 µίλια βόρεια σας οδηγούν στο ίδιο σηµείο µε 4 µίλια βόρεια µετά από 3 µίλια ανατολικά. Η πρόσθεση είναι, επίσης, προσεταιριστική: (A + B)+C = A +(B + C). Για να αφαιρέσετε ένα διάνυσµα (Σχ. 1.4), προσθέστε το αντίθετό του: A B = A +( B). B A (A+B) (B+A) B A (A B) B A Σχήµα 1.3 Σχήµα 1.4 (ii) Πολλαπλασιασµός µε ένα βαθµωτό: Ο πολλαπλασιασµός ενός διανύσµατος µε ένα θετικό βαθµωτό µέγεθος a, πολλαπλασιάζει το μέτρο του, αφήνει όµως την κατεύθυνσή του ανέπαφη (Σχ. 1.5). (Αν το a είναι αρνητικό, η φορά αντιστρέφεται.) Ο πολλαπλασιασµός µε βαθµωτό είναι επιμεριστικός: a(a + B) =aa + ab.

3 1.1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΛΓΕΒΡΑ 3 A 2A A θ B Σχήµα 1.5 Σχήµα 1.6 (iii) Εσωτερικό γινόµενο δύο διανυσµάτων: Το εσωτερικό γινόµενο δύο διανυσµάτων ορίζεται από την A B AB cos θ, (1.1) όπου θ είναι η γωνία που σχηµατίζουν τα διανύσµατα αν ενωθούν οι ουρές τους (Σχ. 1.6). Παρατηρήστε ότι το A B είναι ένα βαθμωτό µέγεθος (εξ ου και η εναλλακτική ονο- µασία βαθµωτό γινόµενο).τοβαθµωτόγινόµενοείναιαντιμεταθετικό, A B = B A, και επιμεριστικό, A (B + C) =A B + A C. (1.2) Γεωµετρικά, το A B είναι το γινόµενο του A επί το µήκος της προβολής του B στον άξονα του A (ή το γινόµενο του B επί το µήκος της προβολής του A στον άξονα του B). Αν τα δύο διανύσµατα είναι παράλληλα, τότε A B = AB. Συγκεκριµένα, για κάθε διάνυσµα A, A A = A 2. (1.3) Αν τα A και B είναι κάθετα, τότε A B =0. Παράδειγµα 1.1 Θέστε C = A B (Σχ. 1.7), και υπολογίστε το εσωτερικό γινόµενο του C µε τον εαυτό του. Λύση: ή C C =(A B) (A B) =A A A B B A + B B, C 2 = A 2 + B 2 2AB cos θ. Η ισότητα αυτή ονοµάζεται νόµος των συνηµιτόνων. (iv) Εξωτερικό γινόµενο δύο διανυσµάτων: Το εξωτερικό γινόµενο δύο διανυσµάτων ορίζεται από την A B AB sin θ ˆn, (1.4)

4 4 ΚΕΦΑΛΑΙΟ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ A C A θ B Σχήµα 1.7 θ B Σχήµα 1.8 όπου το ˆn είναι ένα µοναδιαίο διάνυσµα (διάνυσµα µε µήκος 1) µε διεύθυνση κάθετη στο επίπεδο που ορίζουν τα A και B. (Θα χρησιµοποιώ ένα καπελάκι (ˆ)γιανασυµβολίζω τα µοναδιαία διανύσµατα.) Υπάρχουν, φυσικά, δύο κατευθύνσεις που είναι κάθετες σε οποιοδήποτε επίπεδο: η «προς ταµέσα»καιη«προςταέξω».ηκατεύθυνση του ˆn αποσαφηνίζεται µε τον κανόνα του δεξιού χεριού: τοποθετήστε τα δάχτυλά σας κατά µήκος της κατεύθυνσης του πρώτου διανύσµατος και κλείστε την παλάµη σας (µέσω της µικρότερης γωνίας) προς το µέρος του δεύτερου ο αντίχειράς σας τότε δείχνει την κατεύθυνση του ˆn. (Στο Σχ.1.8 το A B δείχνει προς τα μέσα στη σελίδα, ενώ το B A δείχνει έξω από τη σελίδα.) Παρατηρήστε ότι το A B είναι και αυτό ένα διάνυσμα (εξουκαιηεναλλακτικήονοµασίαδιανυσµατικό γινόµενο). Το εξωτερικό γινόµενο είναι επιμεριστικό, A (B + C) =(A B)+(A C), (1.5) αλλά όχι αντιμεταθετικό. Πράγµατι, (B A) = (A B). (1.6) Γεωµετρικά, το A B είναι το εµβαδόν ενός παραλληλογράµµου µε πλευρές τα A και B (Σχ. 1.8). Αν δύο διανύσµατα είναι παράλληλα, το εξωτερικό τους γινόµενο είναι µηδέν. Συγκεκριµένα, για κάθε διάνυσµα A. A A =0! Πρόβληµα 1.1 Χρησιµοποιώντας τους ορισµούς των σχέσεων (1.1) και (1.4) και κατάλληλα σχήµατα, δείξτε ότι το εσωτερικό και το εξωτερικό γινόµενο είναι επιµεριστικά (α)όταντατρίαδιανύσµαταείναισυνεπίπεδα (β) στη γενική περίπτωση. Πρόβληµα 1.2 Είναι το εξωτερικό γινόµενο προσεταιριστικό; (A B) C ; = A (B C). Αν είναι, αποδείξτε το αν όχι, δώστε ένα αντιπαράδειγµα.

5 1.1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΛΓΕΒΡΑ 5 (α) A A A A (β) Σχήµα Η διανυσµατική άλγεβρα υπό µορφή συνιστωσών Στην προηγούµενη παράγραφο όρισα τις τέσσερις διανυσµατικές πράξεις (πρόσθεση, πολλαπλασιασµό µε βαθµωτό, εσωτερικό γινόµενο και εξωτερικό γινόµενο) χωρίς αναφορά σε κάποιο συγκεκριµένο σύστηµα συντεταγµένων. Στην πράξη, είναι συχνά ευκολότερο να χρησιµοποιούµε τις καρτεσιανές συντεταγµένες,, και να εργαζό- µαστε µε τις «συνιστώσες» των διανυσµάτων. Έστω ότι τα ˆ, ŷ, και ẑ είναι µοναδιαία διανύσµατα, παράλληλα µε τους άξονες,, και αντίστοιχα (Σχ. 1.9(α)). Κάθε διάνυσµα A µπορεί να εκφραστεί συναρτήσει αυτών των µοναδιαίων διανυσµάτων βάσης (Σχ. 1.9(β)) ως εξής: A = A ˆ + A ŷ + A ẑ. Οι αριθµοί A, A,καιA ονοµάζονται συνιστώσες του A. Γεωµετρικά, είναι οι προβολές του A πάνω στους τρεις άξονες συντεταγµένων. Μπορούµε τώρα να επαναδιατυπώσουµεκάθεµίααπότιςτέσσεριςδιανυσµατικέςπράξειςµεκανόνεςπράξεων µεταξύ των συνιστωσών: A + B =(A ˆ + A ŷ + A ẑ)+(b ˆ + B ŷ + B ẑ) = (A + B )ˆ +(A + B )ŷ +(A + B )ẑ. (1.7) (i) Κανόνας: Για να προσθέσετε διανύσματα, προσθέστε τις αντίστοιχες συνιστώσες. aa =(aa )ˆ +(aa )ŷ +(aa )ẑ. (1.8) (ii) Κανόνας: : Για να πολλαπλασιάσετε με ένα βαθμωτό, πολλαπλασιάστε με αυτό την κάθε συνιστώσα. Επειδή τα µοναδιαία διανύσµατα ˆ, ŷ,καιẑ είναι κάθετα το ένα στο άλλο, Κατά συνέπεια, ˆ ˆ = ŷ ŷ = ẑ ẑ =1, ˆ ŷ = ˆ ẑ = ŷ ẑ =0. (1.9) A B = (A ˆ + A ŷ + A ẑ) (B ˆ + B ŷ + B ẑ) = A B + A B + A B. (1.10)

