ELEMENTE DE TEORIA GRAFURILOR ŞI ANALIZA DRUMULUI CRITIC

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ELEMENTE DE TEORIA GRAFURILOR ŞI ANALIZA DRUMULUI CRITIC"

Transcript

1 ELEMENTE DE TEORIA GRAFURILOR ŞI ANALIZA DRUMULUI CRITIC Concepe fundamenale.modelarea prin grafuri a proceselor economice. Drumuri de valoare opimă. Arbori minimali. Analiza drumului criic. graful coordonaor asocia unei acţiuni complexe; reprezenarea şi calculul ermenelor aciviăţilor; alocarea şi nivelarea resurselor. 4. Elemene de eoria grafurilor si 1

2 Elemene de eoria grafurilor- concepe fundamenale Un graf ese un cuplu G=(V,M forma dinr-o mulţime nevidă V de vârfuri (noduri şi o mulţime M de muchii (arce cu proprieaea că fiecărui elemen m M îi sun asociae două vârfuri x,y V numie exremiăile muchiei m. O muchie în care x=y (are o singură exremiae se numeşe buclă. 4. Elemene de eoria grafurilor si 2

3 Elemene de eoria grafurilor- concepe fundamenale Un graf G se numeşe simplu dacă oricare două noduri ale sale sun exremiăţi penru cel mul o muchie. Un graf G ese fini dacă V şi M sun finie. 4. Elemene de eoria grafurilor si 3

4 Elemene de eoria grafurilor- concepe fundamenale Fie m={x,y} o muchie în graful G=(V,M poae fi: orienaă (x,y cu x vârf iniţial şi y vârf final, caz în care arcul (y,x ese bloca; orienaă (y,x cu y vârf iniţial şi x vârf final, caz în care arcul (x,z ese bloca; neorienaă {x,y}. Un graf G=(V,M în funcţie de ipul muchiilor sale poae fi: oriena; parţial oriena; neoriena. 4. Elemene de eoria grafurilor si 4

5 Elemene de eoria grafurilor- concepe fundamenale Un lanţ în graful G=(V,M ese o succesiune de noduri λ=(x 0, x 1,,x p-1, x p cu proprieaea că {x 0,x 1 },{x 1,x 2 },...{x p-1, x p }, sun muchii în G. Nodurile x 0 şi x p sun exremiăţile lanţului λ. Lanţul λ se numeşe simplu dacă nu rece de două ori prin acelaşi nod. Lungimea lanţului λ. ese daă de numărul muchiilor sale componene. Un ciclu ese un lanţ ale cărui exremiăţi coincid. 4. Elemene de eoria grafurilor si 5

6 Elemene de eoria grafurilor- concepe fundamenale Un drum în graful G=(V,M ese o succesiune de noduri δ=(x 0, x 1,,x p-1, x p cu proprieaea că {x 0,x 1 },{x 1,x 2 },...{x p-1, x p }, sun arce permise în G. Nodurile x 0 şi x p sun exremiăţile drumului δ. Un graf G=(V,M se numeşe conex dacă oricare două noduri ale sale sun exremiăţile unui lanţ. Un graf G=(V,M se numeşe bipari dacă mulţimea nodurilor sale poae fi descompusă în două submulţimi nevide şi disjunce S şi D asfel încâ orice muchie din G are o exremiae în S şi calală în D. 4. Elemene de eoria grafurilor si 6

7 Drumuri de valoare opimă Fie graful G=(X,Γ. O ruă orienaă u=(i,j ese un arc (i,j G. Rua se numeşe permisă dacă orienarea sa ese în concordanţă cu orienarea muchiei corespunzăoare din graful G. Fiecărei rue u=(i,j cu i,j X i se asociază o valoare numerică c(u cu semnificaţia de cos, disanţă, imp ec. 4. Elemene de eoria grafurilor si 7

8 Drumuri de valoare opimă Dacă s şi f sun două noduri fixe din G problema * consă în deerminarea unui drum µ de la s la f de valoare opimă (minimă, adică: * c( µ = min c( µ µ D(s,f unde M( s, ese mulţimea drumurilor dinre s şi f cu s,f G. 4. Elemene de eoria grafurilor si 8

9 Drumuri de valoare opimă Algorimul Bellman-Kalaba ese un algorim general prin care se deermină drumurile de valoare minimă dinre un nod final şi oae celelale vârfuri (noduri ale grafului; fie G=(X, Γ graful problemei; fiecărei muchii orienae u=(i,j cu i,j X i se asociază M( s, o valoare numerică c(u=c ij fiecărei muchii neorienae u={i,j} cu i,j X i se asociază valoarile numerice c ij = c ji = c(u corespunzăor celor două arce (i,j şi (j,i. 4. Elemene de eoria grafurilor si 9

10 Drumuri de valoare opimă -algorimul Bellman-Kalaba START Pasul 0: se asociază grafului G o maricea V consruiă pornind de la valorile v ij ale arcelor grafului Ese îndepliniă condiţia de oprire a algorimului? DA Se exrag din V ruele de cos minim spre nodul x f NU Pasul : se adaugă la maricea V liniile V (+1 şisucc (+1 STOP 4. Elemene de eoria grafurilor si 10

11 Drumuri de valoare opimă -algorimul Bellman-Kalaba Pasul 0: { v } ij n se asociază grafulul G maricea i, j=1, unde n ese numărul nidurilor grafului asfel: cij daca m= (i,j; v = 0 daca i = j; in res. se adaugă la maricea V linia unde: V = { (0 v } i i = 1 n (0 V =, V (0 i = V 0 if daca daca i i = f ; f. 4. Elemene de eoria grafurilor si 11

12 Drumuri de valoare opimă -algorimul Bellman-Kalaba Pasul (=1,2,3,.: se deermină şi se adaugă maricei V exisene la eapa -1 două linii: { v } i i = 1 n ( ( linia cu: V =, ( 1 ( min( vi + vij daca i f ; vi = 0 daca i = f ; ( ( linia succ = { succi } ( i= 1, n unde succ reprezină nodul spre care, din nodul i, exisă arce de lungime minimă ( ( 1 ( j vi = vi + vij j = 1, n i f ; succi = Φ daca vi =. 4. Elemene de eoria grafurilor si 12

13 Drumuri de valoare opimă -algorimul Bellman-Kalaba Condiţia de oprire a algorimului algorimul se încheie în momenul în care prin recerea de la un pas ( la pasul urmăor (+1 valorile drumurilor minime rămân nemodoficae: v ( ( + 1 i = vi i = 1, n. 4. Elemene de eoria grafurilor si 13

14 Drumuri de valoare opimă -algorimul Bellman-Kalaba Exragerea ruelor de cos minim Fiind îndepliniă condiţia v ( ( + 1 i = vi i = 1, n. valorile minime ale ruelor se deduc din linia V sau V ( ( + 1 ruele de valoare minimă de la fiecare nod spre nodul f se deduc din linia succ ( sau succ ( Elemene de eoria grafurilor si 14

15 Arbori minimali Un arbore ese un graf conex neoriena şi fără cicluri. Un arbore are urmăoarele proprieăţi: orice arbore cu p noduri are p-1 muchii. înre oricare două noduri ale unui arbore exisă un unic lanţ de muchii. dacă înre două noduri ale unui arbore adăugăm o muchie se obţine un ciclu. dacă dinr-un arbore scoaem o muchie, graful se disconecează. 4. Elemene de eoria grafurilor si 15

16 Arbori minimali Fie graful G=(X,Γ un graf neoriena fin şi conex conţinând n noduri. Un arbore conţinu în graful G ese un subgraf al lui G cu n-1muchii. Dacă muchiilor unui arbore i se asociază valori numerice (reprezenând cosuri, profiuri, disanţe ec. aunci suma acesora consiuie valoarea arborelui respeciv. Deerminarea arborilor minimali dinr-un graf G consă în idenificarea arborelui (arborilor de valoare minimă conţinuţi în G. 4. Elemene de eoria grafurilor si 16

17 Arbori minimali - algorimul lui Krusal START Pasul 1: se alege din mulţimea Γ a lui G muchea u 1 de valoare minimă; muchea u 1 consiue primul elemen al mulţimii muchiilor alese. S-au ales n-1 muchii? DA NU Graful parţial obţinu consiuie un arbore minimal în G Pasul +1:din mulţimea muchiilor nealese se alege o nouă muchie u +1 de valoare minimă şi care nu formează ciclu cu muchiile deja alese; se adaugă u +1 la mulţimea muchiilor alese; STOP 4. Elemene de eoria grafurilor si 17

18 Arbori minimali - variană a algorimului lui Krusal START Pasul 1: se selecează din mulţimea X a lui G un nod oarecare x i (1 i n unden ese numărul nodurilor lui G S-au coneca oae nodurile? DA NU Graful parţial obţinu consiuie un arbore minimal în G Pasul +1:se selecează din mulţimea nodurilor neconecae nodul cel mai apropia de unul din nodurile conecae şi se conecează la acesa; se adaugă nodul respeciv la mulţimea nodurilor alese; STOP 4. Elemene de eoria grafurilor si 18

19 Analiza drumului criic. Principalele meode uilizae în managemenul proiecelor (Projec Managemen sun: meoda CPM (Criical Pah Mehod meoda MPM (Mera Poenial Mehod meoda PERT (Program Evaluaion and Review Tehnique. Acese meode permi idenificarea drumului criic şi a aciviăţilor care îl compun dinre evenimenul începerii proiecului şi evenimenul finalizării lui. 4. Elemene de eoria grafurilor si 19

20 Analiza drumului criic. Meoda CPM Fie un proiec (proces P compus din n aciviăţi: { A } =1n P=, O aciviae A de duraă d ij =d(a ese reprezenaă prin perechea (i,j unde: i reprezină evenimenul începerii aciviăţii; j reprezină evenimenul erminării aciviăţii; Grafic, aciviaea A se reprezină asfel: i * i i A d ij j j * j 4. Elemene de eoria grafurilor si 20

21 Analiza drumului criic. Meoda CPM Fiecărei aciviăţi i se asociază: ermenul minim de începere - i ( A m reprezină ermenul cel mai devreme posibil de erminare a uuror aciviăţilor incidene în nodul i: i m ( A A 0 daca i ese nod de incepu i max(m( Aq + d = unde(, Γ 1 qi q i i ermenul minim de erminare ( A m i m( A = m( A + d( A 4. Elemene de eoria grafurilor si 21

22 Analiza drumului criic. Meoda CPM ermenul maxim de erminare - M ( A reprezină ermenul cel mai ârziu posibil de începere a uuror aciviăţilor incidene Γ j dinspre nodul j spre nodurile: M ( A n daca j = min(m ( A d ermenul maxim de incepere i M ( A = M( A d( A p ese nod erminal jp unde( j, p Γ i ( A M j 4. Elemene de eoria grafurilor si 22

23 Analiza drumului criic. Meoda CPM rezerva oală - R ( A reprezină inrvalul maxim cu care poae fi amânaă o anumiă aciviae fără a afeca ermenul final al proiecului: i R ( A = M ( A m( A d( A Dacă R ( A = 0 aciviaea se numeşe criică. rezerva liberă - R l ( A reprezină inrvalul maxim cu care poae fi amânaă o anumiă aciviae fără a consuma din rezerva aciviăţilor care o succed i Rl ( A = m( A m( A d( A 4. Elemene de eoria grafurilor si 23

24 Analiza drumului criic. Meoda MPM Fie un proiec (proces P compus din n aciviăţi: { A } =1n P=, Fiecărei aciviaţi A i se asociază un abel de forma: i m A m i M d( A M 4. Elemene de eoria grafurilor si 24

25 Analiza drumului criic. Meoda MPM Aciviăţile criice sun aciviăţile cu rezerva oală egală cu 0: i i M ( A = m( A M ( A = m( A Toaliaea aciviăţilor criice alcăuiesc drumul criic în proiecul P. 4. Elemene de eoria grafurilor si 25

26 Analiza drumului criic. Meoda PERT Meoda PERT permie planificarea aciviăţilor şi deerminarea probabiliăţii de realizare a duraei planificae penru un anumi proiec aunci când duraele aciviăţilor nu se cunosc cu ceriudine. Fie un proiec (proces P compus din n aciviăţi: { A } =1n P=, Aâ duraa fiecărei aciviaţi d(a câ ăi duraa oală a proiecului sun considerae variabile aleaoare. 4. Elemene de eoria grafurilor si 26

27 4. Elemene de eoria grafurilor si 27 Analiza drumului criic. Meoda PERT Duaa unei aciviăţi ese o variabilă aleaoare de disribuţia BETA cu: duraa mediie de execuţie a aciviăţii dispersia 6 ( ( 4 ( ( 0 p m A d A d A d A d + + = ( A d ( 2 A σ ( ( ( = o p A d A d A σ A

28 Analiza drumului criic. Meoda PERT Duaa oală de execuţie a proiecului P ese variabilă aleaoare cu disribuţie normală. Dacă D c ese mulţimea acviăţilor neparalele de pe drumul criic aunci avem: duraa oală medie a proiecului = d( n A A D c dispersia 2 σ n 2 2 σ n = σ ( A A D c 4. Elemene de eoria grafurilor si 28

29 Analiza drumului criic. Meoda PERT Probabiliaea de realizare a duraei planificae a proiecului se deermină asfel: T > p n se deermină facorul de probabiliae z: z = T p n σ 2 n se deduce, uilizândabelul funcţiei Laplace probabiliaea p( n Tp 4. Elemene de eoria grafurilor si 29

30 Analiza drumului criic. Meoda PERT Valorile probabiliăţii de realizare a duraei planificae a proiecului au urmăoarele semnificaţii: p( n T p 0,25 risc foare mare de nerealizare în ermen a proiecului; p( n T (0,25;0,5 p exisă şanse de realizare a proiecului în ermenul sabili; p( n T [0,5;0,8 p programarea aciviăţilor proiecului ese jusă; p( n T 0,8 p sun şanse foare mari de realizare în imp a proiecului. 4. Elemene de eoria grafurilor si 30

31 Analiza drumului criic. Alocarea resurselor Algorimul de alocarea resurselor (Projec Scheduling under muliple Resurce Conrains permie alocarea resurselor pe aciviăţi asfel încâ duraa de execuţie a proiecului să fie minimă. Rezlvarea problemelor de alocare a resurselor presupune ca primă eapă deerminarea drumului criic fără resricţii de resurse aplicând una din meodele CPM sau MPM. 4. Elemene de eoria grafurilor si 31

32 Analiza drumului criic. Alocarea resurselor Fie un proiec (proces P compus din n aciviăţi: { A } =1n P=, Penru realizarea aciviăţilor proiecului sun necesare m resurse disponibile în caniăţile: Vesorul inensiăţii uilizării resurselor penru acviaea ese: A D 1, D2,..., r ( A = ( r ( A, r2 ( A D m,..., r ( A 1 m 4. Elemene de eoria grafurilor si 32

33 4. Elemene de eoria grafurilor si 33 Analiza drumului criic. Alocarea resurselor Penru soluţionarea problemei se definesc mulţimii: mulţimea aciviăţilor candidae la momenul : mulţimea aciviăţilor programae la momenul : = = final final i A A C daca 0 daca } ( { φ = = = m j P E A j j A r D j C A A P 1, 0 ( 0

34 Analiza drumului criic. Alocarea resurselor mulţimea aciviăţilor amânae la un al momenul de imp σ > : A σ σ = = C \ P min ( A E P i m ( A + d( A mulţimea aciviăţilor în execuţie la momenul E 4. Elemene de eoria grafurilor si 34

35 Analiza drumului criic. Alocarea resurselor START DA Se deerminăe şic C =φşie = φ NU Se deermină P, σ şi A σ NU STOP A σ = φ? DA Se deermină implicaţiile asupra duraei proiecului = σ 4. Elemene de eoria grafurilor si 35

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey

Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey Mihai Suciu Facultatea de Matematică și Informatică (UBB) Departamentul de Informatică Mai, 16, 2018 Mihai Suciu (UBB) Algoritmica

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

decembrie 2016 Grafuri. Noţiuni fundamentale. Grafuri euleriene şi grafuri hamilto

decembrie 2016 Grafuri. Noţiuni fundamentale. Grafuri euleriene şi grafuri hamilto Grafuri. Noţiuni fundamentale. Grafuri euleriene şi grafuri hamiltoniene decembrie 2016 Grafuri Noţiuni fundamentale D.p.d.v. matematic, un graf este o structură G = (V, E) formată din o mulţime de noduri

Διαβάστε περισσότερα

ELEMENTE DE TEORIA GRAFURILOR

ELEMENTE DE TEORIA GRAFURILOR Bazele cercetării operaţionale. Noţiuni generale ELEMENTE DE TEORIA GRAFURILOR În general, pentru situaţiile care necesită la rezolvare un oarecare efort mintal (şi un caz tipic este cel al celor din economie),

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte. Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6)

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6) SEMINAR TRANSFORMAREA LAPLACE. Probleme. Foloind proprieaea de liniariae, ă e demonreze urmăoarele: in σ(, Re > ; ( + penru orice C. co σ( h σ( ch σ(, Re > ; ( +, Re > ; (3, Re > ; (4. Să e arae că penru

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Grafuri. Liviu P. Dinu University of Bucharest Faculty of Mathematics and Computer Science

Grafuri. Liviu P. Dinu University of Bucharest Faculty of Mathematics and Computer Science Grafuri Liviu P. Dinu University of Bucharest Faculty of Mathematics and Computer Science Sumar Definiții Reprezentări Parcurgere în lățime Parcurgere în adîncime Drumuri în grafuri. Conexitate Matricea

Διαβάστε περισσότερα

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI) Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

TEMA 12 SERII DE TIMP

TEMA 12 SERII DE TIMP TEMA SERII DE TIMP Obiecive Cunoaşerea concepelor referioare la seriile de imp Analiza principalelor meode de analiză şi prognoză cu serii de imp Aplicaţii rezolvae Aplicaţii propuse Cuprins Concepe referioare

Διαβάστε περισσότερα

Cursul 11. Cuplaje. Sisteme de reprezentanti distincţi. Arbori de acoperire. Enumerarea tuturor arborilor cu număr fixat de noduri.

Cursul 11. Cuplaje. Sisteme de reprezentanti distincţi. Arbori de acoperire. Enumerarea tuturor arborilor cu număr fixat de noduri. Cuplaje. Sisteme de reprezentanti distincţi. Arbori de acoperire. Enumerarea tuturor arborilor cu număr fixat de noduri 17 decembrie 2016 Cuprinsul acestui curs Cuplaje Cuplaj perfect, maxim, maximal Cale

Διαβάστε περισσότερα

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa Deodularea (Deecia) senalelor MA, Deecia de anveloa Deodularea ese recuerarea senalului odulaor din senalul MA. Aceasa se oae face erfec nuai daca s( ) ese de banda liiaa iar Deodularea senalelor MA se

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Arbori și structuri decizionale

Arbori și structuri decizionale rbori și structuri decizionale Geanina Havârneanu Introducere Teoria grafurilor a apărut din rațiuni pur pragmatice. Un exemplu care ilustrează cea mai simplă modalitate de a utiliza grafurile este următoarea

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

7.2 Problema săptămânii Seminar Seminar Seminar Seminar Conexitate Teorie...

7.2 Problema săptămânii Seminar Seminar Seminar Seminar Conexitate Teorie... Cuprins 1 Noţiuni preliminare şi scurt istoric 3 1.1 Scurt istoric......................................... 3 1.2 Structura cursului..................................... 3 1.3 Notaţii generale. Noţiuni

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Grafuri planare Colorarea grafurilor. Curs 12. Grafuri planare. Colorarea grafurilor. Polinoame cromatice. 23 decembrie 2016.

Grafuri planare Colorarea grafurilor. Curs 12. Grafuri planare. Colorarea grafurilor. Polinoame cromatice. 23 decembrie 2016. Grafuri planare Polinoame cromatice 23 decembrie 2016 Definiţii şi exemple Grafuri planare Un graf G este planar dacă poate fi desenat în plan astfel încât muchiile să nu se intersecteze decât în nodurile

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Dumitru Fanache TEORIA ALGORITMICĂ A GRAFURILOR NOŢIUNI FUNDAMENTALE. Volumul I EDITURA PARALELA 45

Dumitru Fanache TEORIA ALGORITMICĂ A GRAFURILOR NOŢIUNI FUNDAMENTALE. Volumul I EDITURA PARALELA 45 Dumitru Fanache TEORIA ALGORITMICĂ A GRAFURILOR NOŢIUNI FUNDAMENTALE Volumul I Cuprins Cuvânt-înainte...9 Capitolul I. Noţiuni generale despre grafuri...15 I.1. Scurt istoric al teoriei grafurilor...15

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

ANALIZA SPECTRALĂ A SEMNALELOR ALEATOARE

ANALIZA SPECTRALĂ A SEMNALELOR ALEATOARE ANALIZA SPECRALĂ A SEMNALELOR ALEAOARE. Scopul lucrării Se sudiază caracerizarea în domeniul frecvenţă a semnalelor aleaoare de ip zgomo alb şi zgomo roz şi aplicaţiile aceseia la deerminarea modulelor

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

2. GRAFURI ŞI MATRICE DE INCIDENŢĂ

2. GRAFURI ŞI MATRICE DE INCIDENŢĂ . GRAFURI ŞI MATRICE DE INCIDENŢĂ.. Grafurile circuitelor electrice Graful unui circuit electric este reprezentarea geometrică a configuraţiei acestuia, obţinută prin asocierea câte unui punct (numit nod

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

STUDIUL REGIMULUITRANZITORIU AL CIRCUITELOR ELECTRICE

STUDIUL REGIMULUITRANZITORIU AL CIRCUITELOR ELECTRICE UNIVERSITATEA "POLITEHNICA" DIN BUCURESTI CATEDRA DE FIZICĂ LABORATORUL ELECTRICITATE SI MAGNETISM BN 119 STUDIUL REGIMULUITRANZITORIU AL CIRCUITELOR ELECTRICE 7 STUDIUL REGIMULUITRANZITORIU AL CIRCUITELOR

Διαβάστε περισσότερα

GRAFURI ORIENTATE ASPECTE TEORETICE. 1. NoŃiunea de graf orientat

GRAFURI ORIENTATE ASPECTE TEORETICE. 1. NoŃiunea de graf orientat GRAFURI ORIENTATE ASPECTE TEORETICE. NoŃiunea de graf orientat DefiniŃie. Se numeşte graf orientat o pereche ordonată de mulńimi notată G=(V, U), unde: V : este o mulńime, finită şi nevidă, ale cărei elemente

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Curs 4. I.4 Grafuri. Grafuri orientate

Curs 4. I.4 Grafuri. Grafuri orientate Curs 4 I.4 Grafuri I.4.1 Grafuri orientate Definiţia I.4.1.1. Un graf orientat este un tuplu G = (N, A, ϕ : A N N), unde N şi A sunt mulţimi, numite mulţimea nodurilor, respectiv mulţimea arcelor, iar

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Lucrarea Nr. 5 Comportarea cascodei EC-BC în domeniul frecvenţelor înalte

Lucrarea Nr. 5 Comportarea cascodei EC-BC în domeniul frecvenţelor înalte Lucaea N. 5 opoaea cascode E-B în doenul fecenţelo înale Scopul lucă - edenţeea cauzelo ce deenă copoaea la HF a cascode E-B; - efcaea coespondenţe dne ezulaele obţnue expeenal penu la supeoaă a benz acesu

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

3.3. Ecuaţia propagării căldurii

3.3. Ecuaţia propagării căldurii 3 ECUAŢII γ k + k iar din (34 rezuă că a 4Aω δ k (k + + a + (k+ (k+ ω deci 4Aω δ k + a a (k + (k+ ω Conform (9 souţia probemei considerae va fi 4Aω a w ( sin( sin( k+ k+ + a k a (k+ (k+ ω 4Asinω + sin(k+

Διαβάστε περισσότερα

FLUXURI MAXIME ÎN REŢELE DE TRANSPORT. x 4

FLUXURI MAXIME ÎN REŢELE DE TRANSPORT. x 4 FLUXURI MAXIME ÎN REŢELE DE TRANSPORT Se numeşte reţea de transport un graf în care fiecărui arc îi este asociat capacitatea arcului şi în care eistă un singur punct de intrare şi un singur punct de ieşire.

Διαβάστε περισσότερα

Descompunerea unui graf in componente triconexe Algoritmul - J.E. Hopcroft si R.E. Tarjan

Descompunerea unui graf in componente triconexe Algoritmul - J.E. Hopcroft si R.E. Tarjan Descompunerea unui graf in componente triconexe Algoritmul - J.E. Hopcroft si R.E. Tarjan 1 prof. Dana Lica Rezumat. Algoritmul de descompunere a unui graf in componente triconexe este prezentat in cele

Διαβάστε περισσότερα

ELEMENTE DE STABILITATE A SISTEMELOR LINIARE

ELEMENTE DE STABILITATE A SISTEMELOR LINIARE 6 ELEMENTE DE STABILITATE A SISTEMELOR LINIARE In sudiul sabiliăţii sisemelor se uilizează două concepe: concepul de sabiliae inernă (a sării) şi concepul de sabiliae exernă (a ieşirii) 6 STABILITATEA

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

IX. GRAFURI. e 1. e 2

IX. GRAFURI. e 1. e 2 IX. GRAFURI. Elemente de teoria grafurilor: definiţii şi terminologie. Relaţiile între obiecte sunt descrise în mod natural prin intermediul grafurilor. Interconexiunea elementelor într-un circuit sau

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

1 Noţiuni privind teoria probabilităţilor Noţiuni privind statistica matematică Modelul clasic de regresie liniară...

1 Noţiuni privind teoria probabilităţilor Noţiuni privind statistica matematică Modelul clasic de regresie liniară... CUPRINS Inroducere... 4 Noţiuni privind eoria probabiliăţilor... 3 Noţiuni privind saisica maemaică... 6 3 Modelul clasic de regresie liniară... 35 4 Abaeri de la ipoezele modelului clasic de regresie

Διαβάστε περισσότερα

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu

Διαβάστε περισσότερα

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora.

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora. Cap PRIMITIVE 5 CAPITOLUL PRIMITIVE METODE GENERALE DE CALCUL ALE PRIMITIVELOR Î aces paragraf vom reamii oţiuea de primiivă, proprieăţile primiivelor şi meodele geerale de calcul ale acesora Defiiţia

Διαβάστε περισσότερα

GRAFURI NEORIENTATE. 1. NoŃiunea de graf neorientat

GRAFURI NEORIENTATE. 1. NoŃiunea de graf neorientat . NoŃiunea de graf neorientat GRAFURI NEORIENTATE DefiniŃie. Se numeşte graf neorientat o pereche ordonată de mulńimi notată G=(V, M) unde: V : este o mulńime finită şi nevidă, ale cărei elemente se numesc

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

ENUNŢURI ŞI REZOLVĂRI 2012

ENUNŢURI ŞI REZOLVĂRI 2012 ENNŢ Ş EZOLVĂ 1 1. Două rezisoare cu rezisenţele 1 = Ω şi = 8 Ω se monează în serie, aoi în aralel. aorul dinre rezisenţele echivalene serie/aralel ese: a) l/; b) 9/; c) ; d) /16; e) /9; f) 16/. ezisenţele

Διαβάστε περισσότερα

INTRODUCERE IN TEORIA SISTEMELOR AUTOMATE

INTRODUCERE IN TEORIA SISTEMELOR AUTOMATE 1 INTRODUCERE IN TEORIA SISTEMELOR AUTOMATE Disciplina Teoria sisemelor auomae consiuie o pune de legăura înre eapa pregăirii ehnice fundamenale şi eapa pregăirii de specialiae, inroducănd o serie de cunoşine,

Διαβάστε περισσότερα

Capitolul IC.07. Grafuri

Capitolul IC.07. Grafuri Capitolul Cuvinte-cheie Graf, digraf, nod, arc, muchie, Parcurgeri în adâncime, în lățime, sortare topologică IC.07. Aspecte generale IC.07.. Definții Definiție: [L0] Un graf este o pereche G = ( V, E),

Διαβάστε περισσότερα

6. Algoritmi greedy. 6.1 Tehnica greedy

6. Algoritmi greedy. 6.1 Tehnica greedy 6. Algoritmi greedy Pusi in fata unei probleme pentru care trebuie sa elaboram un algoritm, de multe ori nu stim cum sa incepem. Ca si in orice alta activitate, exista cateva principii generale care ne

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Stabilizator cu diodă Zener

Stabilizator cu diodă Zener LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformaa Laplace GOM mai 8 Tranformaa Laplace În cele ce urmează vom udia ranformaa Laplace, care din punc de vedere maemaic nu ee decâ o inegrală improrie şi cu parameru (vezi formula ()), dar are numeroae

Διαβάστε περισσότερα

Cercetari operationale. O.M. Gurzău

Cercetari operationale. O.M. Gurzău Cercetari operationale O.M. Gurzău 1 1Programare liniară 1.1 Algoritmul Simplex (194, G. Dantzig) Problema: Program liniar sub formă canonică: Săseafle maximul funcţiei (1.1.1) cu condiţiile: f (x 1,...x

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc = GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

ALGORITMICA GRAFURILOR. C. Croitoru

ALGORITMICA GRAFURILOR. C. Croitoru ALGORITMICA GRAFURILOR C. Croitoru 2015-2016 I. Vocabular al Teoriei grafurilor 1. Definiţia unui graf Un graf este o pereche G = (V (G), E(G)), unde - V (G) este o mulţime finită nevidă, iar - E(G) este

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

CURS facultativ ELEMENTE DE TEORIA DISTRIBUŢIILOR

CURS facultativ ELEMENTE DE TEORIA DISTRIBUŢIILOR CUS faculaiv ELEMENTE DE TEOIA DISTIBUŢIILO 1. Noţiunea de disribuţie Fie ϕ : C o funcţie; definim suporul prin închiderea mulţimii penru care ϕ nu se anulează, adică supp ϕ = { ϕ() 0}. Se poae demonsra

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα