ΠΥΘΑΓΟΡΕΙΑ ΕΓΚΛΗΜΑΤΑ «ΘΑΛΗΣ + ΦΙΛΟΙ» :Λέσχη Ανάγνωσης Ενηλίκων Νάουσα 2009

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΥΘΑΓΟΡΕΙΑ ΕΓΚΛΗΜΑΤΑ «ΘΑΛΗΣ + ΦΙΛΟΙ» :Λέσχη Ανάγνωσης Ενηλίκων Νάουσα 2009"

Transcript

1 2009 ΠΑΤΣΙΑ ΜΑΡΙΑ ΠΥΘΑΓΟΡΕΙΑ ΕΓΚΛΗΜΑΤΑ «ΘΑΛΗΣ + ΦΙΛΟΙ» :Λέσχη Ανάγνωσης Ενηλίκων Νάουσα 2009

2 ΘΕΜΑΤΑ ΓΙΑ ΣΥΖΗΤΗΣΗ 1. Κατάταξη του βιβλίου κριτικές ΠΥΘΑΓΟΡΕΙΑ ΕΓΚΛΗΜΑΤΑ (είναι αστυνοµικό; Είναι θεµιτό ο αφηγητής να είναι και ο δολοφόνος; Πως κρίνεται από φιλολογική άποψη)*. 2. «Μια επιστήµη είναι ζωντανή µόνο όσο έχει ανοιχτά προβλήµατα» 3. Υπάρχει όριο στη γνώση (Ντι Μπουά Ρεϊµόν), ή όλα τα προβλήµατα έχουν λύση; (Χίλµπερτ) 4. Καθαρά και εφαρµοσµένα µαθηµατικά. Η αλήθεια των µαθηµατικών σε σχέση µε αυτήν των φυσικών επιστηµών. 5. Μπορεί η αλήθεια να κρυφτεί; Είναι σωστό η γνώση να κρατιέται µυστική; (Ίπασσος, Αϊνστάιν, Νόµπελ, Οπενχάιµερ κ.λ.π./πυθαγόρειοι Ίωνες = αποδεικτική διαδικασία). 6. Θέλουµε Μαθηµατικά συναρπαστικά ή µε βεβαιότητες; 7. Θεµελίωση των Μαθηµατικών έλεγχος πληρότητας και µη αντιφατικότητας 8. Γιατί οι πρώτοι αριθµοί απασχολούν τόσο τα µαθηµατικά και τους µαθηµατικούς; 9. Πως αντιµετωπίζει το κατεστηµένο (µαθηµατικό και µη) τους νέους επιστήµονες/ερευνητές; 10. Το επιστηµονικό έργο ενός προσώπου έχει αξία ανεξάρτητα από την ηθική και την προσωπική ζωή του επιστήµονα; 11. «Είναι φυσικό οι άνθρωποι των γραµµάτων και των τεχνών να µένουν προσκολληµένοι στο παρελθόν» 12. «Μια σαθρή βάση µπορεί να αντέξει αιώνες µέχρι να βρεθεί τρόπος να αντικατασταθεί. Αν όµως στερήσεις ολότελα από ένα οικοδόµηµα τη βάση του, θα καταρρεύσει αµέσως». 13. Ζωγραφική και γεωµετρία (ιµπρεσσιονισµός, άρτ νουβώ, κυβισµός) 14. Τα άλυτα προβλήµατα των µαθηµατικών σήµερα (γνώσεις γενικές ή εξειδίκευση;) 15. Απόψεις των αρχαίων Ελλήνων για το σύµπαν και τα δοµικά υλικά του (Φιλόλαος, Αρίσταρχος). 16. Θεώρηµα µη πληρότητας 17. «Στα µαθηµατικά υπάρχουν προβλήµατα που διατυπώνονται στα πλαίσια µιας θεωρίας η οποία όµως αδυνατεί να τα απαντήσει». «Ένα µαθηµατικό πρόβληµα ενδέχεται να κρύβει µέσα του πολύ περισσότερα από όσα υποπτεύεται αυτός που το διατύπωσε».

3 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΒΙΒΛΙΟΥ 1. Πρόβληµα: α) εύρεση λύσης β) απόδειξη µη ύπαρξης λύσης γ) µη κατασκευαστική λύση 2. Πρώτοι αριθµοί (το πλήθος τους, δίδυµοι πρώτοι, η σηµασία τους) 3. Άρρητοι αριθµοί 4. Υπερβατικοί αριθµοί 5. Εικασίες 6. Γεωµετρίες (ευκλείδεια, ελλειπτική, υπερβολική) 7. Πολυωνυµικές εξισώσεις 8. Βέλτιστη κάλυψη 9. Γραφήµατα συνθήκη του Όιλερ 10. Μαθηµατικά παράδοξα (Ζήνων, Ράσελ) 11. Άλυτα προβλήµατα της ευκλείδειας γεωµετρίας (τετραγωνισµός του κύκλου, τριχοτόµηση γωνίας, διπλασιασµός του κύβου) 12. Ανοιχτά και επικηρυγµένα προβλήµατα 13. Μέθοδος της εξάντλησης όγκοι στερεών 14. Αναλυτική γεωµετρία 15. Θεώρηµα µη πληρότητας

4 ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ Πύργος του Άιφελ Γέφυρες του Κένιγκσµπεργκ Οι τρεις γεωµετρίες Βέλτιστη κάλυψη πλακοστρώσεις ΠΑΡΑΛΛΗΛΑ ΑΝΑΓΝΩΣΜΑΤΑ «Το θεώρηµα του παπαγάλου» του Ντ. Γκέτζ «Μαθηµατικά επίκαιρα» του Τεύκρου Μιχαηλίδη «Ιστορία των Ελλήνων» του Ίντρο Μοντανιέλλι «Ρουµπαγιάτ» του Οµάρ Καγιάµ ΤΑΙΝΙΕΣ Η µουσική των πρώτων αριθµών

5 ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΓΙΑ ΤΟΝ ΠΥΡΓΟ ΤΟΥ ΑΪΦΕΛ Στο κεφάλαιο 6 όταν οι δυο φίλοι επισκέπτονται τον πύργο του Άιφελ ο Στέφανος λέει στον Μιχαήλ: «Το ξέρεις ότι ο πύργος είναι πιο ελαφρύς ακόµα κι απ τον αέρα που τον περιτριγυρίζει; Αν εγγράψουµε το τετράγωνο της βάσης του πύργου σ ένα κύκλο, υψώσουµε ένα κύλινδρο που να φτάνει µέχρι την κορυφή του και τον γεµίσουµε µε αέρα κοπανιστό, θα ζυγίζει περισσότερο απ τον ίδιο τον πύργο». Η πιο πάνω φράση σου φαίνεται Λογική Πιθανή Υπερβολική Αδιανόητη Άλλο Ας εξετάσουµε τους αριθµούς: Μάζα του ατσαλιού του πύργου τόνοι Συνολική µάζα του πύργου τόνοι Ύψος πύργου 324 µέτρα Ακτίνα βάσης περιγεγραµµένου κυλίνδρου 88,3 µέτρα Όγκος κυλίνδρου κυβικά µέτρα Σχετική πυκνότητα αέρα 1,3 kg/κυβικό µέτρο Μάζα αέρα Μάζα αέρα kg τόνοι Όγκος κυλίνδρου = Εµβαδόν βάσης ύψος Εµβαδόν κύκλου = πρ 2 Πυκνότητα = µάζα / όγκος Άρα: Ο Στέφανος είχε Ας εξετάσουµε τώρα το πρόβληµα αντίστροφα: Πόσο ύψος θα είχε ένας κύλινδρος µε ακτίνα βάσης 88,3 µέτρα που θα αποτελούνταν από όλο το ατσάλι του πύργου; Πυκνότητα χάλυβα (τόνοι ανά κυβικό µέτρο) Μάζα χάλυβα τόνοι Απαιτούµενος όγκος σε κυβ. µετρ. Εµβαδόν βάσης Ύψος κυλίνδρου (εκατοστά)

6 7, Πόσο ύψος θα είχε ένα ορθογώνιο παραλληλεπίπεδο µε βάση το τετράγωνο βάσης του πύργου; Με δεδοµένη την ακτίνα ΟΑ, η πλευρά του τετραγώνου βάσης είναι... Πυκνότητα χάλυβα (τόνοι ανά κυβικό µέτρο) Μάζα χάλυβα τόνοι Απαιτούµενος όγκος σε κυβ. µετρ. V=m/ρ Πλευρά τετραγώνου Εµβαδόν βάσης Ύψος ορθογωνίου τετραγωνικού πρίσµατος 7, ,00 ΟΙ ΤΡΕΙΣ ΓΕΩΜΕΤΡΙΕΣ Τα πέντε αιτήµατα της Ευκλείδειας γεωµετρίας 1. Από κάθε σηµείο µπορούµε να φέρουµε ευθεία που να το συνδέει µε οποιοδήποτε σηµείο. 2. Το ευθύγραµµο τµήµα προεκτείνεται συνεχώς και ευθυγράµµως. 3. Με κέντρο ένα τυχαίο σηµείο και ακτίνα κάθε τµήµα, είναι δυνατό να γράψουµε κύκλο. 4. Και όλες οι ορθές γωνίες είναι ίσες µεταξύ τους. 5. Αν µια ευθεία τέµνει δύο άλλες και σχηµατίζει µε αυτές ένα ζεύγος "εντός και επί τα αυτά " γωνιών µε άθροισµα µικρότερο από

7 δύο ορθές, τότε οι ευθείες τέµνονται προς το µέρος που βρίσκονται οι γωνίες αυτές. Το πέµπτο αίτηµα Χωρίς να το δεχθούµε ως αξίωµα δε µπορούµε να αποδείξουµε Ότι δυο ευθείες που είναι παράλληλες στην ίδια ευθεία είναι και µεταξύ τους παράλληλες Ότι από σηµείου εκτός ευθείας άγεται µία µόνο παράλληλη Ότι ευθείες που ενώνουν τα άκρα δυο ίσων και παράλληλων ευθειών είναι ίσες και παράλληλες Ότι δυο παράλληλες ευθείες ισαπέχουν. Ότι το άθροισµα των τριών γωνιών ενός τριγώνου ισούται µε δύο ορθές. Γεωµετρία Ρίµαν Ορίζω την ευθεία ως το συντοµότερο δρόµο µεταξύ δύο σηµείων. Έστω τα σηµεία Α, Β, Γ επί µιας ευθείας. Κινηθείτε από το Α προς το Γ µέσω του Β. Έστω ότι επιτρέπεται να κινηθείτε και από το Β προς το Γ µέσω του Α (ο Ρίµαν αµφισβήτησε το αίτηµα που εξασφάλιζε

8 ότι από 3 σηµεία µιας ευθείας ένα µόνο βρίσκεται µεταξύ των δύο άλλων). Τι είδους «ευθεία» έχετε τώρα; Κάνοντας τα ίδια βήµατα πάνω σε σφαίρα Η «ευθείες» είναι κλειστές καµπύλες άρα κύκλοι. Κι επειδή η «ευθεία» είναι ο συντοµότερος δρόµος µεταξύ δύο σηµείων θα έχουµε µέγιστους κύκλους, τότε όµως δύο ευθείες τέµνονται πάντα σε 2 σηµεία οπότε η παραλληλία δεν έχει νόηµα!! Τρεις εξίσου ισχυρές γεωµετρίες Ευκλείδεια γεωµετρία 1 παράλληλη Μηδενική καµπυλότητα Άθροισµα γωνιών τριγώνου 180 µοίρες Υπερβολική γεωµετρία (Lobachevski Bolyai) Άπειρες παράλληλες Αρνητική καµπυλότητα Άθροισµα γωνιών τριγώνου <180 µοίρες

9 Ελλειπτική γεωµετρία (Riemann) Καµία παράλληλη Θετική καµπυλότητα Άθροισµα γωνιών τριγώνου >180 µοίρες ΟΙ ΓΕΦΥΡΕΣ ΤΟΥ ΚΕΝΙΓΚΣΜΠΕΡΓΚ Euler: Το γράφηµα µπορεί να γραφεί «µονοκονδυλιά» αν και µόνο αν έχει κανέναν ή δύο κόµβους περιττού βαθµού. Ποια από τα επόµενα σχήµατα µπορείτε να γράψετε µονοκονδυλιά;

10 ΒΕΛΤΙΣΤΗ ΚΑΛΥΨΗ Ας υπολογίσουµε το ποσοστό κάλυψης: εµβαδόν 4 κύκλων/εµβαδόν περιγεγραµµένου τετραγώνου: Ας υπολογίσουµε το ποσοστό κάλυψης: εµβαδόν 4 κύκλων/εµβαδόν περιγεγραµµένου ορθογωνίου:

11

12

13

14

15

16

17 Προβλήµατα προβλήµατα προβλήµατα... του Τεύκρου Μιχαηλίδη Τον Αύγουστο του 1900, έγινε στο Παρίσι το Δεύτερο Διεθνές Συνέδριο Μαθηµατικών. Ο David Hilbert, ο κορυφαίος µαθηµατικός εκείνης της εποχής, σε µια ιστορική οµιλία παρουσίασε τα 23 προβλήµατα που κατά τη γνώµη του θα απασχολούσαν τα µαθηµατικά του 20ου αιώνα. Είτε γιατί ο Hilbert, µε τη γνώση και τη διορατικότητά του µπόρεσε να προβλέψει σωστά, είτε γιατί το κύρος του επηρέασε τους συναδέλφους του, το γεγονός είναι ότι αυτά τα 23 προβλήµατα κυριάρχησαν σε µεγάλο βαθµό στα µαθηµατικά του εικοστού αιώνα. Κάποια από αυτά λύθηκαν πλήρως ή εν µέρει, άλλα αναδιατυπώθηκαν και γενικεύτηκαν και τέλος τρία περιµένουν ακόµα τη λύση τους, κληροδότηµα του αιώνα που πέρασε προς τη χιλιετία που άρχισε. Το Clay Mathematics Institute της Μασσαχουσέτης, ένα ίδρυµα που χρηµατοδοτείται από τον επιχειρηµατία Landon Clay, βρήκε έναν καθαρά αµερικάνικο τρόπο για να γιορτάσει την εκατονταετηρίδα αυτής της µνηµειώδους οµιλίας και να τραβήξει το ενδιαφέρον του κοινού αλλά και των πολιτικών προς τα µαθηµατικά. Ανέθεσε σε τέσσερις κορυφαίους µαθηµατικούς (ανάµεσά τους και ο Andrew Wiles που έλυσε πρόσφατα το πρόβληµα του Fermat, ένα πρόβληµα που περίµενε τη λύση του για 350 χρόνια περίπου) να συντάξουν ένα κατάλογο από επτά προβλήµατα, «τα προβλήµατα της νέας χιλιετίας». Για καθένα από αυτά, προσφέρεται αµοιβή ενός εκατοµµυρίου δολλαρίων (περίπου 400 εκατοµµυρίων δραχµών). Η επιτροπή συγκεντρώθηκε στο College de France της Γαλλίας και επέλεξε έξι νέα προβλήµατα, τα οποία ήρθαν να προστεθούν στο πιο ξακουστό κόσµηµα της συλλογής του Hilbert που αντιστέκεται ακόµα. (Πρόκειται για το όγδοο πρόβληµα, την κατανοµή των πρώτων αριθµών που συνδέεται µε την υπόθεση του Riemann). Παρά το αναµφισβήτητο κύρος των τεσσάρων µαθηµατικών του Clay Institute, και τη δεδοµένη σοβαρότητα των επτά προβληµάτων, το εγχείρηµα δεν παύει να είναι κατά βάση επικοινωνιακό. Τα εκατοµµύρια δολλάρια που πανάξια θα εισπράξουν αυτοί που σε δέκα, πενήντα ή πεντακόσια χρόνια θα λύσουν τα προβλήµατα, στοχεύουν στο να θυµίσουν στον κόσµο ότι τα

18 µαθηµατικά, εκτός από σχολικός βραχνάς ή εργαλείο κοινωνικής επιλογής, είναι και µια ζωντανή επιστήµη, ή όπως λέει ο Arthur Jaffe, ο ένας από τους τέσσερις του Clay Institute, «...η βάση της επιστήµης και o αναντικατάστατoς µοχλός του επιπέδου ζωής µας...» Χωρίς αυτά δεν θα είχαµε, «ούτε υπολογιστές, ούτε συστήµατα εντοπισµού των οχηµάτων, ούτε ηµιαγωγούς, ούτε γονιδιακή έρευνα, ούτε νανοτεχνολογία...». Όµως οι ίδιοι οι µαθηµατικοί που ασχολούνται µε την έρευνα, δεν αναµένεται να αλλάξουν σε τίποτα τις συνήθειές τους ή να επηρεαστούν στο έργο τους. Το πολύ πολύ µερικοί ακόµα µαικήνες, ζηλεύοντας το κλέος του Clay να κάνουν µερικές, πάντα ευπρόσδεκτες, δωρεές στη µαθηµατική έρευνα. Πολύ πιο σοβαρό, αλλά λιγότερο «εφετζίδικο», είναι το εγχείρηµα της Διεθνούς Μαθηµατικής Ένωσης (IMU): Προς το τέλος της δεκαετίας του 90, οι µαθηµατικοί αναρωτήθηκαν ποιος θα µπορούσε να αναλάβει να κάνει µια παρουσίαση αντίστοιχη µε εκείνη του Hilbert για τον νέο αιώνα. Διαπιστώθηκε, πράγµα που οι περισσότεροι το γνώριζαν ήδη, ότι τέτοιος µαθηµατικός δεν υπήρχε! Η διεύρυνση της µαθηµατικής θεµατολογίας καθώς και η εξειδίκευση είχαν σαν συνέπεια, να µην υπάρχει σήµερα µαθηµατικός µε επαρκή γνώση ολόκληρου του φάσµατος της µαθηµατικής έρευνας. Ίσως ο Henri Poincaré και ο Hilbert να ήταν οι τελευταίοι «Μαθηµατικοί». Τώρα πια έχουµε, στην καλύτερη περίπτωση, «Αναλύστες», «Αριθµοθεωρητικούς», «Αλγεβριστές», ή, ακόµα χειρότερα, ειδικούς στις πεπερασµένες οµάδες, στην Κ-θεωρία, στη µη µεταθετική γεωµετρία... Έτσι λοιπόν, η IMU ανέθεσε σε µια τετραµελή επιτροπή, µε επικεφαλής το ρώσσο µαθηµατικό V.I. Arnold, να συγκεντρώσει τις απόψεις των κορυφαίων µαθηµατικών του πλανήτη µας πάνω στο θέµα. Αυτοί µε τη σειρά τους απευθύνθηκαν σε 31 συναδέλφους τους, κορυφαίους ερευνητές, ακαδηµαϊκούς, κατόχους του Fields Medal (το αντίστοιχο του Nobel για τα µαθηµατικά), ζητώντας τους να περιγράψουν τις προοπτικές της επιστήµης τους για τον 21ο αιώνα. Οι απαντήσεις τους, που σύµφωνα µε την οµολογία των συντονιστών της έκδοσης δεν καλύπτουν καν ολόκληρο το φάσµα των µαθηµατικών, συγκεντρώθηκαν σ ένα τόµο 450 σελίδων (η οµιλία του Hilbert κατελάµβανε 57) και εκδόθηκε από την Αµερικανική Μαθηµατική Εταιρεία.

19 Τόσο τα επτά προβλήµατα του Clay Institute όσο και τα υπόλοιπα, που περιέχονται στον πιο πάνω τόµο, είναι προβλήµατα µόνο για ειδικούς. Ελάχιστοι µαθηµατικοί είναι σε θέση να καταλάβουν έστω και µόνο τη διατύπωση του συνόλου αυτών των προβληµάτων. Πόσο µάλλον το ευρύ κοινό. Υπάρχουν όµως και προβλήµατα, που τουλάχιστον η διατύπωσή τους είναι κατανοητή ακόµα και στον απόφοιτο της Τρίτης Γυµνασίου. Θα κλείσουµε αυτή την παρουσίαση απαριθµώντας µερικά από αυτά. Με µια προειδοποίηση. Όσο πιο εύκολη και απλή είναι η διατύπωσή τους, τόσο πιο δύσκολη, σύνθετη και εξειδικευµένη είναι η λύση τους! Ίσως το διασηµότερο πρόβληµα στην ιστορία των µαθηµατικών είναι το πρόβληµα του τετραγωνισµού του κύκλου, δηλαδή το πρόβληµα της κατασκευής, µε κανόνα και διαβήτη, ενός τετραγώνου που να έχει το ίδιο εµβαδόν µε ένα δοσµένο κύκλο. Παρόλο που το πρόβληµα του τετραγωνισµού - χωρίς διευκρίνηση της µεθόδου - υπάρχει ήδη σε Αιγυπτιακούς παπύρους του 17ου π.χ. αιώνα, στη σηµερινή του µορφή, µε σαφείς περιορισµούς πρέπει να διατυπώθηκε γύρω στον 5ο π.χ. αιώνα, στην Αρχαία Ελλάδα. Η τελική, αρνητική λύση δόθηκε το 1882 µ.χ. όταν µε το θεώρηµα Hermite Lindemann αποδείχθηκε ότι δεν είναι δυνατός ο τετραγωνισµός του κύκλου µε κανόνα και διαβήτη. Μ ένα διάστηµα 2300 ετών από την πρώτη του σαφή διατύπωση µέχρι την τελική του λύση, ο τετραγωνισµός του κύκλου είναι αδιαµφισβήτητα το µακροβιότερο πρόβληµα στην ιστορία των µαθηµατικών. Από κοντά και τα δύο άλλα διάσηµα προβλήµατα της αρχαιότητας, ο χωρισµός µε αποκλειστική χρήση κανόνα και διαβήτη µιας τυχαίας γωνίας σε τρία ίσα µέρη (η τριχοτόµηση της γωνίας) και η κατασκευή ενός κύβου που να έχει όγκο διπλάσιο από ένα δοσµένο κύβο (το «Δήλειο Πρόβληµα» του διπλασιασµού του κύβου, πάντα µε κανόνα και διαβήτη). Ας έρθουµε τώρα σε πιο σύγχρονα προβλήµατα. Ποιος είναι ο ελάχιστος αριθµός χρωµάτων που χρειάζονται για να χρωµατίσουµε ένα επίπεδο χάρτη, έτσι ώστε δυο γειτονικές χώρες να µην έχουν το ίδιο χρώµα; Είναι αρκετά φανερό από το διπλανό σχήµα, ότι τρία χρώµατα δεν επαρκούν. Ήδη από το 1850 είχε, σχετικά εύκολα, αποδειχθεί, ότι πέντε χρώµατα αρκούν για οποιονδήποτε χάρτη. Δεν

20 είχε όµως βρεθεί κανένα παράδειγµα στο οποίο να είναι απαραίτητα τα πέντε χρώµατα. Έτσι διατυπώθηκε η εικασία, που έγινε γνωστή ως το πρόβληµα των τεσσάρων χρωµάτων, ότι τέσσερα χρώµατα επαρκούν. Χρειάστηκαν 126 χρόνια, µέχρι να αποδειχθεί τελικά ότι η εικασία αυτή είναι αληθινή. Το θεώρηµα των τεσσάρων χρωµάτων είναι µάλιστα το πρώτο πρόβληµα στην ιστορία των µαθηµατικών που λύθηκε µε ουσιαστική βοήθεια από τους ηλεκτρονικούς υπολογιστές. Μια αναφορά σε διάσηµα προβλήµατα µε απλή διατύπωση, δε θα ήταν ποτέ πλήρης αν δεν περιελάµβανε και το «Τελευταίο Θεώρηµα του Fermat»: Η εξίσωση x 2 +y 2 =z 2 έχει όσες ακέραιες λύσεις θέλουµε. (x=3, y=4, z=5 ή ακόµα x=5, y=12, z=13). Αυτό ήταν άλλωστε γνωστό και στους Βαβυλώνιους ήδη από τη 2η χιλιετία π.χ. Ο γάλλος «ερασιτέχνης» µαθηµατικός Pierre Fermat γύρω στο 1637, (τον καιρό δηλαδή του Ντ Αρτανιάν), διαβάζοντας τη λατινική µετάφραση των «Αριθµητικών» του Διόφαντου, σηµείωσε στο περιθώριο ότι για καµιά άλλη δύναµη, αυτή η εξίσωση δεν έχει ακέραιες λύσεις. (Δηλαδή η εξίσωση x ν +y ν =z ν δεν έχει ακέραιες λύσεις για κανένα ν µεγαλύτερο του 2). Το πρόβληµα του Fermat είναι πιθανότατα το πρώτο πρόβληµα στην ιστορία των µαθηµατικών που «επικηρύχθηκε». Το 1908, ανακοινώθηκε ότι ο Paul Wolfskehl, ένας µάλλον άσηµος αλλά αρκετά πλούσιος µαθηµατικός, είχε κληροδοτήσει το ποσό των µάρκων για να προσφερθεί από το Πανεπιστήµιο του Göttingen σε όποιον αποδείξει το θεώρηµα του Fermat. Χρειάστηκε να περάσουν ακόµη 87 χρόνια, δηλαδή συνολικά περισσότερα από 350 χρόνια µέχρι το 1995, όταν ο Andrew Wiles έδωσε την τελική απόδειξη. Ας δούµε τέλος µερικά προβλήµατα που παραµένουν ακόµα ανοικτά: 1. Η εικασία του Goldbach: Σε µια επιστολή του προς τον Eüler το 1742, ο ρώσσος µαθηµατικός Christian Goldbach διατύπωνε την εικασία ότι κάθε άρτιος (ζυγός) ακέραιος µεγαλύτερος του 2 µπορεί να γραφεί ως άθροισµα δύο πρώτων. Η εικασία του Goldbach, εκτός από ένα πολύ δύσκολο πρόβληµα µε απλή διατύπωση είναι χωρίς αµφιβολία και το αγαπηµένο παιδί των λογοτεχνών. Εµφανίζεται σε τρία τουλάχιστον µυθιστορήµατα, σ ένα από αυτά µάλιστα στον τίτλο.

21 2. Το πρόβληµα των τέλειων αριθµών. Ένας αριθµός ονοµάζεται τέλειος αν είναι ίσος µε το άθροισµα των γνησίων διαιρετών του. Για παράδειγµα το 6 και το 28: 6=1+2+3, 28= Όλοι οι τέλειοι αριθµοί που είναι γνωστοί σήµερα είναι άρτιοι. Είναι ανοικτό πρόβληµα αν υπάρχουν περιττοί (µονοί) τέλειοι αριθµοί. Ακόµη, είναι ανοικτό το αν υπάρχουν άπειροι τέλειοι αριθµοί. Με δεδοµένο ότι τα προβλήµατα των τέλειων αριθµών αποδίδονται στους Πυθαγορείους, είναι τα παλαιότερα ανοικτά ακόµα προβλήµατα στα Μαθηµατικά. Πάλι στους Πυθαγόρειους οφείλονται και οι φίλοι αριθµοί. Δυο αριθµοί λέγονται φίλοι αν ο καθένας ισούται µε το άθροισµα των γνήσιων διαιρετών του άλλου. για παράδειγµα το 220 και το = (όλοι οι διαιρέτες του 220) 220= (όλοι οι διαιρέτες του 284). Δε γνωρίζουµε σήµερα αν τα ζευγάρια των φίλων αριθµών είναι άπειρα ή πεπερασµένα. 3. Προβλήµατα µε πρώτους αριθµούς (θυµίζουµε ότι πρώτος είναι ένας αριθµός που δεν έχει άλλους διαιρέτες εκτός από τον εαυτό του και τη µονάδα το 2, το 3, το 5 είναι πρώτοι ενώ το 4, το 6, το 9, το 15 δεν είναι). Για παράδειγµα: υπάρχουν άπειρα ζευγάρια διδύµων πρώτων; (δηλαδή ζευγάρια πρώτων αριθµών που να διαφέρουν κατά δύο µονάδες, όπως το 3 και το 5, το 5 και το 7, το 17 και το 19) υπάρχουν άπειροι πρώτοι ρ τέτοιοι ώστε να είναι πρώτος και ο 2ρ+1 (όπως για παράδειγµα το 2, το 3, το 5) Υπάρχει πάντα ένας πρώτος αριθµός ανάµεσα στα τετράγωνα δυο διαδοχικών ακεραίων; Τα Νέα, 1 Δεκεµβρίου 2001

22 * ΚΡΙΤΙΚΗ ΓΙΑ ΤΟ ΒΙΒΛΙΟ.Στα «πυθαγόρεια εγκλήµατα» ο συγγραφέας συνταιριάζει ποικίλα δεδοµένα και στοιχεία. Συνδυάζοντας το ιστορικό µυθιστόρηµα µε την αστυνοµική ιστορία, αλλά και µε το campus novel ή µε την περιπετειώδη αφήγηση, ξεφυλλίζει για λογαριασµό µας ορισµένες από τις σηµαντικότερες σελίδες της ιστορίας των Μαθηµατικών... Το µυθιστόρηµα στο σύνολο του είναι ιδιαίτερα ισορροπηµένο, µια και συνδιαλέγεται σε κάθε περίπτωση πολύ λελογισµένα µε τα είδη δια µέσου των οποίων πορεύεται. Τα «Πυθαγόρεια εγκλήµατα» διαθέτουν πρωτοτυπία και αφηγηµατική και σκηνοθετική άνεση. Διαβάζονται απνευστί και µε εξαιρετικά ευχάριστη διάθεση ακόµα και από όσους δεν καταλαβαίνουν γρί από µαθηµατικά..

23

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 20.03.14 Χ. Χαραλάμπους Είναι το 5 ο αίτημα όντως αίτημα και όχι πρόταση? Η πρώτη φορά που το αίτημα χρησιμοποιείται στα Στοιχεία είναι στην απόδειξη της Πρότασης 29. ( Η Πρόταση 29

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

Ο Σέρλοκ Χόλμς, η εις άτοπο απαγωγή και οι απαρχές του internet.

Ο Σέρλοκ Χόλμς, η εις άτοπο απαγωγή και οι απαρχές του internet. Λέσχη Ανάγνωσης Γενικού Λυκείου Σαντορίνης Σχολικό έτος 2011-2012 Ο Σέρλοκ Χόλμς, η εις άτοπο απαγωγή και οι απαρχές του internet. Γιάννης Παπόγλου Το σμαραγδένιο στέμμα Σύµφωνα µε ένα παλιό µου ρητό,

Διαβάστε περισσότερα

Mathematics and its Applications, 5th

Mathematics and its Applications, 5th Μαθηµατικα για Πληροφορικη Εφαρµογες και τεχνικες Ηλιας Κουτσουπιάς Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Σχετικα µε το µαθηµα Σχετικα µε το µαθηµα Το µαθηµα πραγµατευεται καποια ϑεµατα

Διαβάστε περισσότερα

Κεφάλαιο 10 Γεωμετρικές κατασκευές Στα αιτήματα του Ευκλείδη περιλαμβάνονται μόνο τρία που αναφέρονται στη δυνατότητα κατασκευής ενός σχήματος. Ηιτήσθω από παντός σημείου επί παν σημείον ευθείαν γραμμήν

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 13.03.14 Χ. Χαραλάμπους Εντονες πυθαγόρειες επιδράσεις. Η Γεωμετρία και τα Μαθηματικά έχουν μια ξεχωριστή ξχ θέση. Ουδείς αγεωμέτρητος εισί Στον κόσμο των ιδεών τα μαθηματικά αντικείμενα

Διαβάστε περισσότερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα [ 1 ] Πανεπιστήµιο Κύπρου Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα Νικόλαος Στυλιανόπουλος Ηµερίδα Ιστορία των Μαθηµατικών Πανεπιστήµιο Κύπρου Νοέµβριος 2016 [ 2 ] Πανεπιστήµιο Κύπρου υσκολίες

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

Μαθηµατικά για Πληροφορική

Μαθηµατικά για Πληροφορική Μαθηµατικά για Πληροφορική 1ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 2/10/08 2/10/08 1 / 1 Γενικό πλάνο 1 Σχετικά µε το µάθηµα 2 Υποθεσεις -

Διαβάστε περισσότερα

1 ο Γυµνάσιο Μελισσίων Λέσχη Ανάγνωσης ΤΡΙΧΟΤΟΜΗΣΗ ΓΩΝΙΑΣ. Η δική µας Εικασία

1 ο Γυµνάσιο Μελισσίων Λέσχη Ανάγνωσης ΤΡΙΧΟΤΟΜΗΣΗ ΓΩΝΙΑΣ. Η δική µας Εικασία 1 ο Γυµνάσιο Μελισσίων Λέσχη Ανάγνωσης ΤΡΙΧΟΤΟΜΗΣΗ ΓΩΝΙΑΣ Η δική µας Εικασία Οι αρχαίοι Έλληνες γνώριζαν να διχοτοµούν µια τυχαία γωνία µε χρήση κανόνα και διαβήτη, και, κατά συνέπεια, µπορούσαν να διαιρέσουν

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε Ανάλυση Γ Λυκείου όριο συνάρτησης στο ο Ιδιότητες των ορίων Όριο και διάταξη ΘΕΩΡΗΜΑ ο Αν f >, τότε f > κοντά στο Αν f

Διαβάστε περισσότερα

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Περιεχόμενα ΠΡΟΛΕΓΟΜΕΝΑ 15 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών Η αναπαράσταση των

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο 13: ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Θεωρούµε ένα επίπεδο p, µια κλειστή πολυγωνική γραµµή του p και µια ευθεία ε που έχει µε το p ένα µόνο κοινό σηµείο. Από κάθε σηµείο

Διαβάστε περισσότερα

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

Ο θείος Πέτρος και η Εικασία του Γκόλντμπαχ. Απόστολος Δοξιάδης

Ο θείος Πέτρος και η Εικασία του Γκόλντμπαχ. Απόστολος Δοξιάδης Ο θείος Πέτρος και η Εικασία του Γκόλντμπαχ Απόστολος Δοξιάδης Περίληψη του βιβλίου Τι είναι τα Μαθηματικά; Ποια είναι η σχέση της «εικασίας» και του «θεωρήματος»; Ποιοι είναι οι πρώτοι αριθμοί; Christian

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

Οι πραγµατικοί αριθµοί

Οι πραγµατικοί αριθµοί Οι πραγµατικοί αριθµοί Προλεγόµενα Η ανάγκη απαρίθµησης αντικειµένων, οδήγησε στην εισαγωγή του συνόλου των φυσικών αριθµών Η ανάγκη µέτρησης µεγεθών, οδήγησε στην εισαγωγή του συνόλου των ρητών αριθµών

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τα Μαθηματικά στην αρχαία Ελλάδα. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2012. 15.03.12 Χ. Χαραλάμπους ΑΠΘ

Εαρινό Εξάμηνο 2012. 15.03.12 Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 15.03.12 Χ. Χαραλάμπους Έργα Στοιχεία Δεδομένα Φαινόμενα ή Σφαιρικά Οπτικά Κατοπτρικά Στοιχεία Μουσικής Βιβλίο περί διαιρέσεων Πορίσματα Κωνικά Τόποι προς επιφάνειες Ψευδάρια Μηχανική

Διαβάστε περισσότερα

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 8.03.12 Χ. Χαραλάμπους Θαλής ο Μιλήσιος ( 630-550π.Χ.) Πυθαγόρας o Σάμιος (570-490) Ζήνωνας ο Ελεάτης ( 490-430) Δημόκριτος o Αβδηρίτης (c. 460-370) Πλάτων (427-347 π.χ.) Ιστορικές

Διαβάστε περισσότερα

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας Κύκλου μέτρησις Ολοκληρωμένο διδακτικό σενάριο Δημιουργία: Τεύκρος Μιχαηλίδης Μαθηματικό Εργαστήρι Β Αθήνας Η ιστορία του π 2 Κυ κλου με τρησις Η μέθοδος του Αρχιμήδη για την προσέγγιση του π και ο ρόλος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α 31. Μία κυλινδρική δεξαµενή έχει µήκος βάσης 1,56 m. Η δεξαµενή είναι γεµάτη κατά τα 6 7 και περιέχει 75,36 m3 νερό. Να υπολογίσετε το βάθος της δεξαµενής. Να υπολογίσετε

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του Ανδρέας Ιωάννου Κασσέτας ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του 1. Υπάρχει αριθµός τέτοιος ώστε εάν τον υψώσεις στο τετράγωνο να αυξηθεί

Διαβάστε περισσότερα

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Πρώτη νύχτα Μονάδα Όνειρα ( εργασία ) Η έννοια του απείρου Φρόυντ Κλάσματα Αριθμητικό σύστημα ( εργασία

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

: :

: : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Π Ρ Ο Σ Ε Γ Γ Ι Σ Η Μ Ι Α Σ Ι Α Φ Ο Ρ Ε Τ Ι Κ Η Σ Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ

Π Ρ Ο Σ Ε Γ Γ Ι Σ Η Μ Ι Α Σ Ι Α Φ Ο Ρ Ε Τ Ι Κ Η Σ Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Π Ρ Ο Σ Ε Γ Γ Ι Σ Η Μ Ι Α Σ Ι Α Φ Ο Ρ Ε Τ Ι Κ Η Σ Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Εκτός της Ευκλείδειας γεωµετρίας υπάρχουν και άλλες γεωµετρίες µη Ευκλείδιες.Οι γεω- µετρίες αυτές διαφοροποιούνται σε ένα ή περισσότερα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας

Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 5. 5.5 σκήσεις σχολικού βιβλίου σελίδας 0 04 ρωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι Ορθογώνια, ρόµβοι, i τετράγωνα, ποια όχι και γιατί; (α) 5 (β) 5 (γ) (δ) (ε) (ζ) φ 5 φ 5 φ φ (η)

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ. Διαιρετότητα. Πρώτοι αριθμοί

ΒΑΣΙΚΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ. Διαιρετότητα. Πρώτοι αριθμοί ΟΜΙΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ 2013-14 Mathematics knows no races or geographic boundaries; for mathematics, the cultural world is one country. David Hilbert ΒΑΣΙΚΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ Διαιρετότητα

Διαβάστε περισσότερα

1. Εύρεση µήκους ενός κύκλου : Για να βρω το µήκος ενός κύκλου βρίσκω την ακτίνα του κύκλου και εφαρµόζω τον τύπο

1. Εύρεση µήκους ενός κύκλου : Για να βρω το µήκος ενός κύκλου βρίσκω την ακτίνα του κύκλου και εφαρµόζω τον τύπο 1 3.3 ΜΗΚΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙ 1. Μήκος κύκλου ακτίνας ρ : Το µήκος L ενός κύκλου δίνεται από τον τύπο L = 2πρ ή L = πδ όπου δ η διάµετρος του κύκλου και π ένας άρρητος αριθµός του οποίου προσέγγιση µε δύο δεκαδικά

Διαβάστε περισσότερα

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν 1. Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών και να παραστήσετε σε ορθογώνιο σύστημα αξόνων τα αντίστοιχα σημεία. α. αν = 4ν + 3 β. αν = 2 + ( 1) ν γ. 1 1 1 1 αν = + + +... + 1 2 2

Διαβάστε περισσότερα

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του ΣΤΕΡΕΑ ΜΑΘΗΜΑ 10 Δίεδρες γωνίες Δύο επίπεδα α και β που τέμνονται, χωρίζουν τον χώρο σε τέσσερα μέρη, που λέγονται τεταρτημόρια. Ορίζουν επίσης σχήματα ανάλογα των γωνιών που ορίζουν δύο τεμνόμενες ευθείες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΕΥΣΤΑΘΙΟΥ ΑΓΓΕΛΙΚΗ ΣΦΑΕΛΟΣ ΙΩΑΝΝΗΣ

ΕΥΣΤΑΘΙΟΥ ΑΓΓΕΛΙΚΗ ΣΦΑΕΛΟΣ ΙΩΑΝΝΗΣ Κατασκευή µαθηµατικών fractals ΕΥΣΤΑΘΙΟΥ ΑΓΓΕΛΙΚΗ ΣΦΑΕΛΟΣ ΙΩΑΝΝΗΣ 1. Η καµπύλη του Koch H καµπύλη του Κoch ή Νησί του Koch ή χιονονιφάδα του Koch περιγράφηκε για πρώτη φορά από το Σουηδό µαθηµατικό Helge

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε. 11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης 6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές

Διαβάστε περισσότερα

«Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης

«Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης Τομέας Παιδαγωγικής Ιστορίας, και Φιλοσοφίας των Μαθηματικών «Η Ευκλείδεια γεωμετρία και η διδασκαλία της» Λύσεις Θεμάτων Εξέτασης 01-0-016 ΘΕΜΑ 1α [] Σε τυχαίο ορθογώνιο τρίγωνο ΑΒΓ ( Α=90 Ο ) η διχοτόμος

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ.

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ. Σύνολα Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το άλλο, δηλαδή

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

Σημείο Επίπεδο ο χώρος η ευθεία η έννοια του σημείου μεταξύ δύο άλλων σημείων και η έννοια της ισότητας δύο σχημάτων.

Σημείο Επίπεδο ο χώρος η ευθεία η έννοια του σημείου μεταξύ δύο άλλων σημείων και η έννοια της ισότητας δύο σχημάτων. ΜΑΘΗΜΑ 1 αόριστες έννοιες Έννοιες που είναι τόσο απλές και οικείες από την εμπειρία μας, ώστε δεν μπορούμε να βρούμε πιο απλές με τη βοήθεια των οποίων να τις περιγράψουμε Σημείο Επίπεδο ο χώρος η ευθεία

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙΑ 1 (Μήκος κύκλου) Το μήκος του κύκλου (Ο, R) συμβολίζεται με L. Ο Ιπποκράτης ο Χίος απέδειξε ότι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Ερωτήσεις ανάπτυξης 1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο (A = 90 ) και πλευρές = 3 cm, = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Να βρείτε: α) Το εµβαδό Ε Π της παράπλευρης επιφάνειας.

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Σταυρούλα Πατσιομίτου

Σταυρούλα Πατσιομίτου Αριστοτέλους Μεταφυσικά 1078 α 30 Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr Σ υνδέονται τα Μαθηματικά με την Αισθητική, με την Τέχνη, με την Τεχνολογία. Πόσο σημαντικό είναι να γνωρίζουμε την Ιστορία τους;

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να

Διαβάστε περισσότερα

Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου. ρ. Σ.Πατσιοµίτου

Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου. ρ. Σ.Πατσιοµίτου Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου ρ. Σ.Πατσιοµίτου Το ορθό πρίσµα και τα στοιχεία του Στη Στερεοµετρία τα παρακάτω στερεά σώµατα ονοµάζονται ορθά πρίσµατα. Οι δύο παράλληλες έδρες του λέγονταιβάσεις

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας.

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας. ΣΤΕΡΕΑ ΜΑΘΗΜΑ 12 ΑΝΑΚΕΦΑΛΑΙΩΣΗ 1. Αν τυχαία πυραμίδα τμηθεί με επίπεδο παράλληλο στη βάση της, έχουμε: KA/KA' = KB/KB' = ΚΓ/ΚΓ' = ΚΗ/Κ'Η' = λ και ΑΒΓ Α'Β'Γ' με λόγο ομοιότητας λ. 2. Μέτρηση κανονικής πυραμίδας:

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Το 10ο πρόβλημα του Hilbert I

Το 10ο πρόβλημα του Hilbert I Το 10ο πρόβλημα του Hilbert I Το 1900 στο Παρίσι, ο David Hilbert έκανε μια ομιλία για τα 23 πιο σπουδαία μαθηματικά προβλήματα που κληρονομούσε ο 20ος αιώνας από τον 19ο. Το 10ο ήταν: Απόφανση περί επιλυσιμότητας

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα

Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα Βασίλειος Παπαντωνίου Ομ. Καθηγητής Πανεπιστημίου Πατρών bipapant@math.upatras.gr Επίκεντρο της παρουσίασης Η εξέλιξη της μαθηματικής σκέψης

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να

Διαβάστε περισσότερα

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Α. Προτεινόμενες θεματικές ενότητες Τίτλοι από το Ι.Ε.Π. ΑΛΓΕΒΡΑ 5ο 5.1: Ακολουθίες Η ακολουθία Fibonacci στην Φύση και

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό.

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό. Αρχιμήδης ο Συρακούσιος Ο μεγαλύτερος μαθηματικός της αρχαιότητας και από τους μεγαλύτερους όλων των εποχών. Λέγεται ότι υπήρξε μαθητής του Ευκλείδη, ότι ταξίδεψε στην Αίγυπτο, σπούδασε στην Αλεξάνδρεια

Διαβάστε περισσότερα