6 6 ΚΕΦΑΛΑΙΟ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ (iii) Κανόνας: Για να υπολογίσετε το εσωτερικό γινόμενο, πολλαπλασιάστε τις αντίστοιχες συνιστώσες και προσθέστε τα γινόμενα. Ειδικότερα, A A = A 2 + A2 + A2, οπότε A = A 2 + A 2 + A 2. (1.11) (Αυτή είναι, αν προτιµάτε, η τριδιάστατη γενίκευση του Πυθαγόρειου Θεωρήµατος.) Παρατηρήστε ότι το εσωτερικό γινόµενο του A µε οποιοδήποτε μοναδιαίο διάνυσµα ισούται µε τη συνιστώσα του A κατά µήκος της κατεύθυνσης του µοναδιαίου διανύσµατος (έτσι, A ˆ = A, A ŷ = A, και A ẑ = A ). Παροµοίως, 1 Εποµένως, ˆ ˆ = ŷ ŷ = ẑ ẑ =0, ˆ ŷ = ŷ ˆ = ẑ, ŷ ẑ = ẑ ŷ = ˆ, ẑ ˆ = ˆ ẑ = ŷ. (1.12) A B = (A ˆ + A ŷ + A ẑ) (B ˆ + B ŷ + B ẑ) (1.13) = (A B A B )ˆ +(A B A B )ŷ +(A B A B )ẑ. Η έκφραση αυτή, που είναι δύσκολο να τη θυµάται κανείς, µπορεί να γραφτεί πιο νοικοκυρεµένα υπό µορφή ορίζουσας: ˆ ŷ ẑ A B = A A A B B B. (1.14) (iv) Κανόνας: Για να βρείτε το εξωτερικό γινόμενο, υπολογίστε την ορίζουσα που η πρώτη γραμμή της είναι τα ˆ, ŷ, ẑ, η δεύτερή της γραμμή αποτελείται από τις συνιστώσες του A, και η τρίτη της γραμμή από τις συνιστώσες του B. Παράδειγµα 1.2 Βρείτε τη γωνία που σχηµατίζουν δύο διαγώνιοι διαδοχικών εδρών ενός κύβου. Λύση: Μπορούµε να θεωρήσουµε έναν κύβο που η πλευρά του έχει µήκος 1 (χωρίς απώλεια της γενικότητας), και να τον τοποθετήσουµε όπως φαίνεται στο Σχ. 1.10, µε τη 1 Τα πρόσηµα αυτά χαρακτηρίζουν ένα δεξιόστροφο σύστηµα συντεταγµένων. (Σ ένα τέτοιο σύστηµα, όταν ο άξονας δείχνει έξω από τη σελίδα, ο άξονας δείχνει προς τα δεξιά και ο άξονας προς τα πάνω. Κάθε άλλο δεξιόστροφο σύστηµα προκύπτει µε µια σειρά διαδοχικών περιστροφών του συστήµατος αυτού γύρω από κάποιους άξονες στο χώρο.) Σε οποιοδήποτε αριστερόστροφο σύστηµα τα πρόσηµα αντιστρέφονται: ˆ ŷ = ẑ και ούτω καθ εξής. Θα χρησιµοποιούµε αποκλειστικά δεξιόστροφα συστήµατα.

7 1.1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΛΓΕΒΡΑ 7 µια γωνία του στην αρχή των αξόνων. Οι διαγώνιοι A και B των εδρών του σχήµατος είναι A =1ˆ +0ŷ +1ẑ, B =0ˆ +1ŷ +1ẑ. (0, 0, 1) B θ A (0, 1, 0) (1, 0, 0) Σχήµα 1.10 Έτσι, υπό µορφή συνιστωσών A B = =1. Εξάλλου, από τον ορισµό του εσωτερικού γινοµένου έχουµε Εποµένως, A B = AB cos θ = 2 2cosθ =2cosθ. cos θ =1/2, ή θ =60. Μπορείτε, φυσικά, να βρείτε την απάντηση και µε ευκολότερο τρόπο, σχεδιάζοντας τη διαγώνιο της πάνω έδρας του κύβου, οπότε σχηµατίζεται ένα ισόπλευρο τρίγωνο. Σε περιπτώσεις όµως που η γεωµετρία του σχήµατος δεν είναι τόσο απλή, το τέχνασµα της σύγκρισης των δύο σχέσεων υπολογισµού του εσωτερικού γινοµένου µπορεί να βοηθήσει πολύ αποτελεσµατικά στην εύρεση γωνιών. Πρόβληµα 1.3 Βρείτε τη γωνία που σχηµατίζουν οι εσωτερικές διαγώνιοι ενός κύβου. Πρόβληµα 1.4 Χρησιµοποιήστε το εξωτερικό γινόµενο για να βρείτε τις συνιστώσες του µοναδιαίου διανύσµατος ˆn που είναι κάθετο στο επίπεδο του Σχ Τριπλά γινόµενα Αφού το εξωτερικό γινόµενο δύο διανυσµάτων είναι και αυτό ένα διάνυσµα, µπορού- µε να ορίσουµε το εσωτερικό ή το εξωτερικό του γινόµενο µε ένα τρίτο διάνυσµα, σχηµατίζοντας έτσι ένα τριπλό γινόµενο.

8 8 ΚΕΦΑΛΑΙΟ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 3 n 1 2 n A θ C B Σχήµα 1.11 Σχήµα 1.12 (i) Το βαθµωτό τριπλό γινόµενο: A (B C). Γεωµετρικά, το A (B C), είναι ο όγκος του παραλληλεπιπέδου µε πλευρές τα A, B, καιc, αφού B C είναι το εµβαδόν της βάσης και A cos θ είναι το ύψος (Σχ. 1.12). Προφανώς, λοιπόν A (B C) =B (C A) =C (A B), (1.15) αφού όλα αντιστοιχούν στο ίδιο σχήµα. Παρατηρήστε ότι τηρείται «αλφαβητική» σειρά τα τριπλά γινόµενα που δεν τηρούν την αλφαβητική σειρά, A (C B) =B (A C) =C (B A), λόγω της Εξίσωσης (1.6), έχουν αντίθετο πρόσηµο. Υπό µορφή συνιστωσών A A A A (B C) = B B B C C C. (1.16) Παρατηρήστεότι τοεσωτερικό καιτο εξωτερικό γινόµενο µπορούν να αντιµετατίθενται: A (B C) =(A B) C (αυτό συνάγεται άµεσα από την (1.15)) η τοποθέτηση των παρενθέσεων, εν τούτοις, είναι πολύ σηµαντική: η έκφραση (A B) C δεν έχει κανένα απολύτως νόηµα δεν µπορείτε να σχηµατίσετε το εξωτερικό γινόµενο ενός διανύσµατος και ενός βαθμωτού. (ii) Το ιανυσµατικό Τριπλό Γινόµενο: A (B C). Ο τύπος του διανυσµατικού τριπλού γινοµένου γίνεται πιο ευκολοµνηµόνευτος µε τον λεγόµενο κανόνα BAC CAB: A (B C) =B(A C) C(A B). (1.17) Παρατηρήστε ότι το (A B) C = C (A B) = A(B C)+B(A C) Οι ισότητες στην (1.15) προκύπτουν µε κυκλική µετάθεση των διανυσµάτων (Σ.τ.Μ.).

9 1.1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΛΓΕΒΡΑ 9 είναι ένα τελείως διαφορετικό διάνυσµα. Παρεµπιπτόντως, όλα τα ανώτερα διανυσµατικά γινόµενα µπορούν να απλοποιηθούν µε παρόµοιο τρόπο, συνήθως µε κατ επανάληψη εφαρµογή της (1.17), έτσι ώστε να µην είναι αναγκαίο µια έκφραση να περιέχει περισσότερα του ενός διανυσµατικά γινόµενα σε κάθε όρο. Για παράδειγµα, (A B) (C D) = (A C)(B D) (A D)(B C) A (B (C D)) = B(A (C D)) (A B)(C D). (1.18) Πρόβληµα 1.5 Αποδείξτε τον κανόνα BAC CABγράφοντας και τα δύο µέλη υπό µορφή συνιστωσών. Πρόβληµα 1.6 Αποδείξτε ότι [A (B C)] + [B (C A)] + [C (A B)] = 0. Κάτω από ποιες συνθήκες είναι A (B C) =(A B) C; ιανύσµατα θέσης, µετατόπισης, και απόστασης Η θέση ενός σηµείου στις τρεις διαστάσεις µπορεί να προσδιοριστεί από τις καρτεσιανές του συντεταγµένες (,, ). Τοδιάνυσµαπουέχειωςαρχήτηναρχήτωναξόνων και τέλος το εν λόγω σηµείο (Σχ. 1.13) λέγεται διάνυσµα θέσης: r ˆ + ŷ + ẑ. (1.19) Για το διάνυσµα θέσης θα χρησιµοποιήσω το σύµβολο r σε όλο το βιβλίο. Το µέτρο του, r = , (1.20) ισούται µε την απόσταση από την αρχή των αξόνων, και ˆr = r r = ˆ + ŷ + ẑ (1.21) είναι ένα µοναδιαίο διάνυσµα που δείχνει ακτινικά προς τα έξω. Το απειροστό διάνυσµα µετατόπισης,απότο(,, ) στο ( + d, + d, + d),είναι dl = d ˆ + d ŷ + d ẑ. (1.22) (Θα µπορούσαµε να το συµβολίσουµε µε dr, καθώς περίαυτού πρόκειται, αλλά ένα ειδικό σύµβολο για τις απειροστές µετατοπίσεις είναι χρήσιµο.) Στην ηλεκτροδυναµική συναντάµε συχνά προβλήµατα που αφορούν δύο σηµεία συνήθωςένασηµείο πηγής, r, όπου βρίσκεται ένα ηλεκτρικό φορτίο, και ένα ση- µείο πεδίου, r, στο οποίο υπολογίζουµε το ηλεκτρικό ή το µαγνητικό πεδίο (Σχ.1.14).

10 10 ΚΕΦΑΛΑΙΟ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ σημείο πηγής O r r (,, ) O r r r σημείο πεδίου Σχήµα 1.13 Σχήµα 1.14 Συµφέρει να υιοθετήσουµε από την αρχή ένα συντοµογραφικό σύµβολο για το διάνυσµα απόστασης από το σηµείο πηγής µέχρι το σηµείο πεδίου. Για αυτόν τον σκοπό θα χρησιµοποιήσω το γράµµα r: r r r. (1.23) Το µέτρο του είναι r = r r, (1.24) και το µοναδιαίο διάνυσµα µε κατεύθυνση από το r προς το r είναι Σε καρτεσιανές συντεταγµένες, Or = r r = r r r r. (1.25) r =( )ˆ +( )ŷ +( )ẑ, (1.26) r = ( ) 2 +( ) 2 +( ) 2, (1.27) Or = ( )ˆ +( )ŷ +( )ẑ ( ) 2 +( ) 2 +( ) 2 (1.28) (απ όπου µπορεί κανείς να εκτιµήσει το πλεονέκτηµα του συνοπτικού συµβολισµού). Πρόβληµα 1.7 Βρείτε το διάνυσµα απόστασης r από το σηµείο πηγής (2,8,7) µέχρι το σηµείο πεδίου (4,6,8). Υπολογίστε το µέτρο του (r), και κατασκευάστε το µοναδιαίο διάνυσµα Or Πώς µετασχηµατίζονται τα διανύσµατα Ο ορισµός ενός διανύσµατος σαν «ποσότητα µε µέτρο και κατεύθυνση» δεν είναι εξ ολοκλήρου ικανοποιητικός: Τι ακριβώς σημαίνει «κατεύθυνση»; 2 Η ερώτηση αυτή 2 Η ενότητα αυτή µπορεί να παραλειφθεί χωρίς απώλεια συνέχειας.

11 1.1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΛΓΕΒΡΑ 11 µπορεί να φαίνεται σχολαστική, σύντοµα όµως θα συναντήσουµε ένα είδος παραγώγου που µάλλον μοιάζει µε διάνυσµα, οπότε θα θέλαµε να ξέρουµε αν πράγµατι είναι διάνυσµα. Έχετε συνηθίσει, ίσως, να νοµίζετε πως οτιδήποτε έχει τρεις συνιστώσες που προστίθενται κατάλληλα είναι ένα διάνυσµα. Σκεφτείτε όµως το εξής: Έχουµε ένα κασόνι µε φρούτα που περιέχει N αχλάδια, N µήλα και N µπανάνες. Είναι άραγε το N = N ˆ + N ŷ + N ẑ διάνυσµα;έχειπράγµατιτρειςσυνιστώσεςκαιόταν το προσθέσετε µε ένα άλλο κασόνι που έχει M αχλάδια, M µήλα και M µπανάνες, το αποτέλεσµα είναι (N + M ) αχλάδια, (N + M ) µήλα και (N + M ) µπανάνες. Άρα προστίθεται σαν διάνυσµα. Σίγουρα όµως δεν είναι διάνυσµα µε τον τρόπο που ένας φυσικός εννοεί αυτή τη λέξη, διότι δεν έχει κάποια κατεύθυνση. Πού ακριβώς υστερεί; Η απάντηση είναι ότι το N δεν μετασχηματίζεται κατάλληλα όταν αλλάζετε τις συντεταγμένες. Το σύστηµα συντεταγµένων που χρησιµοποιούµε για να περιγράφουµε τις θέσεις στον χώρο, είναι, βεβαίως, τελείως αυθαίρετο, υπάρχει όµως ένας συγκεκριµένος γεωµετρικός νόµος µετασχηµατισµού που µετατρέπει τις διανυσµατικές συνιστώσες από το ένα σύστηµα στο άλλο. Υποθέστε, για παράδειγµα, ότι το σύστηµα,,, έχει στραφεί κατά γωνία φ περί τον κοινό άξονα =, ωςπροςτοσύστηµα,,. Από το Σχ έχουµε ενώ A = A cos θ, A = A sin θ, A = A cos θ = A cos(θ φ) =A(cos θ cos φ +sinθ sin φ) = cosφa +sinφa, A = A sin θ = A sin(θ φ) =A(sin θ cos φ cos θ sin φ) = sin φa +cosφa. Το αποτέλεσµα αυτό µπορεί να εκφραστεί υπό µορφή πινάκων: ( A A ) ( cos φ sin φ = sin φ cos φ )( A A ). (1.29) A θ θ φ Σχήµα 1.15

12 12 ΚΕΦΑΛΑΙΟ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Γενικότερα, ο νόµος µετασχηµατισµού για περιστροφή γύρω από κάποιον αυθαίρετο άξονα στον χώρο, παίρνει τη µορφή: A A = R R R R R R A A, (1.30) A R R R A ή, συντοµότερα, A i = 3 R ij A j, (1.31) j=1 όπου ο δείκτης 1 είναι για το,ο2 για το και ο 3 για το.ταστοιχείατουπίνακαr µπορούν να προσδιοριστούν, για µια δεδοµένη περιστροφή, µε γεωµετρική µέθοδο, παρόµοια µε εκείνη που χρησιµοποιήσαµε για την περιστροφή γύρω από τον άξονα. Τώρα: Οι συνιστώσες του N µετασχηµατίζονται µε τον ίδιο τρόπο; Βεβαίως όχι όποιες συντεταγµένες και να χρησιµοποιήσετε για να αναπαραστήσετε τις θέσεις στον χώρο, θα υπάρχει πάντα η ίδια ποσότητα µήλων στο κασόνι. εν µπορείτε να µετατρέψετε ένα αχλάδι σε µπανάνα χρησιµοποιώντας ένα διαφορετικό σύστηµα αξόνων, μπορείτε όµως το A να το µετατρέψετε σε A. Τυπικά, λοιπόν, ένα διάνυσμα είναι ένα οποιοδήποτε σύνολο τριών συνιστωσών που μετασχηματίζεται, όταν αλλάζουν οι συντεταγμένες, ακριβώς όπως οι συνιστώσες μιας μετατόπισης. Ως γνωστόν, η µετατόπιση είναι το πρότυπο συμπεριφοράς για όλα τα διανύσµατα. Παρεµπιπτόντως, ένας τανυστής (δεύτερης τάξης) είναι ένα µαθηµατικό αντικεί- µενο µε εννιά συνιστώσες T, T, T, T,..., T, για το µετασχηµατισµό των οποίων απαιτείται δύο φορές η δράση του πίνακα R: ή, συντοµότερα, T = R (R T + R T + R T ) +R (R T + R T + R T ) +R (R T + R T + R T ),... T ij = 3 k=1 l=1 3 R ik R jl T kl. (1.32) Εν γένει, ένας τανυστής τάξης n έχει n δείκτες και 3 n συνιστώσες και µετασχηµατίζεται αν δράσουµε πάνω του n φορές µε τον πίνακα R. Στην ιεραρχία αυτή, ένα διάνυσµα είναι τανυστής τάξης 1 και ένα βαθµωτό είναι τανυστής τάξης 0. Πρόβληµα 1.8 (α) Αποδείξτε ότι ο διδιάστατος πίνακας στροφής (1.29) διατηρεί το μήκος του A. ( ηλαδή, δείξτε ότι A B + A B = A B + A B.) (β) Ποιους περιορισµούς πρέπει να ικανοποιούν τα στοιχεία (R ij) του τριδιάστατου πίνακα στροφής (1.30) προκειµένου να διατηρούν το µήκος του A (για όλα τα A);

13 1.2. ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 13 Πρόβληµα 1.9 Βρείτε τον πίνακα µετασχηµατισµού R που περιγράφει µία στροφή 120 γύρω από έναν άξονα που περνάει από την αρχή των αξόνων και από το σηµείο (1, 1, 1). Η στροφή γίνεται κατά τη φορά των δεικτών του ρολογιού καθώς κοιτάτε κατά µήκος του άξονα προς την αρχή. Πρόβληµα 1.10 (α) Πώς µετασχηµατίζονται οι συνιστώσες ενός διανύσµατος σε µία ευθύγραµµη µεταφορά των αξόνων (π.χ. =, = a, =, Σχ. 1.16(α)); (β) Πώς µετασχηµατίζονται οι συνιστώσες ενός διανύσµατος σε µία αντιστροφή των συντεταγµένων ( =, =, =, Σχ. 1.16(β)); (γ) Πώς µετασχηµατίζεται το εξωτερικό γινόµενο (1.13) δύο διανυσµάτων σε µία αντιστροφή; (Το εξωτερικό γινόµενο δύο διανυσµάτων δικαιολογηµένα ονοµάζεται ψευδοδιάνυσµα λόγω αυτής της «ανώµαλης» συµπεριφοράς του.) Το εξωτερικό γινόµενο δύο ψευδοδιανυσµάτων είναι διάνυσµα ή ψευδοδιάνυσµα; Κατονοµάστε δύο ψευδοδιανυσµατικές ποσότητες της κλασικής µηχανικής. (δ) Πώς µετασχηµατίζεται σε µια αντιστροφή το βαθµωτό τριπλό γινόµενο τριών διανυσµάτων; (Ένα τέτοιο αντικείµενο ονοµάζεται ψευδοβαθµωτό.) }a (α) (β) Σχήµα ιαφορικός λογισµός «Συνήθεις» παράγωγοι Ερώτηση: Υποθέστε ότι έχουµε µία συνάρτηση µιας µεταβλητής: f().τιµαςδίνειη παράγωγός της df /d; Απάντηση: Μας λέει πόσο γρήγορα µεταβάλλεται η συνάρτηση f() όταν αλλάζουµε τη µεταβλητή κατά ένα απειροστό ποσό d: ( ) df df = d. (1.33) d Με λόγια: Αν αλλάξουµε την κατά ένα d, τότεηf αλλάζει κατά ένα df ηπαράγωγος είναι ο συντελεστής αναλογίας. Για παράδειγµα, στο Σχ. 1.17(α), η συνάρτηση

14 14 ΚΕΦΑΛΑΙΟ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ µεταβάλλεται αργά καθώς αλλάζει η και η παράγωγος είναι κατ αντιστοιχία µικρή. Στο Σχ. 1.17(β) η f αυξάνεται γρήγορα µε την και η παράγωγος γίνεται µεγάλη καθώςαποµακρύνεστεαπότοσηµείο =0. Γεωμετρική ερμηνεία. Η παράγωγος df /d είναι η κλίση της καµπύλης f(). f f (α) (β) Σχήµα Κλίση Υποθέστε, στη συνέχεια, ότι έχουµε µία συνάρτηση τριών µεταβλητών σαν τη θερ- µοκρασία, ας πούµε, T (,, ) σε ένα δωµάτιο. (Ξεκινώντας από µία γωνία του δω- µατίου, τοποθετήστε ένα σύστηµα αξόνων η T τότε θα δίνει τη θερµοκρασία κάθε σηµείου µε συντεταγµένες (,, ) στο δωµάτιο.) Θέλουµε να γενικεύσουµε την έννοια της «παραγώγου» για συναρτήσεις όπως η T, που εξαρτώνται όχι από μία αλλά από τρεις µεταβλητές. Υποτίθεται, τώρα, ότι η παράγωγος µας λέει πόσο γρήγορα µεταβάλλεται µία συνάρτηση όταν µετακινηθούµε κατά µία µικρή απόσταση. Εδώ όµως το πρόβληµα είναι πιο πολύπλοκο, διότι προφανώς η παράγωγος θα εξαρτάται και από την κατεύθυνση προς την οποία θα κινηθούµε: Αν πάµε προς τα πάνω (προς την οροφή), η θερµοκρασία πιθανώς να αυξηθεί αρκετά γρήγορα, αλλά αν κινηθούµε οριζοντίως, µπορεί να µην αλλάξει καθόλου. Εν ολίγοις, η ερώτηση «Πόσο γρήγορα µεταβάλλεται η T (,, );» έχει ένα άπειρο πλήθος απαντήσεων, µία για κάθε κατεύθυνση που επιλέγουµε να εξερευνήσουµε. Ευτυχώς, το πρόβληµα δεν είναι τόσο πολύπλοκο όσο φαίνεται. Σύµφωνα µε ένα θεώρηµα για τις µερικές παραγώγους, dt = ( T ) d + ( ) ( ) T T d + d. (1.34) Ο κανόνας αυτός µας λέει πόσο µεταβάλλεται η T αν αλλάξουµε τις τρεις µεταβλητές κατά απειροστά ποσά d, d και d. Παρατηρήστε ότι δεν χρειαζόµαστε άπειρο πλήθος παραγώγων τρεις µόνο φτάνουν: οι μερικές παράγωγοι κατά µήκος κάθε µιας από τις τρεις κατευθύνσεις των αξόνων. Η Εξίσωση (1.34) φέρνει στο νου ένα εσωτερικό γινόµενο: dt = ( T T ˆ + ŷ + T ) ẑ (d ˆ + d ŷ + d ẑ)

15 1.2. ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 15 = ( T ) (dl), (1.35) όπου T T T ˆ + ŷ + T ẑ (1.36) είναι η κλίση της T είναι µίαδιανυσματική ποσότητα µε τρεις συνιστώσες και αποτελεί τη γενίκευση της παραγώγου που αναζητούµε. Η Εξίσωση (1.35) είναι η τριδιάστατη εκδοχή της (1.33). Γεωμετρική Ερμηνεία της Κλίσης. Όπως κάθε διάνυσµα, η κλίση έχει μέτρο και κατεύθυνση. Για να προσδιορίσουµε το γεωµετρικό της νόηµα, ας ξαναγράψουµε το εσωτερικό γινόµενο (1.35) στη γενική µορφή: dt = T dl = T dl cos θ, (1.37) όπου θ είναι η γωνία µεταξύ των T και dl. Κρατώντας, τώρα, σταθερό το μέτρο του dl και διερευνώντας τις διάφορες κατευθύνσεις (µεταβάλλοντας, δηλαδή, την θ), είναι προφανές ότι η μέγιστη µεταβολή της T παρατηρείται στην κατεύθυνση θ =0 (αφού τότε θα είναι cos θ =1). Συνεπώς, µε το dl σταθερό, το dt παίρνει τη µέγιστη τιµή του αν κινηθώ προς την κατεύθυνση του T.Έτσι, Επιπλέον, Η κλί ση T δείχνει προς την κατεύθυνση της μέγιστης αύξησης της συνάρτησης T. Το μέτρο T μας δίνει την κλίση (δηλαδή τον ρυθμό αύξησης) της T στην κατεύθυνση αυτή της μέγιστης αύξησής της. Φανταστείτε ότι βρίσκεστε στην πλαγιά ενός λόφου. Κοιτάξτε γύρω σας και βρείτε προς ποια κατεύθυνση η ανάβαση είναι δυσκολότερη. Αυτή είναι η κατεύθυνση της κλίσης. Μετρήστε τώρα την κλίση της πλαγιάς προς αυτή την κατεύθυνση (το πηλίκο του ύψους προς το αντίστοιχο µήκος). Αυτό είναι το μέτρο της κλίσης. (Η συνάρτηση για την οποία µιλάµε εδώ είναι το ύψος του λόφου, και οι συντεταγµένες από τις οποίες εξαρτάται είναι, ας πούµε, το γεωγραφικό µήκος και το γεωγραφικό πλάτος. Η συνάρτηση αυτή εξαρτάται µόνο από δύο µεταβλητές, όχι τρεις,τογεωµετρικόόµωςνόηµα της κλίσης γίνεται ευκολότερα αντιληπτό σε δύο διαστάσεις.) Παρατηρήστε από την (1.37) ότι η κατεύθυνση της πιο απότοµης καθόδου είναι αντίθετη από την κατεύθυνση της πιο απότοµης ανόδου, ενώ σε γωνία 90 προςτηδιεύθυνσηαυτήηκλίσηείναι µηδέν (το διάνυσµα της κλίσης τέµνει κάθετα τις ισοϋψείς καµπύλες). Μπορείτε να φανταστείτε επιφάνειες που δεν έχουν τέτοιες ιδιότητες, δεν θα αντιστοιχούν όµως σε παραγωγίσιµες συναρτήσεις γιατί θα έχουν «σπασίµατα». Τι σηµαίνει άραγε µηδενική κλίση; Αν T =0στο (,, ) τότε dt =0για µικρές µετατοπίσεις γύρω από το σηµείο (,, ). Αυτό, λοιπόν, είναι ένα στάσιµο σηµείο της συνάρτησης T (,, ). Μπορεί να είναι ένα µέγιστο (κορυφή) ή ένα ελάχιστο (κοιλάδα) ή κάποιο σαγµατικό σηµείο (πέρασµα) ή κάποιο σηµείο καµπής («ράχη»).

16 16 ΚΕΦΑΛΑΙΟ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Πρόκειται για κατάσταση ανάλογη µε εκείνη των συναρτήσεων μιας µεταβλητής, ό- που ένας µηδενισµός της παραγώγου σηµατοδοτεί την ύπαρξη µεγίστου, ελαχίστου ή σηµείου καµπής της συνάρτησης. Ειδικότερα, αν θέλετε να εντοπίσετε τα ακρότατα µιας συνάρτησης τριών µεταβλητών, βρείτε πρώτα τα σηµεία όπου µηδενίζεται η κλίση. Παράδειγµα 1.3 Βρείτε την κλίση του r = (το µέτρο του διανύσµατος θέσης). Λύση: r = r r ˆ + ŷ + r ẑ = ˆ = ˆ + ŷ + ẑ = r 2 r = ˆr ŷ ẑ 2 Βγάζει νόηµα το αποτέλεσµα; Λοιπόν, το νόηµά του είναι ότι η απόσταση από την αρχή των αξόνων αυξάνεται µε τον ταχύτερο ρυθµό στην ακτινική διεύθυνση, και ότι ο ρυθμός αύξησήςτηςσεαυτήντηνκατεύθυνσηείναι1...ακριβώςό,τιαναµέναµε. Πρόβληµα 1.11 Βρείτε τις κλίσεις των παρακάτω συναρτήσεων: (α) f(,, ) = (β) f(,, ) = (γ) f(,, ) =e sin()ln(). Πρόβληµα 1.12 Το ύψος κάποιου λόφου (σε πόδια) δίνεται από την h(, ) = 10( ), όπου και είναι αντίστοιχα οι αποστάσεις (σε µίλια) ανατολικά και βόρεια κάποιας συγκεκριµένης πόλης (που βρίσκεται στην αρχή των αξόνων). (α) Σε ποιο σηµείο βρίσκεται η κορυφή του λόφου; (β) Πόσο είναι το ύψος του; (γ) Πόσο απότοµη είναι η κλίση του λόφου (σε πόδια ανά µίλι) σ ένα σηµείο που βρίσκεται 1 µίλι ανατολικά και 1 µίλι βόρεια της πόλης; Προς ποια κατεύθυνση, στο σηµείο αυτό, η κλίση του λόφου γίνεται πιο απότοµη; Πρόβληµα 1.13 Έστω r το διάνυσµα απόστασης από κάποιο σταθερό σηµείο (,, ) στο σηµείο (,, ) και έστω r το µήκος του. είξτε ότι (α) (r 2 )=2r. (β) (1/r) = Or/r 2. (γ) Ποιος είναι ο γενικός τύπος για το (r n );

17 1.2. ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 17! Πρόβληµα 1.14 Υποθέστε ότι η f είναι µία συνάρτηση µόνο δύο µεταβλητών ( και ). είξτε ότι η κλίση f =( f/ )ŷ+( f/ )ẑ µετασχηµατίζεται σε στροφές όπως στην (1.29), δηλ. σαν διάνυσµα. [Υπόδειξη: ( f/ ) =( f/ )( / )+( f/ )( / ), (και ο τύπος για το f/ είναι παρόµοιος). Γνωρίζετε ότι = cos φ + sin φ, = sin φ + cos φ «λύστε» τις εξισώσεις αυτές ως προς και (σαν συναρτήσεις των και ) και υπολογίστε τις απαραίτητες παραγώγους /, /, κ.λπ.] Ο τελεστής Η κλίση µοιάζει µε ένα διάνυσµα,, που «πολλαπλασιάζει» ένα βαθµωτό µέγεθος T : ( T = ˆ + ŷ + ẑ ) T. (1.38) (Γράφω τα µοναδιαία διανύσµατα αριστερά, ώστε να µη νοµίζει κανείς ότι εννοώ π.χ. ˆ/ πράγµα που ισούται µε µηδέν αφού το ˆ είναι σταθερό. Ο παράγοντας που βρίσκεται στην παρένθεση της (1.38) ονοµάζεται «ντελ»: = ˆ + ŷ + ẑ. (1.39) Το ντελ, βεβαίως,δεν είναι διάνυσµα, µε τη συνήθη έννοια. Πράγµατι, δεν έχει κάποιο συγκεκριµένο νόηµα, παρά µόνο αν του δώσουµε µία βαθµωτή συνάρτηση για να δράσει πάνω της. Επιπλέον, δεν «πολλαπλασιάζεται» µε την T είναι µάλλον κάτι σαν εντολή για την παραγώγιση αυτής της συνάρτησης. Για να είµαστε ακριβείς, λοιπόν, θαέπρεπενα πούµε ότι το είναι ένας διανυσµατικός τελεστής που δρα πάνω στην T,όχιέναδιάνυσµαπου την πολλαπλασιάζει. Και όµως, παρά τα ξεχωριστά αυτά προσόντα που διαθέτει, το ουσιαστικά µι- µείται µε κάθε τρόπο τη συµπεριφορά ενός απλού διανύσµατος: σχεδόν οποιαδήποτε πράξη γίνεται µε τα άλλα διανύσµατα, µπορεί επίσης να γίνει και µε το,αναντικαταστήσουµε απλώς τη φράση «πολλαπλασιάζει» µε τη φράση «δρα πάνω της». Πρέπει, εποµένως, να πάρετε στα σοβαρά το διανυσµατικό προσωπείο του : πρόκειται για ένα έξοχο δείγµα απλοποίησης του συµβολισµού, πράγµα που θα αναγκαστείτε να αναγνωρίσετε αν τύχεινα διαβάσετε ποτέτην πρωτότυπη εργασία του Mawell για τον ηλεκτροµαγνητισµό, που γράφτηκε χωρίς ουσιαστικά να χρησιµοποιηθεί το σύµβολο. Ως γνωστόν, ένα κοινό διάνυσµα A πολλαπλασιάζεται µε τρεις τρόπους: 1. Πολλαπλασιάζεται µε ένα βαθµωτό a: Aa 2. Πολλαπλασιάζεται µε ένα άλλο διάνυσµα B, µέσω του εσωτερικού γινοµένου A B 3. Πολλαπλασιάζεται µε ένα άλλο διάνυσµα, µέσω του εξωτερικού γινο- µένου A B

18 18 ΚΕΦΑΛΑΙΟ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Κατ αντιστοιχία υπάρχουν τρεις τρόποι µε τους οποίους µπορεί να δράσει ο τελεστής : 1. Πάνω σε µια βαθµωτή συνάρτηση T : T (η κλίση) 2. Πάνω σε µια διανυσµατική συνάρτηση v, µέσω του εσωτερικού γινο- µένου: v (η απόκλιση) 3. Πάνω σε µια διανυσµατική συνάρτηση v, µέσω του εξωτερικού γινο- µένου: v (ο στροβιλισµός). Ήδη µιλήσαµε για την κλίση. Στις επόµενες παραγράφους εξετάζουµε τα άλλα δύο είδη διανυσµατικών παραγώγων: την απόκλιση και τον στροβιλισµό Η απόκλιση Από τον ορισµό του έχουµε ( v = ˆ + ŷ + ẑ ) (v ˆ + v ŷ + v ẑ) = v + v + v. (1.40) Παρατηρήστε ότι η απόκλιση µιας διανυσματικής συνάρτησης είναι ένα βαθμωτό μέγεθος. ( εν είναι δυνατό να υπάρχει η απόκλιση ενός βαθµωτού: δεν έχει νόηµα.) Γεωμετρική ερμηνεία: Ορθώς έ χει επιλεγεί το όνοµα απόκλιση, διότι το v µας δείχνει κατά πόσο το διάνυσµα v εκπηγάζει (αποκλίνει) από το υπό συζήτηση ση- µείο. Η διανυσµατική συνάρτηση του Σχ. 1.18(α) έχει µεγάλη (θετική) απόκλιση στο κέντρο (αν τα βέλη δείχνανε προς τα μέσα, η απόκλιση θα ήταν η ίδια αλλά αρνητική.) Από την άλλη, η συνάρτηση του Σχ. 1.18(β) έχει µηδέν απόκλιση, ενώ η συνάρτηση του Σχ. 1.18(γ) έχει πάλι θετική απόκλιση. (Σας παρακαλώ να καταλάβετε ότι οι τιμές της συνάρτησης v είναι διανύσματα δηλαδή, σε κάθε σηµείο του χώρου αντιστοιχεί ένα διαφορετικό διάνυσµα. Στα σχήµατα, βέβαια, το µόνο που µπορώ να κάνω είναι να σχεδιάσω τα βέλη σε λίγα αντιπροσωπευτικά σηµεία.) Φανταστείτε ότι στέκεστε στην όχθη µιας µικρής ήρεµης λίµνης. Σκορπίστε λίγο πριονίδι, ή µερικές πευκοβελόνες ή ό,τι έχετε πρόχειρο στην επιφάνεια. Αν το υλικό που σκορπίσατε απλώνεται προς τα έξω, τότε το έχετε ρίξει σ ένα σηµείο µε θετική απόκλιση αν µαζευτεί τότε το έχετε ρίξει σ ένα σηµείο µε αρνητική απόκλιση. (Σύµφωνα µε το πρότυπο αυτό, η υπό συζήτηση διανυσµατική συνάρτηση ν δεν είναι παρά η ταχύτητα του νερού στην επιφάνεια της λίµνης είναι ένα διδιάστατο παράδειγµα, αλλά βοηθάει να αποκτήσου- µε µια «αίσθηση» τι σηµατοδοτεί η απόκλιση. Ένα σηµείο θετικής απόκλισης λέγεται «πηγή» ενώ ένα σηµείο αρνητικής απόκλισης λέγεται «χοάνη»). Παράδειγµα 1.4 Έστω ότι οι διανυσµατικές συναρτήσεις στο Σχ είναι οι: v a = r = ˆ + ŷ + ẑ, v b = ẑ,καιv c = ẑ. Υπολογίστε τις αποκλίσεις τους.

19 1.2. ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 19 (α) (β) (γ) Σχήµα 1.18 Λύση: v a = ()+ ()+ () =1+1+1=3. Όπως περιµέναµε, αυτή η διανυσµατική συνάρτηση έχει θετική απόκλιση. v b = (0) + (0) + (1)=0+0+0=0, επίσης αναµενόµενο. v c = (0) + (0) + ()=0+0+1=1.

20 20 ΚΕΦΑΛΑΙΟ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Πρόβληµα 1.15 Υπολογίστε την απόκλιση των παρακάτω διανυσµατικών συναρτήσεων: (α) v a = 2 ˆ +3 2 ŷ 2 ẑ. (β) v b = ˆ +2 ŷ +3ẑ. (γ) v c = 2 ˆ +(2 + 2 ) ŷ +2 ẑ. Πρόβληµα 1.16 Σχεδιάστε τη διανυσµατική συνάρτηση v = ˆr r 2, καιυπολογίστετηναπόκλισήτης. Ίσωςεκπλαγείτεαπότηναπάντηση...µπορείτενατην εξηγήσετε;! Πρόβληµα 1.17 είξτε ότι στις δύο διαστάσεις η απόκλιση µετασχηµατίζεται σε στροφές σαν βαθµωτό µέγεθος. [Υπόδειξη: Χρησιµοποιήστε την (1.29) για να προσδιορίσετε τα v και v, και τη µέθοδο του Προβλήµατος 1.14 για να υπολογίσετε τις παραγώγους. Πρέπει δηλαδή να δείξετε ότι v / + v / = v / + v /.] Ο στροβιλισµός Από τον ορισµό του,έχουµε: ˆ ŷ ẑ v = / / / v v v ( v = ˆ v ) + ŷ ( v v ) ( v + ẑ v ). (1.41) Σηµειώστε ότι ο στροβιλισµός µιας διανυσµατικής συνάρτησης v είναι (όπως όλα τα εξωτερικά γινόµενα) διάνυσμα. ( εν είναι δυνατόν να υπάρχει ο στροβιλισµός ενός βαθµωτού µεγέθους: δεν έχει νόηµα.) Γεωμετρική ερμηνεία: Ορθώςέχειεπιλεγείτοόνοµαστροβιλισμός, διότι το v είναι µέτρο του κατά πόσο το διάνυσµα v «στροβιλίζεται» (σχηµατίζει δίνη) γύρω από κάθε συγκεκριµένο σηµείο. Εποµένως, οι τρεις διανυσµατικές συναρτήσεις στο Σχ έχουν όλες µηδενικό στροβιλισµό (όπως µπορείτε εύκολα να δείτε και µόνοι σας), ενώ αντιθέτως ο στροβιλισµός των πεδίων πουαπεικονίζονται στο Σχ. 1.19είναι µεγάλος. Πράγµατι, ο στροβιλισµός αυτός έχει την κατεύθυνση του θετικού άξονα, πράγµα σύµφωνο µε τον κανόνα του δεξιού χεριού. Φανταστείτε (ξανά) ότι στέκεστε στην όχθη µιας µικρής ήρεµης λίµνης. Τοποθετήστε τώρα έναν µικρό τροχό (που µπορείτε να φτιάξετε µόνοι σας µε έναν φελλό, καρφώνοντας πάνω του µερικές οδοντογλυφίδες που δείχνουν ακτινικά προς τα έξω). Αν αρχίσει να περιστρέφεται, τότε τον τοποθετήσατε σ ένα σηµείο µη µηδενικού στροβιλισμού. Μία δίνη είναι σηµείο µε µεγάλο στροβιλισµό.

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 6 Ολοκληρώµατα διανυσµατικών συναρτήσεων Υπάρχουν διαφόρων ειδών ολοκληρώµατα διανυσµάτων, ανάλογα µε τη µορφή που έχει η ολοκληρωτέα

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος;

Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος; Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος; Για να εξετάσουµε το κύκλωµα LC µε διδακτική συνέπεια νοµίζω ότι θα πρέπει να τηρήσουµε τους ορισµούς που δώσαµε στα παιδιά στη Β Λυκείου. Ας ξεκινήσουµε

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ιάνυσµα ονοµάζεται το µαθηµατικό µέγεθος που περιγράφεται από µιατριάδαστοιχείων: το

ιάνυσµα ονοµάζεται το µαθηµατικό µέγεθος που περιγράφεται από µιατριάδαστοιχείων: το Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι Μαθηµατικά Ι Ακαδ. Έτος 2008-9 1/44 1. Ορισµοί 2. Είδη διανυσµάτων 3. Πράξεις διανυσµάτων 4. Εσωτερικό, εξωτερικό και µικτό γινόµενο

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ιανύσµατα στον 2-διάστατο και στον 3-διάστατο χώρο

ιανύσµατα στον 2-διάστατο και στον 3-διάστατο χώρο Κεφάλαιο 3 ιανύσµατα στον -διάστατο και στον 3-διάστατο χώρο 3.1 Εισαγωγή στα ιανύσµατα (Γεωµετρική) Πολλές ϕυσικές ποσότητες, όπως το εµβαδόν, το µήκος, η µάζα και η ϑερµοκρασία, περιγράφονται πλήρως

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Χρήσιμες μαθηματικές έννοιες Νίκος Ν. Αρπατζάνης Παράγωγος ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ y y = f(x) x φ y y y = f(x) x φ y y y = f(x) φ x 1 x 1 + х x x 1 x 1 + х x x 1 x tanϕ = y x tanϕ = dy dx

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης ύναµη σε ρευµατοφόρους αγωγούς (β) Ο αγωγός δεν διαρρέεται από ρεύμα, οπότε δεν ασκείται δύναμη σε αυτόν. Έτσι παραμένει κατακόρυφος. (γ) Το µαγνητικό

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Χώρος Διανύσματα Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Καρτεσιανές συντεταγμένες και διανύσματα στο χώρο. Στο σύστημα καρτεσιανών (ή ορθογώνιων) συντεταγμένων κάθε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y)

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y) 11.7. Aκρότατα και σαγματικά σημεία 903 39. Εκτίμηση μέγιστου σφάλματος Έστω ότι u e sin και ότι τα,, και μπορούν να μετρηθούν με μέγιστα δυνατά σφάλματα 0,, 0,6, και / 180, αντίστοιχα. Εκτιμήστε το μέγιστο

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ

ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΕ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ Νικόλαος Ι. Ιωακειμίδης Ομότιμος Καθηγητής Πολυτεχνικής Σχολής Πανεπιστημίου Πατρών ΠΑΤΡΑ 2014 ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Άσκηση Η15. Μέτρηση της έντασης του μαγνητικού πεδίου της γής. Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο)

Άσκηση Η15. Μέτρηση της έντασης του μαγνητικού πεδίου της γής. Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο) Άσκηση Η15 Μέτρηση της έντασης του μαγνητικού πεδίου της γής Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο) Το γήινο μαγνητικό πεδίο αποτελείται, ως προς την προέλευσή του, από δύο συνιστώσες, το μόνιμο μαγνητικό

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014 Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού Ιωάννης Γκιάλας 14 Μαρτίου 2014 Έργο ηλεκτροστατικής δύναμης W F Δl W N i i1 F Δl i Η μετατόπιση Δl περιγράφεται από ένα διάνυσμα που

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού 1 2 Τα θεωρήματα του Green, Stokes και Gauss 211 9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού Ήδη στην παράγραφο 5.7 ασχοληθήκαμε με την ύπαρξη συνάρτησης

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Τα θεωρήματα Green, Stokes και Gauss

Τα θεωρήματα Green, Stokes και Gauss Τα θεωρήματα των Green, Stokes και Guss Αντώνης Τσολομύτης Σάμος, 2012 curl F div S F Επειδή αναϕέρθηκε στο μάθημα... Ενεργητική ϕωνή Ενεστώτας παράγω παρέχω Ενεστώτας-υποτακτική να παράγω να παρέχω Ενεστώτας-προστακτική

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ Lab. MEchanics Applied TECHNICAL UNIVERSITY OF CRETE ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ 1 η Συνέχεια διαλέξεων B Μέρος 1 ΒΑΣΙΚΑ ΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ 1 ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ.. Αν δοκιµαστικό φορτίο q βρεθεί κοντά σε αγωγό που διαρρέεται από ρεύµα, υφίσταται δύναµη κάθετη προς την διεύθυνση της ταχύτητάς του και µε µέτρο ανάλογο της ταχύτητάς του, F qυ Β (νόµος

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε

Διαβάστε περισσότερα

Παράρτημα Ι. 1 Το ισόχρονο της ταλάντωσης επί κυκλοειδούς

Παράρτημα Ι. 1 Το ισόχρονο της ταλάντωσης επί κυκλοειδούς Παράρτημα Ι 1 Το ισόχρονο της ταλάντωσης επί κυκλοειδούς Ας θεωρήσουμε μια κυκλική στεφάνη ακτίνας a η οποία κυλίεται, χωρίς να ολισθαίνει, πάνω σε μια ευθεία (για ευκολία υποθέστε ότι η ευθεία είναι ο

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα