Ý NGHĨA BẢNG HỒI QUY MÔ HÌNH BẰNG PHẦN MỀM EVIEWS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ý NGHĨA BẢNG HỒI QUY MÔ HÌNH BẰNG PHẦN MỀM EVIEWS"

Transcript

1 Ý NGHĨA BẢNG HỒI QUY MÔ HÌNH BẰNG PHẦN MỀM EVIEWS CẦN KÍ TÊN Ý NGHĨA XEM HIỆU 1 Dependent Variable Tên biến phụ thuộc Y Phương pháp bình Method: Least phương tối thiểu (nhỏ OLS Squares nhất) Date - Time Ngày giờ thực hiện 2 Sample Included Observations 3 Cột Variable 4 Cột Coefficient 5 Cột Std. Error 6 Cột t-statistic 7 Cột Prob 8 R - Squared Số liệu mẫu Cỡ mẫu (số quan sát) Các biến giải thích có trong mô hình (trong đó C là hệ số bị chặn) Giá trị các hệ số hồi quy Sai số chuẩn của các hệ số hồi quy Giá trị thống kê t tương ứng (trong đó t là đại lương ngẫu nhiên có phân phối Student với bậc tự do (n-k)) Giá trị xác suất của thống kê t tương ứng Hệ số xác định mô hình n hoặc = p value CÔNG THỨC TÍNH = var p-value j = P(t t j ) = 1 = h =, 9 Adjusted R- Squared Hệ số xác định có hiệu chỉnh = 1 (1 ) 1 10 S.E of regression Sai số chuẩn của hồi quy (giá trị ước lượng cho ) = = 1 2 =, Trường Đại Học Tài Chính Marketing 1

2 = 11 Sum squared resid Tổng bình phương các sai lệch (phần dư) RSS = Log likelihood Durbin Watson Stat Mean dependent var Tiêu chuẩn ước lượng hợp lý (Logarit của hàm hợp lý) Thống kê Durbin - Watson Giá trị trung bình mẫu của biến phụ thuộc L d = =, = 1 và = + 14 S.D dependent var Độ lệch chuẩn mẫu có hiệu chỉnh của biến phụ thuộc = S = Akaike info criterion Tiêu chuẩn Akaike AIC Schwarz info criterion Tiêu chuẩn Schwarz SC 15 F - Statistic Giá trị của thống kê F F =. 16 Prob (F Statistic) Giá trị xác suất của thống kê F tương ứng (với F là biến ngẫu nhiên có phân phối Fisher có bậc tự do (k-1, n-k)) p- value p-value = P(F F- Statistic) Trường Đại Học Tài Chính Marketing 2

3 ÔN TẬP CÁCH GIẢI ĐỀ THI KINH TẾ LƯỢNG CÂU YÊU CẦU CÁCH GIẢI a) Tìm mô hình hồi quy tuyến tính mẫu của Y theo X MÔ HÌNH HỒI QUY HAI BIẾN nβ + β X = Y Cách 1: Giải hpt sau tìm được β X + β X = (XY) β,β Þ Hàm hồi quy tuyến tính mẫu (SRF) : = + Cách 2: Sử dụng S,S,r,,X,Y để tìm β,β β = r,. S S và β = Y β X Þ Hàm hồi quy tuyến tính mẫu (SRF) : = + Cách 3: Dựa vào bảng hồi quy mô hình bằng Eviews ta có được β,β Þ Hàm hồi quy tuyến tính mẫu (SRF) : = + b) Nêu ý nghĩa của các hệ số hồi quy c) Tính hệ số xác định mô hình d) Nêu ý nghĩa hệ số xác định mô hình : Nếu không có X (X = 0) thì Y trung bình là đơn vị. : Khi X tăng lên 1 đơn vị thì Y tăng trung bình là đơn vị. Cách 1: =, hay R = 1 = trong đó TSS= n.s ; ESS= n.β.s ; RSS = n 1 r, S Cách 2: Dựa vào bảng hồi quy mô hình bằng Eviews ta có được (R Squared). R (= ): sự biến thiên của X giải thích xấp xỉ a% sự biến thiên của Y (khoảng 1- a% chưa giải thích được). Trường Đại Học Tài Chính Marketing 3

4 e) Tìm khoảng tin cậy cho các hệ số hồi quy tổng thể, với độ tin cậy Ta dùng thống kê sau: T = ~ St(n 2);j= 1,2 Với = 1 cho trước ta tìm được C = t Khoảng ước lượng cho : β Î [β Cse β ; β + Cse β ] Trong đó: se β = var β Ta có: var β = σ + ; var β = f) Hãy ước lượng phương sai của sai số ngẫu nhiên tổng thể (hay tìm khoảng tin cậy cho phương sai nhiễu) với độ tin cậy g) Khi X thay đổi có ảnh hưởng tới Y hay không với mức ý nghĩa σ = trongđó σ thaybằng σ 1 n 2 e = n n 2 1 r, Ta dùng thống kê sau: (n 2)σ Y = ~χ (n 2) σ Với α = 1 γ cho trước ta có a = χ (n 2) ; b = χ (n 2) Khoảng ước lượng cho : (n 2)σ (n 2)σ σ ; b a Bài toán kiểm định: H :β = 0 (X thayđổikhông ảnh hưởng tớiy) H :β ¹ 0 (X thayđổicó ảnh hưởng tớiy) Cách 1: Nếu H 0 đúng, ta có thống kê T = β ~ St(n 2) se β S Với cho trước ta tìm được C = t Nếu ½T½ C, bác bỏ H 0. Cách 2: Ta có t = Dựa vào bảng hồi quy mô hình bằng Eviews ta có: p-value 2 = P ( t t 2 ), trong đó t ~ St(n 2) Trường Đại Học Tài Chính Marketing 4

5 h) Mô hình có phù hợp hay không với mức ý nghĩa i) Dự báo giá trị trung bình của Y khi X = X 0, với độ tin cậy cho trước Bài toán kiểm định: H :R = 0 (Mô hìnhkhông phù hợp) H :R > 0 (Mô hìnhphù hợp) Cách 1: Ta dùng thống kê (n 2)R F = ~ F(1,n 2) 1 R Với cho trước ta tìm được C = f (1,n 2) Nếu F C, bác bỏ H 0. Cách 2: Ta có F = ( ) Dựa vào bảng hồi quy mô hình bằng Eviews ta có: p-value = P(F F-Statistic), trong đó F ~ F(1,n 2) Với X 0 cho trước ta tìm được Y dựa vào phương trình Y = β + β X. Để dự báo giá trị trung bình của Y, ta dùng thống kê T = Y E(Y½X = X ) ~ St(n 2) se(y ) Độ lệch chuẩn của Y se Y = var Y = σ 1 n + X X ns Trong đó: σ = 1 r, S Với = 1 cho trước ta tìm được C = t Khoảng dự báo cho giá trị trung bình của Y E(Y½X = X ) Î Y Cse Y ; Y + Cse Y Trường Đại Học Tài Chính Marketing 5

6 j) Dự báo giá trị cá biệt của Y khi X = X 0, với độ tin cậy cho trước Với X 0 cho trước ta tìm được Y dựa vào phương trình Y = β + β X. Để dự báo giá trị cá biệt của Y, ta dùng thống kê T = Y Y ~ St(n 2) se(y Y ) Độ lệch chuẩn của (Y Y ) se(y Y )= var(y Y )= σ + var Y Trong đó: var Y = σ + và: σ = 1 r, S k) Tính hệ số co giãn của Y theo X tại điểm X,Y và giải thích kết quả nhận được l) Hãy viết lại hàm hồi quy khi đơn vị tính thay đổi Với = 1 cho trước ta tìm được C = t Khoảng dự báo cho giá trị cá biệt của Y Y Y Cse(Y Y ); Y + Cse(Y Y ) Hệ số co giãn của Y theo X: Tại điểm X,Y ta có ε ½ = Y X.X Y = β.x Y ε ½ = β. X Y Ý nghĩa: Khi X tăng lên 1% thì Y tăng ε% nếu ε ½ > 0 hoặc giảm ε% nếu ε ½ < 0 Khi Y và X thay đổi đơn vị trở thành Y và X thì ta có Y = k Y và X = k X Các hệ số hồi quy tổng thể thay đổi: β = k.β và β = k k.β Mô hình được viết lại như sau: Y = β + β.x Trường Đại Học Tài Chính Marketing 6

7 a) Tìm mô hình hồi quy tuyến tính mẫu của Y theo X (xét hàm 3 biến) b) Nêu ý nghĩa của các hệ số hồi quy c) Tính hệ số xác định mô hình d) Nêu ý nghĩa hệ số xác định mô hình MÔ HÌNH HỒI QUY BỘI (NHIỀU BIẾN) Cách 1: Giải hpt sau β = (X X).(X Y)= β β β tìm được β,β,β Þ Hàm hồi quy tuyến tính mẫu (SRF): = + + Trong đó: n X X Y X X = X X X X ; X Y = X Y X X X X X Y Cách 2: Dựa vào bảng hồi quy mô hình bằng Eviews ta có được β,β,β Þ Hàm hồi quy tuyến tính mẫu (SRF): = + + : Nếu không có X 2 và X 3 (X 2 = X 3 = 0) thì Y trung bình là đơn vị. : Trong điều kiện các yếu tố khác không đổi, khi X 2 tăng lên 1 đơn vị thì Y tăng trung bình là đơn vị. : Trong điều kiện các yếu tố khác không đổi, khi X 3 tăng lên 1 đơn vị thì Y tăng trung bình là đơn vị. Cách 1: R = 1 = trong đó TSS= Y Y n Y = n Y = n.s ; ESS=.(X Y) n Y ; RSS = TSS ESS Cách 2: Dựa vào bảng hồi quy mô hình bằng Eviews ta có được (R Squared). R (= ): Mô hình giải thích khoảng a% bộ số liệu (khoảng 1- a% chưa giải thích được). Trường Đại Học Tài Chính Marketing 7

8 e) Tìm khoảng tin cậy cho các hệ số hồi quy tổng thể, với độ tin cậy f) Hãy ước lượng phương sai của sai số ngẫu nhiên tổng thể (hay tìm khoảng tin cậy cho phương sai nhiễu) với độ tin cậy g) Khi X j thay đổi có ảnh hưởng tới Y hay không với mức ý nghĩa Ta dùng thống kê sau: T = ~ St(n k);j= 1,k Với = 1 cho trước ta tìm được C = t Khoảng ước lượng cho β : β Î [β Cse β ; β + Cse β ] Trong đó: se β = var β σ = RSS n k Ta dùng thống kê sau: Y = ( ) ~χ (n k) Với α = 1 γ cho trước ta có a = χ (n k) ; b = χ (n k) Khoảng ước lượng cho : (n k)σ σ b (n k)σ ; a Bài toán kiểm định: H :β = 0 X thayđổikhông ảnh hưởng tớiy H :β ¹ 0 X thayđổicó ảnh hưởng tớiy Cách 1: Nếu H 0 đúng, ta có thống kê T = β ~ St(n k) se β Với cho trước ta tìm được C = t Nếu ½T½ C, bác bỏ H 0. Cách 2: Ta có t = Dựa vào bảng hồi quy mô hình bằng Eviews ta có: p-value j = P ( t t j ), trong đó t ~ St(n k) Trường Đại Học Tài Chính Marketing 8

9 h) Mô hình có phù hợp hay không với mức ý nghĩa i) Dự báo giá trị trung bình của Y khi X = X 0, với độ tin cậy cho trước Bài toán kiểm định: H :R = 0 (Mô hìnhkhông phù hợp) H :R > 0 (Mô hìnhphù hợp) Cách 1: Ta dùng thống kê F = R 1 R.n k ~ F(k 1,n k) k 1 Với cho trước ta tìm được C = f (k 1,n k) Nếu F C, bác bỏ H 0. Cách 2: Ta có F =. Dựa vào bảng hồi quy mô hình bằng Eviews ta có: p-value = P(F F-Statistic), trong đó F ~ F(k 1,n k) Với X 0 = 1 X X cho trước ta tìm được Y dựa vào phương trình Y = β X = (β β 1 β ). X X Để dự báo giá trị trung bình của Y, ta dùng thống kê T = Y E(Y½X = X ) ~ St(n k) se(y ) Độ lệch chuẩn của Y se Y = var Y = σ (X ) (X X) X Trong đó: σ = Với = 1 cho trước ta tìm được C = t Khoảng dự báo cho giá trị trung bình của Y E(Y½X = X ) Î Y Cse Y ; Y + Cse Y Trường Đại Học Tài Chính Marketing 9

10 j) Dự báo giá trị cá biệt của Y khi X = X 0, với độ tin cậy cho trước Với X 0 = 1 X X cho trước ta tìm được Y dựa vào phương trình 1 Y = β X = (β β β ). X X Để dự báo giá trị cá biệt của Y, ta dùng thống kê T = Y Y ~ St(n k) se(y Y ) Độ lệch chuẩn của (Y Y ) se(y Y )= var(y Y )= σ + var Y Trong đó: var Y = σ (X ) (X X) X và σ = k) Chọn mô hình nào là phù hợp nhất dựa vào dữ liệu bài toán l) Tìm khoảng tin cậy cho hai hệ số (β ± β ) Với = 1 cho trước ta tìm được C = t Khoảng dự báo cho giá trị cá biệt của Y Y Y Cse(Y Y ); Y + Cse(Y Y ) Cách 1: Nếu đề bài cho R và R ở hai mô hình thì chọn mô hình nào có R lớn hơn. trongđó:r = 1 (1 R ) n 1 n k Cách 2: Nếu đề bài cho RSS và RSS ở hai mô hình thì chọn mô hình nào có RSS nhỏ hơn. Ta dùng thống kê sau: T = β ± β (β ± β ) se β ± β ~ St(n k);j= 1,k Với = 1 cho trước ta tìm được C = t Khoảng ước lượng cho β ± β : (β ± β ) Î [ β ± β Cse β ± β ; β ± β + Cse β ± β ] Trong đó: se β ± β = var β ± β = se β + se β ± 2cov β,β Trường Đại Học Tài Chính Marketing 10

11 m) Kiểm định giả thuyết cho rằng khi X j tăng 1 đơn vị thì Y tăng β đơn vị n) Kiểm định giả thuyết cho rằng khi X j tăng 1 đơn vị thì Y tăng lớn hơn β đơn vị o) Kiểm định giả thuyết cho rằng khi X j tăng 1 đơn vị thì Y tăng ít hơn β đơn vị Bài toán kiểm định: H :β = β X tăng1 đơn vịthìy tăngβ đơn vị H :β ¹ β X tăng1 đơn vịthìy không tăngβ đơn vị Nếu H 0 đúng, ta có thống kê T = β β se β ~ St(n k) Với cho trước ta tìm được C = t Nếu ½T½ C, bác bỏ H 0. Bài toán kiểm định: H :β = β hay β β X tăng1 đơn vịthìy khôngtănghơn β đơn vị H :β > β Nếu H 0 đúng, ta có thống kê X tăng1 đơn vịthìy tănghơn β đơn vị T = β β ~ St(n k) se β Với cho trước ta tìm được C = t Nếu T C, bác bỏ H 0. Bài toán kiểm định: H :β = β hay β β X tăng1 đơn vịthìy khôngtăngíthơn β đơn vị H :β < β Nếu H 0 đúng, ta có thống kê X tăng1 đơn vịthìy tăngíthơn β đơn vị T = β β ~ St(n k) se β Với cho trước ta tìm được C = t Nếu -T C, bác bỏ H 0. Trường Đại Học Tài Chính Marketing 11

12 p) Kiểm định ý kiến cho rằng có nên loại bỏ m biến ra khỏi mô hình (hoặc thêm m biến vào mô hình) hay không Cách 1: Bài toán kiểm định: H :β = 0 nên loạim biến ra khỏimh (hoặc không thêm m biến vào MH ) H :β ¹ 0 không nên loạim biến ra khỏimô hình(hoặc nên thêm m biến vào MH ) Ta có thống kê RSS RSS F =. n k = R R. n k ~F(k 1,n k) RSS m 1 R m Với cho trước ta tìm được C = f (k 1,n k) Nếu F C, bác bỏ H 0. Cách 2: Kiểm định Wald (loại bớt biến ra khỏi mô hình) H :β = 0 (nên loạibiến ra khỏimô hình) H :β ¹ 0(không nên loạibiến ra khỏimô hình) Dựa vào bảng kiểm định Wald ta có: p-value = P(F F- Statistic), trong đó F ~ F(k 1,n k) Trường Đại Học Tài Chính Marketing 12

13 MÔ HÌNH HỒI QUY VỚI BIẾN GIẢ Mô hình quan hệ giữa chi tiêu cá nhân với thu nhập và giới tính của cá nhân đó Thành lập mô hình a) Nếu ý nghĩa của các hệ số hồi quy Y = β + βx + β D (1) Trong đó: Y là chi tiêu, X là thu nhập D = 1: nam giới, D = 0: nữ giới Mở rộng mô hình: Với mô hình trên, khi thu nhập cá nhân tăng 1 đơn vị thì chi tiêu tăng β đơn vị bất kể là nam hay nữ. Nhưng với giả thiết cho rằng nếu thu nhập tăng 1 đơn vị thì mức chi tiêu tăng thêm của nam và nữ khác nhau thì β phải là: β = β + β.d Lúc này mô hình (1) được viết lại: Y = β + β + β.d X + β D Hay: = ( ) Trong đó: XD được gọi là biến tương tác giữa X và D. - Khi D = 1: Y = β + β + β + β X Đây là hồi quy chi tiêu - thu nhập của nam. - Khi D = 0: Y = β + β X Đây là hồi quy chi tiêu - thu nhập của nữ. β : khi không có thu nhập chi tiêu trung bình của một người nữ là β đơn vị. β : khi thu nhập của một người nữ tăng 1 đơn vị thì chi tiêu trung bình của họ tăng β đơn vị. β : khi không có thu nhập thì chi tiêu trung bình của một người nam chênh lệch so với của một người nữ là β đơn vị (hay chênh lệch về hệ số tung độ gốc giữa hàm hồi qui cho nam và hàm hồi qui cho nữ). β : khi thu nhập của một người nam tăng 1 đơn vị thì chi tiêu của họ tăng nhiều hơn của nữ β đơn vị (nếu β > 0) hay tăng ít hơn của nữ β đơn vị (nếu β < 0) (hay chênh lệch về hệ số độ dốc giữa hàm hồi qui cho nam và hàm hồi qui cho nữ). Trường Đại Học Tài Chính Marketing 13

14 b) Hãy ước lượng các hệ số hồi quy, với độ tin cậy c) Kiểm định sự phù hợp của mô hình hồi quy, với mức ý nghĩa α d) Chi tiêu về loại hàng A của nam và nữ có giống nhau hay không? Kết luận với mức ý nghĩa α Ta dùng thống kê sau: T = ~ St(n k);j= 1,k Với = 1 cho trước ta tìm được C = t Khoảng ước lượng cho : β Î [β Cse β ; β + Cse β ] Trong đó: se β = var β Bài toán kiểm định: H :R = 0 (Mô hìnhkhông phù hợp) H :R > 0 (Mô hìnhphù hợp) Ta dùng thống kê F = R 1 R.n k ~ F(k 1,n k) k 1 Với cho trước ta tìm được C = f (k 1,n k) Nếu F C, bác bỏ H 0. Bài toán kiểm định: H :β = β = 0: (Chitiêunam nữ giống nhau) H :β 0 β 0:(Chitiêunam nữ không giống nhau) Kiểm định giả thiết: H :β = 0:(Biến D thayđổikhông ảnh hưởng tớiy) H :β 0: (Biến D thayđổicó ảnh hưởng tớiy) Ta có thống kê: t= ~ st(n k) Với cho trước ta tìm được C = t Nếu ½T½ C, bác bỏ H 0. Kiểm định giả thiết: H :β = 0:(Biến XD thay đổikhông ảnh hưởng tớiy) H :β 0: (Biến XD thay đổicó ảnh hưởng tớiy) Ta có thống kê: t= ~ st(n k) Với cho trước ta tìm được C = t Nếu ½T½ C, bác bỏ H 0. Kết luận: Nếu kết quả hai kiểm định trên cùng chấp nhận H 0 thì chi tiêu nam nữ không khác nhau (giống nhau). Ngược lại, nếu kết quả hai kiểm định trên cùng bác bỏ hoặc vừa có chấp nhận và bác bỏ H 0 thì chi tiêu nam nữ khác nhau. Trường Đại Học Tài Chính Marketing 14

15 KIỂM ĐỊNH GIẢ THUYẾT MÔ HÌNH a) Kiểm định Park (ước lượng mô hình hồi quy lne = β + β lnx + ε ) b) Kiểm định Glejser c) Kiểm định White 1. Phương sai thay đổi Giả thuyết: H :β = 0 (không có hiện tượng phương saithayđổi) H :β ¹ 0 (có hiện tượng phương saithayđổi) Cách 1: Nếu H 0 đúng, ta có thống kê T = β ~ St(n 2) se β Với cho trước ta tìm được C = t Nếu ½T½ C, bác bỏ H 0. Cách 2: Ta có t = Dựa vào bảng kiểm định Park bằng phần mềm Eviews ta có được: p-value 2 = P ( t t 2 ), trong đó t ~ St(n 2) Giả thuyết: H :(không có hiện tượng phương saithayđổi) H : (có hiện tượng phương saithayđổi) Cách 1: Với α cho trước ta tìm được: ( 1) (tra bảng phân phối Chi bình phương). Nếu nr 2 ( 1), bác bỏ giả thuyết H 0. Cách 2: Dựa vào bảng kiểm định Glejser bằng phần mềm Eviews ta có được: p-value = P ( ( 1)). Giả thuyết: H :(không có hiện tượng phương saithayđổi) H : (có hiện tượng phương saithayđổi) Cách 1: Với α cho trước ta tìm được: ( 1) (tra bảng phân phối Chi bình phương). Nếu nr 2 ( 1), bác bỏ giả thuyết H 0. Cách 2: Dựa vào bảng kiểm định White bằng phần mềm Eviews ta có được: p-value = P ( ( 1)). 2. Đa cộng tuyến Trường Đại Học Tài Chính Marketing 15

16 a) Khái niệm Đa cộng tuyến là hiện tượng mà các biến độc lập trong mô hình phụ thuộc tuyến tính với nhau dưới dạng hàm số. Trường Đại Học Tài Chính Marketing 16

17 b) Phát hiện đa cộng tuyến Có 4 cách phát hiện đa cộng tuyến: Cách 1: Hệ số R 2 lớn nhưng tỷ số t nhỏ Trong trường hợp R 2 cao (thường R 2 0,8) mà tỷ số t thấp thì đó chính là dấu hiệu của hiện tượng đa cộng tuyến. Nhược điểm: Chỉ thể hiện rõ khi có đa cộng tuyến ở mức độ cao. Cách 2: Hệ số tương quan giữa các cặp biến giải thích cao X X Z Z r, = X X Z Z - Ta có thể dùng ma trận tương quan (Correlation Matrix) để tìm tất cả các hệ số tương quan r, - Theo Kennedy, nếu hệ số tương quan từ 0,8 trở lên thì đa cộng tuyến trở nên nghiêm trọng. Nếu r hoặc r hoặc r cao thì mô hình có đa cộng tuyến. Điều ngược lại không đúng, nếu các r nhỏ thì chưa biết có đa cộng tuyến hay không. Cách 3: Dùng mô hình hồi quy phụ (hồi quy của mỗi biến độc lập theo các biến độc lập còn lại Kiểm định giả thuyết: H :R = 0 (Mô hìnhkhông có đa cộng tuyến) H :R > 0 (Mô hìnhcó đa cộng tuyến) Ta dùng thống kê F = R 1 R.n k ~ F(k 1,n k) k 1 Với cho trước ta tìm được C = f (k 1,n k) Nếu F C, bác bỏ H 0. Hoặc dựa vào bảng hồi quy bằng Eviews của mô hình hồi quy phụ ta có: p-value = P(F F-Statistic), trong đó F ~ F(k 1,n k) Cách 4: Dùng nhân tử phóng đại phương sai (VIF) VIF = 1 1 R Trong đó R là hệ số xác định của mô hình hồi quy phụ. Nếu VIF j 10 thì X j có đa cộng tuyến cao với các biến giải thích khác. Trường Đại Học Tài Chính Marketing 17

18 c) Khắc phục đa cộng tuyến a) Kiểm định Breusch Godfrey (BG) b) Kiểm định d của Durbin - Watson Với mô hình 3 biến thì: 1 VIF = 1 r, - Sử dụng thông tin tiên nghiệm - Loại trừ một biến độc lập ra khỏi mô hình - Thu thập thêm số liệu hoặc lấy mẫu mới - Sử dụng phương trình sai phân cấp 1 - Giảm tương quan trong các hàm hồi quy đa thức 3. Tự tương quan Giả thuyết: H :(khôngcó tự tươngquan bậc ρ) H : (có tự tươngquan bậc ρ) Cách 1: Với n đủ lớn, ta có ( ) ~ ( ) Nếu ( ) > ( ), bác bỏ giả thuyết H 0. Cách 2: Dựa vào bảng kiểm định BG bằng phần mềm Eviews ta có được: p-value = P ( ( )). Trường hợp tự tương quan bậc nhất (với n và k, tra bảng thống kê d ta tìm được d và d ): - Nếu 0 < < : có tự tương quan dương. - Nếu < < (4 )< < (4 ): không đủ chứng cứ để kết luận. - Nếu < < 4 : không có tự tương quan. - Nếu 4 < < 4: có tự tương quan âm. Trường hợp khác, người ta sử dụng quy tắc sau: - Nếu 0 < < 1: Mô hình có tự tương quan dương. - Nếu 1 < < 3: Mô hình không có tự tương quan. - Nếu 3 < < 4: Mô hình có tự tương quan âm. Trường Đại Học Tài Chính Marketing 18

Kinh tế học vĩ mô Bài đọc

Kinh tế học vĩ mô Bài đọc Chương tình giảng dạy kinh tế Fulbight Niên khóa 2011-2013 Mô hình 1. : cung cấp cơ sở lý thuyết tổng cầu a. Giả sử: cố định, Kinh tế đóng b. IS - cân bằng thị tường hàng hoá: I() = S() c. LM - cân bằng

Διαβάστε περισσότερα

Ngày 26 tháng 12 năm 2015

Ngày 26 tháng 12 năm 2015 Mô hình Tobit với Biến Phụ thuộc bị chặn Lê Việt Phú Chương trình Giảng dạy Kinh tế Fulbright Ngày 26 tháng 12 năm 2015 1 / 19 Table of contents Khái niệm biến phụ thuộc bị chặn Hồi quy OLS với biến phụ

Διαβάστε περισσότερα

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n Cơ sở Toán 1 Chương 2: Ma trận - Định thức GV: Phạm Việt Nga Bộ môn Toán, Khoa CNTT, Học viện Nông nghiệp Việt Nam Bộ môn Toán () Cơ sở Toán 1 - Chương 2 VNUA 1 / 22 Mục lục 1 Ma trận 2 Định thức 3 Ma

Διαβάστε περισσότερα

Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN

Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN Ths. Nguyễn Tiến Dũng Viện Kinh tế và Quản lý, Trường ĐH Bách khoa Hà Nội Email: dung.nguyentien3@hust.edu.vn MỤC TIÊU CỦA CHƯƠNG Sau khi học xong chương này, người

Διαβάστε περισσότερα

1.3.3 Ma trận tự tương quan Các bài toán Khái niệm Ý nghĩa So sánh hai mô hình...

1.3.3 Ma trận tự tương quan Các bài toán Khái niệm Ý nghĩa So sánh hai mô hình... BÀI TẬP ÔN THI KINH TẾ LƯỢNG Biên Soạn ThS. LÊ TRƯỜNG GIANG Thành phố Hồ Chí Minh, ngày 0, tháng 06, năm 016 Mục lục Trang Chương 1 Tóm tắt lý thuyết 1 1.1 Tổng quan về kinh tế lượng......................

Διαβάστε περισσότερα

Sử dụngụ Minitab trong thống kê môi trường

Sử dụngụ Minitab trong thống kê môi trường Sử dụngụ Minitab trong thống kê môi trường Dương Trí Dũng I. Giới thiệu Hiện nay có nhiều phần mềm (software) thống kê trên thị trường Giá cao Excel không đủ tính năng Tinh bằng công thức chậm Có nhiều

Διαβάστε περισσότερα

Năm Chứng minh Y N

Năm Chứng minh Y N Về bài toán số 5 trong kì thi chọn đội tuyển toán uốc tế của Việt Nam năm 2015 Nguyễn Văn Linh Năm 2015 1 Mở đầu Trong ngày thi thứ hai của kì thi Việt Nam TST 2015 có một bài toán khá thú vị. ài toán.

Διαβάστε περισσότερα

MALE = 1 nếu là nam, MALE = 0 nếu là nữ. 1) Nêu ý nghĩa của các hệ số hồi quy trong hàm hồi quy mẫu trên?

MALE = 1 nếu là nam, MALE = 0 nếu là nữ. 1) Nêu ý nghĩa của các hệ số hồi quy trong hàm hồi quy mẫu trên? Chương 4: HỒI QUY VỚI BIẾN GIẢ VÀ ỨNG DỤNG 1. Nghiên cứu về tuổi thọ (Y: ngày) của hai loại bóng đèn (loại A, loại B). Đặt Z = 0 nếu đó là bóng đèn loại A, Z = 1 nếu đó là bóng đèn loại B. Kết quả hồi

Διαβάστε περισσότερα

HỒI QUY TUYẾN TÍNH ĐƠN. GV : Đinh Công Khải FETP Môn: Các Phương Pháp Định Lượng

HỒI QUY TUYẾN TÍNH ĐƠN. GV : Đinh Công Khải FETP Môn: Các Phương Pháp Định Lượng 1 HỒI QUY TUYẾN TÍNH ĐƠN GV : Đnh Công Khả FETP Môn: Các Phương Pháp Định Lượng Knh tế lượng là gì? Knh tế lượng được quan tâm vớ vệc xác định các qu luật knh tế bằng thực nghệm (Thel, 1971) Knh tế lượng

Διαβάστε περισσότερα

Tự tương quan (Autocorrelation)

Tự tương quan (Autocorrelation) Tự ương quan (Auocorrelaion) Đinh Công Khải Tháng 04/2016 1 Nội dung 1. Tự ương quan là gì? 2. Hậu quả của việc ước lượng bỏ qua ự ương quan? 3. Làm sao để phá hiện ự ương quan? 4. Các biện pháp khắc phục?

Διαβάστε περισσότερα

5. Phương trình vi phân

5. Phương trình vi phân 5. Phương trình vi phân (Toán cao cấp 2 - Giải tích) Lê Phương Bộ môn Toán kinh tế Đại học Ngân hàng TP. Hồ Chí Minh Homepage: http://docgate.com/phuongle Nội dung 1 Khái niệm Phương trình vi phân Bài

Διαβάστε περισσότερα

HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD:

HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD: . Định nghĩa Hàm biến. f : D M (, ) z= f( M) = f(, ) Miền ác định của hàm f(,) là miền VD: f : D HÀM NHIỀU BIẾN M (, ) z= f(, ) = D sao cho f(,) có nghĩa. Miền ác định của hàm f(,) là tập hợp những điểm

Διαβάστε περισσότερα

Tự tương quan (Autoregression)

Tự tương quan (Autoregression) Tự ương quan (Auoregression) Đinh Công Khải Tháng 05/013 1 Nội dung 1. Tự ương quan (AR) là gì?. Hậu quả của việc ước lượng bỏ qua AR? 3. Làm sao để phá hiện AR? 4. Các biện pháp khắc phục? 1 Tự ương quan

Διαβάστε περισσότερα

Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH

Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH Câu 1: Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH Cho văn phạm dưới đây định nghĩa cú pháp của các biểu thức luận lý bao gồm các biến luận lý a,b,, z, các phép toán luận lý not, and, và các dấu mở và đóng ngoặc tròn

Διαβάστε περισσότερα

(CH4 - PHÂN TÍCH PHƯƠNG SAI, SO SÁNH VÀ KIỂM ĐỊNH) Ch4 - Phân tích phương sai, so sánh và kiểm định 1

(CH4 - PHÂN TÍCH PHƯƠNG SAI, SO SÁNH VÀ KIỂM ĐỊNH) Ch4 - Phân tích phương sai, so sánh và kiểm định 1 TIN HỌC ỨNG DỤNG (CH4 - PHÂN TÍCH PHƯƠNG SAI, SO SÁNH VÀ KIỂM ĐỊNH) Phan Trọng Tiến BM Công nghệ phần mềm Khoa Công nghệ thông tin, VNUA Email: phantien84@gmail.com Website: http://timoday.edu.vn Ch4 -

Διαβάστε περισσότερα

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b huỗi bài toán về họ đường tròn đi qua điểm cố định Nguyễn Văn inh Năm 2015 húng ta bắt đầu từ bài toán sau. ài 1. (US TST 2012) ho tam giác. là một điểm chuyển động trên. Gọi, lần lượt là các điểm trên,

Διαβάστε περισσότερα

I 2 Z I 1 Y O 2 I A O 1 T Q Z N

I 2 Z I 1 Y O 2 I A O 1 T Q Z N ài toán 6 trong kì thi chọn đội tuyển quốc gia Iran năm 2013 Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại Thương 1 Giới thiệu Trong ngày thi thứ 2 của kì thi chọn đội tuyển quốc gia Iran năm 2013 xuất hiện

Διαβάστε περισσότερα

https://www.facebook.com/nguyenkhachuongqv2 ĐỀ 56

https://www.facebook.com/nguyenkhachuongqv2 ĐỀ 56 TRƯỜNG THPT QUỲNH LƯU TỔ TOÁN Câu ( điểm). Cho hàm số y = + ĐỀ THI THỬ THPT QUỐC GIA LẦN NĂM HỌC 5-6 MÔN: TOÁN Thời gian làm bài: 8 phút (không tính thời gian phát đề ) a) Khảo sát sự biến thiên và vẽ

Διαβάστε περισσότερα

SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 LẦN 1

SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 LẦN 1 SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 0 LẦN THPT Chuyên Nguyễn Quang Diêu Môn: TOÁN; Khối D Thời gian làm bài: 80 phút, không kể thời gian phát đề ĐỀ CHÍNH THỨC I. PHẦN CHUNG CHO TẤT CẢ

Διαβάστε περισσότερα

Truy cập website: hoc360.net để tải tài liệu đề thi miễn phí

Truy cập website: hoc360.net để tải tài liệu đề thi miễn phí Tru cập website: hoc36net để tải tài liệu đề thi iễn phí ÀI GIẢI âu : ( điể) Giải các phương trình và hệ phương trình sau: a) 8 3 3 () 8 3 3 8 Ta có ' 8 8 9 ; ' 9 3 o ' nên phương trình () có nghiệ phân

Διαβάστε περισσότερα

Năm 2017 Q 1 Q 2 P 2 P P 1

Năm 2017 Q 1 Q 2 P 2 P P 1 Dùng phép vị tự quay để giải một số bài toán liên quan đến yếu tố cố định Nguyễn Văn Linh Năm 2017 1 Mở đầu Tư tưởng của phương pháp này khá đơn giản như sau. Trong bài toán chứng minh điểm chuyển động

Διαβάστε περισσότερα

Năm 2014 B 1 A 1 C C 1. Ta có A 1, B 1, C 1 thẳng hàng khi và chỉ khi BA 1 C 1 = B 1 A 1 C.

Năm 2014 B 1 A 1 C C 1. Ta có A 1, B 1, C 1 thẳng hàng khi và chỉ khi BA 1 C 1 = B 1 A 1 C. Đường thẳng Simson- Đường thẳng Steiner của tam giác Nguyễn Văn Linh Năm 2014 1 Đường thẳng Simson Đường thẳng Simson lần đầu tiên được đặt tên bởi oncelet, tuy nhiên một số nhà hình học cho rằng nó không

Διαβάστε περισσότερα

HOC360.NET - TÀI LIỆU HỌC TẬP MIỄN PHÍ. đến va chạm với vật M. Gọi vv, là vận tốc của m và M ngay. đến va chạm vào nó.

HOC360.NET - TÀI LIỆU HỌC TẬP MIỄN PHÍ. đến va chạm với vật M. Gọi vv, là vận tốc của m và M ngay. đến va chạm vào nó. HOC36.NET - TÀI LIỆU HỌC TẬP IỄN PHÍ CHỦ ĐỀ 3. CON LẮC ĐƠN BÀI TOÁN LIÊN QUAN ĐẾN VA CHẠ CON LẮC ĐƠN Phương pháp giải Vật m chuyển động vận tốc v đến va chạm với vật. Gọi vv, là vận tốc của m và ngay sau

Διαβάστε περισσότερα

Môn: Toán Năm học Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi 116. (Thí sinh không được sử dụng tài liệu)

Môn: Toán Năm học Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi 116. (Thí sinh không được sử dụng tài liệu) SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ KIỂM TRA HỌC KÌ I LỚP TRƯỜNG THPT TRUNG GIÃ Môn: Toán Năm học 0-0 Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi (Thí sinh không được sử dụng tài liệu)

Διαβάστε περισσότερα

BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY

BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY Trường Đại Học Bách Khoa TP HCM Khoa Cơ Khí BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY GVHD: PGS.TS NGUYỄN HỮU LỘC HVTH: TP HCM, 5/ 011 MS Trang 1 BÀI TẬP LỚN Thanh có tiết iện ngang hình

Διαβάστε περισσότερα

có thể biểu diễn được như là một kiểu đạo hàm của một phiếm hàm năng lượng I[]

có thể biểu diễn được như là một kiểu đạo hàm của một phiếm hàm năng lượng I[] 1 MỞ ĐẦU 1. Lý do chọn đề tài Chúng ta đều biết: không có lý thuyết tổng quát cho phép giải mọi phương trình đạo hàm riêng; nhất là với các phương trình phi tuyến Au [ ] = 0; (1) trong đó A[] ký hiệu toán

Διαβάστε περισσότερα

Q B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3

Q B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3 ài tập ôn đội tuyển năm 2015 guyễn Văn Linh Số 8 ài 1. ho tam giác nội tiếp đường tròn () có là tâm nội tiếp. cắt () lần thứ hai tại J. Gọi ω là đường tròn tâm J và tiếp xúc với,. Hai tiếp tuyến chung

Διαβάστε περισσότερα

Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα

Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα - Γενικά Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα Khi nào [tài liệu] của bạn được ban hành? Για να ρωτήσετε πότε έχει

Διαβάστε περισσότερα

Phụ thuộc hàm. và Chuẩn hóa cơ sở dữ liệu. Nội dung trình bày. Chương 7. Nguyên tắc thiết kế. Ngữ nghĩa của các thuộc tính (1) Phụ thuộc hàm

Phụ thuộc hàm. và Chuẩn hóa cơ sở dữ liệu. Nội dung trình bày. Chương 7. Nguyên tắc thiết kế. Ngữ nghĩa của các thuộc tính (1) Phụ thuộc hàm Nội dung trình bày hương 7 và huẩn hóa cơ sở dữ liệu Nguyên tắc thiết kế các lược đồ quan hệ.. ác dạng chuẩn. Một số thuật toán chuẩn hóa. Nguyên tắc thiết kế Ngữ nghĩa của các thuộc tính () Nhìn lại vấn

Διαβάστε περισσότερα

ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047)

ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047) ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047) Lưu ý: - Sinh viên tự chọn nhóm, mỗi nhóm có 03 sinh viên. Báo cáo phải ghi rõ vai trò của từng thành viên trong dự án. - Sinh viên báo cáo trực tiếp

Διαβάστε περισσότερα

O 2 I = 1 suy ra II 2 O 1 B.

O 2 I = 1 suy ra II 2 O 1 B. ài tập ôn đội tuyển năm 2014 guyễn Văn inh Số 2 ài 1. ho hai đường tròn ( 1 ) và ( 2 ) cùng tiếp xúc trong với đường tròn () lần lượt tại,. Từ kẻ hai tiếp tuyến t 1, t 2 tới ( 2 ), từ kẻ hai tiếp tuyến

Διαβάστε περισσότερα

Xác định cỡ mẫu nghiên cứu

Xác định cỡ mẫu nghiên cứu VIỆN NGHIÊN CỨU Y XÃ HỘI HỌC Xác định cỡ mẫu nghiên cứu Nguyễn Trương Nam Copyright Bản quyền thuộc về tác giả và thongke.info. Khi sử dụng một phần hoặc toàn bộ bài giảng đề nghị mọi người trích dẫn:

Διαβάστε περισσότερα

Tối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X.

Tối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X. Tối ưu tuyến tính Câu 1: (Định lý 2.1.1 - Nguyên lý biến phân Ekeland) Cho (X, d) là không gian mêtric đủ, f : X R {+ } là hàm lsc bị chặn dưới. Giả sử ε > 0 và z Z thỏa Khi đó tồn tại y X sao cho (i)

Διαβάστε περισσότερα

x y y

x y y ĐÁP ÁN - ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC SINH LỚP THPT Bài Năm học 5 6- Môn: TOÁN y 4 TXĐ: D= R Sự biến thiên lim y lim y y ' 4 4 y ' 4 4 4 ( ) - - + y - + - + y + - - + Bài Hàm số đồng biến trên các khoảng

Διαβάστε περισσότερα

(Propensity Score Matching Method) Ngày 11 tháng 5 năm 2016

(Propensity Score Matching Method) Ngày 11 tháng 5 năm 2016 Mô hình So sánh bằng Điểm Xu hướng (Propensity Score Matching Method) Lê Việt Phú Chương trình Giảng dạy Kinh tế Fulbright Ngày 11 tháng 5 năm 2016 1 / 20 Table of contents 1. Tác động can thiệp trung

Διαβάστε περισσότερα

* Môn thi: VẬT LÝ (Bảng A) * Ngày thi: 27/01/2013 * Thời gian làm bài: 180 phút (Không kể thời gian giao đề) ĐỀ:

* Môn thi: VẬT LÝ (Bảng A) * Ngày thi: 27/01/2013 * Thời gian làm bài: 180 phút (Không kể thời gian giao đề) ĐỀ: Họ và tên thí sinh:. Chữ kí giám thị Số báo danh:..... SỞ GIÁO DỤC VÀ ĐÀO TẠO BẠC LIÊU KỲ THI CHỌN HSG LỚP 0 CẤP TỈNH NĂM HỌC 0-03 ĐỀ THI CHÍNH THỨC (Gồm 0 trang) * Môn thi: VẬT LÝ (Bảng A) * Ngày thi:

Διαβάστε περισσότερα

O C I O. I a. I b P P. 2 Chứng minh

O C I O. I a. I b P P. 2 Chứng minh ài toán rotassov và ứng dụng Nguyễn Văn Linh Năm 2017 1 Giới thiệu ài toán rotassov được phát biểu như sau. ho tam giác với là tâm đường tròn nội tiếp. Một đường tròn () bất kì đi qua và. ựng một đường

Διαβάστε περισσότερα

M c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ).

M c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ). ài tập ôn đội tuyển năm 015 Nguyễn Văn inh Số 5 ài 1. ho tam giác nội tiếp () có + =. Đường tròn () nội tiếp tam giác tiếp xúc với,, lần lượt tại,,. Gọi b, c lần lượt là trung điểm,. b c cắt tại. hứng

Διαβάστε περισσότερα

Y i = β 1 + β 2 X 2i + + β k X ki + U i

Y i = β 1 + β 2 X 2i + + β k X ki + U i KHOA KINH TẾ VÀ KẾ TOÁN BỘ MÔN TOÁN KINH TẾ http://www.fea.qnu.edu.vn HOÀNG MẠNH HÙNG BÀI GIẢNG KINH TẾ LƯỢNG Y i = β 1 + β 2 X 2i + + β k X ki + U i Bình Định, tháng 9/2016 51 89/176-05 Mã số HP: 1140047

Διαβάστε περισσότερα

Chương 12: Chu trình máy lạnh và bơm nhiệt

Chương 12: Chu trình máy lạnh và bơm nhiệt /009 Chương : Chu trình máy lạnh và bơm nhiệt. Khái niệm chung. Chu trình lạnh dùng không khí. Chu trình lạnh dùng hơi. /009. Khái niệm chung Máy lạnh/bơmnhiệt: chuyển CÔNG thành NHIỆT NĂNG Nguồn nóng

Διαβάστε περισσότερα

Dữ liệu bảng (Panel Data)

Dữ liệu bảng (Panel Data) 5/6/0 ữ lệu bảng (Panel ata) Đnh Công Khả Tháng 5/0 Nộ dung. Gớ thệu chung về dữ lệu bảng. Những lợ thế kh sử dụng dữ lệu bảng. Ước lượng mô hình hồ qu dữ lệu bảng Mô hình những ảnh hưởng cố định (FEM)

Διαβάστε περισσότερα

gặp của Học viên Học viên sử dụng khái niệm tích phân để tính.

gặp của Học viên Học viên sử dụng khái niệm tích phân để tính. ĐÁP ÁN Bài 1: BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Tình huống dẫn nhập STT câu hỏi Nội dung câu hỏi Những ý kiến thường gặp của Học viên Kiến thức liên quan (Giải đáp cho các vấn đề) 1 Tính diện tích Hồ Gươm?

Διαβάστε περισσότερα

Chương 5. Chẩn đoán hồi quy: Phương sai thay đổi

Chương 5. Chẩn đoán hồi quy: Phương sai thay đổi Chương 5 Chẩn đoán hồi quy: Phương sai thay đổi Domadar N. Gujarati (Econometrics by example, 2011). Người dịch và diễn giải: Phùng Thanh Bình, MB (1/11/2017) Một trong những vấn đề thường gặp trong dữ

Διαβάστε περισσότερα

Năm Pascal xem tại [2]. A B C A B C. 2 Chứng minh. chứng minh sau. Cách 1 (Jan van Yzeren).

Năm Pascal xem tại [2]. A B C A B C. 2 Chứng minh. chứng minh sau. Cách 1 (Jan van Yzeren). Định lý Pascal guyễn Văn Linh ăm 2014 1 Giới thiệu. ăm 16 tuổi, Pascal công bố một công trình toán học : Về thiết diện của đường cônic, trong đó ông đã chứng minh một định lí nổi tiếng và gọi là Định lí

Διαβάστε περισσότερα

Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA

Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA ài tập ôn đội tuyển năm 015 guyễn Văn inh Số 6 ài 1. ho tứ giác ngoại tiếp. hứng minh rằng trung trực của các cạnh,,, cắt nhau tạo thành một tứ giác ngoại tiếp. J 1 1 1 1 hứng minh. Gọi 1 1 1 1 là tứ giác

Διαβάστε περισσότερα

Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA

Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA I. Vcto không gian Chương : VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯ BA PHA I.. Biể diễn vcto không gian cho các đại lượng ba pha Động cơ không đồng bộ (ĐCKĐB) ba pha có ba (hay bội ố của ba) cộn dây tato bố

Διαβάστε περισσότερα

Lecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace

Lecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace Lecture- 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6.3. Sơđồ hối và thực hiện hệ thống 6.. Phân tích hệ thống LTI dùng biếnđổi Laplace 6...

Διαβάστε περισσότερα

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút.

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM Môn: TOÁN Thời gian làm bài: 8 phút Câu (, điểm) Cho hàm số y = + a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho b) Viết

Διαβάστε περισσότερα

HƯỚNG DẪN SỬ DỤNG PHẦN MỀM EVIEW 7.0

HƯỚNG DẪN SỬ DỤNG PHẦN MỀM EVIEW 7.0 TRƯỜNG ĐẠI HỌC TÀI CHÍNH MARKETING BỘ MÔN TOÁN HƯỚNG DẪN SỬ DỤNG PHẦN MỀM EVIEW 7.0 ThS. NGUYỄN TRUNG ĐÔNG ThS. NGUYỄN VĂN PHONG TP. HỒ CHÍ MINH - 2013 MỤC LỤC Trang 1. Màn hình Eviews... 3 2. Các kiểu

Διαβάστε περισσότερα

x = Cho U là một hệ gồm 2n vec-tơ trong không gian R n : (1.2)

x = Cho U là một hệ gồm 2n vec-tơ trong không gian R n : (1.2) 65 TẠP CHÍ KHOA HỌC, Đại học Huế, Số 53, 2009 HỆ PHÂN HOẠCH HOÀN TOÀN KHÔNG GIAN R N Huỳnh Thế Phùng Trường Đại học Khoa học, Đại học Huế TÓM TẮT Một phân hoạch hoàn toàn của R n là một hệ gồm 2n vec-tơ

Διαβάστε περισσότερα

KỸ THUẬT ĐIỆN CHƯƠNG IV

KỸ THUẬT ĐIỆN CHƯƠNG IV KỸ THẬT ĐỆN HƯƠNG V MẠH ĐỆN PH HƯƠNG V : MẠH ĐỆN PH. Khái niệm chung Điện năng sử ụng trong công nghiệ ưới ạng òng điện sin ba ha vì những lý o sau: - Động cơ điện ba ha có cấu tạo đơn giản và đặc tính

Διαβάστε περισσότερα

Xác định nguyên nhân và giải pháp hạn chế nứt ống bê tông dự ứng lực D2400mm

Xác định nguyên nhân và giải pháp hạn chế nứt ống bê tông dự ứng lực D2400mm Xác định nguyên nhân và giải pháp hạn chế nứt ống bê tông dự ứng lực D2400mm 1. Giới thiệu Ống bê tông dự ứng lực có nòng thép D2400 là sản phẩm cung cấp cho các tuyến ống cấp nước sạch. Đây là sản phẩm

Διαβάστε περισσότερα

Chương 2: Mô hình hồi quy đơn

Chương 2: Mô hình hồi quy đơn Chương : Mô hình hồ quy đơn I. Bản chất của phân tích hồ quy: 1. Khá nệm: Phân tích hồ quy là nghên cứu sự phụ thuộc của một bến (bến phụ thuộc) vào một hay nhều bến khác (các bến gả thích) để ước lượng

Διαβάστε περισσότερα

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1- Độ dài đoạn thẳng Ax ( ; y; z ), Bx ( ; y ; z ) thì Nếu 1 1 1 1. Một Số Công Thức Cần Nhớ AB = ( x x ) + ( y y ) + ( z z ). 1 1 1 - Khoảng cách từ điểm đến mặt phẳng

Διαβάστε περισσότερα

A 2 B 1 C 1 C 2 B B 2 A 1

A 2 B 1 C 1 C 2 B B 2 A 1 Sáng tạo trong hình học Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Mở đầu Hình học là một mảng rất đặc biệt trong toán học. Vẻ đẹp của phân môn này nằm trong hình vẽ mà muốn cảm nhận được chúng

Διαβάστε περισσότερα

KỸ THUẬT ĐIỆN CHƯƠNG II

KỸ THUẬT ĐIỆN CHƯƠNG II KỸ THẬT ĐỆN HƯƠNG DÒNG ĐỆN SN Khái niệm: Dòng điện xoay chiều biến đổi theo quy luật hàm sin của thời gian là dòng điện sin. ác đại lượng đặc trưng cho dòng điện sin Trị số của dòng điện, điện áp sin ở

Διαβάστε περισσότερα

Batigoal_mathscope.org ñược tính theo công thức

Batigoal_mathscope.org ñược tính theo công thức SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa

Διαβάστε περισσότερα

Nội dung. 1. Một số khái niệm. 2. Dung dịch chất điện ly. 3. Cân bằng trong dung dịch chất điện ly khó tan

Nội dung. 1. Một số khái niệm. 2. Dung dịch chất điện ly. 3. Cân bằng trong dung dịch chất điện ly khó tan CHƯƠNG 5: DUNG DỊCH 1 Nội dung 1. Một số khái niệm 2. Dung dịch chất điện ly 3. Cân bằng trong dung dịch chất điện ly khó tan 2 Dung dịch Là hệ đồng thể gồm 2 hay nhiều chất (chất tan & dung môi) mà thành

Διαβάστε περισσότερα

1.6 Công thức tính theo t = tan x 2

1.6 Công thức tính theo t = tan x 2 TÓM TẮT LÝ THUYẾT ĐẠI SỐ - GIẢI TÍCH 1 Công thức lượng giác 1.1 Hệ thức cơ bản sin 2 x + cos 2 x = 1 1 + tn 2 x = 1 cos 2 x tn x = sin x cos x 1.2 Công thức cộng cot x = cos x sin x sin( ± b) = sin cos

Διαβάστε περισσότερα

(Complexometric. Chương V. Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên

(Complexometric. Chương V. Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên Chương V PHẢN ỨNG TẠO T O PHỨC C & CHUẨN N ĐỘĐ (Complexometric Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên ptnnguyen@hcmus.edu.vn 1. Phức chất vàhằng số bền 2. Phương pháp chuẩn độ phức 3. Cân

Διαβάστε περισσότερα

x i x k = e = x j x k x i = x j (luật giản ước).

x i x k = e = x j x k x i = x j (luật giản ước). 1 Mục lục Chương 1. NHÓM.................................................. 2 Chương 2. NHÓM HỮU HẠN.................................... 10 Chương 3. NHÓM ABEL HỮU HẠN SINH....................... 14 2 CHƯƠNG

Διαβάστε περισσότερα

(Instrumental Variables and Regression Discontinuity Design)

(Instrumental Variables and Regression Discontinuity Design) Mô hình Biến Công cụ và Hồi quy Gián đoạn (Instrumental Variables and Regression Discontinuity Design) Kinh tế lượng ứng dụng Lê Việt Phú Chương trình Giảng dạy Kinh tế Fulbright Ngày 20 tháng 5 năm 2015

Διαβάστε περισσότερα

Tuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012.

Tuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012. wwwliscpgetl Tuyển chọn Đề và đáp án : Luyện thi thử Đại ọc củ các trường trong nước năm ôn: ÌN Ọ KÔNG GN (lisc cắt và dán) ÌN ÓP ài ho hình chóp có đáy là hình vuông cạnh, tm giác đều, tm giác vuông cân

Διαβάστε περισσότερα

Bài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ. Hồ Chí Minh.

Bài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ. Hồ Chí Minh. Bài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ Khoa Toán-Tin học, Đại học Khoa học Tự nhiên, Đại học Quốc gia Thành phố Hồ Chí Minh. E-mail: hqvu@hcmus.edu.vn e d c f 1 b a 1 TÓM

Διαβάστε περισσότερα

CHƯƠNG 8: NGUYÊN LÝ THỨ NHẤT CỦA NHIỆT ĐỘNG LỰC HỌC DẠNG 1: ĐỊNH LUẬT THỨ NHẤT

CHƯƠNG 8: NGUYÊN LÝ THỨ NHẤT CỦA NHIỆT ĐỘNG LỰC HỌC DẠNG 1: ĐỊNH LUẬT THỨ NHẤT 1 CHƯƠNG 8: NGUYÊN LÝ THỨ NHẤT CỦA NHIỆT ĐỘNG LỰC HỌC 1.1. Kiến thức cơ bản: DẠNG 1: ĐỊNH LUẬT THỨ NHẤT - Dạng này là dạng ứng dụng định luật thứ nhất nhiệt động lực học để giải các bài toán về nhiêt.

Διαβάστε περισσότερα

(Models with Limited Dependent Variables) Ngày 21 tháng 11 năm 2015

(Models with Limited Dependent Variables) Ngày 21 tháng 11 năm 2015 Mô hình với Biến Phụ thuộc bị Giới hạn (Models with Limited Dependent Variables) Lê Việt Phú Chương trình Giảng dạy Kinh tế Fulbright Ngày 21 tháng 11 năm 2015 1 / 34 Table of contents Thế nào là biến

Διαβάστε περισσότερα

ĐỀ SỐ 16 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 2017 Thời gian làm bài: 90 phút; không kể thời gian giao đề (50 câu trắc nghiệm)

ĐỀ SỐ 16 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 2017 Thời gian làm bài: 90 phút; không kể thời gian giao đề (50 câu trắc nghiệm) THẦY: ĐẶNG THÀNH NAM Website: wwwvtedvn ĐỀ SỐ 6 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 7 Thời gian làm bài: phút; không kể thời gian giao đề (5 câu trắc nghiệm) Mã đề thi 65 Họ, tên thí sinh:trường: Điểm mong muốn:

Διαβάστε περισσότερα

TRANSISTOR MỐI NỐI LƯỠNG CỰC

TRANSISTOR MỐI NỐI LƯỠNG CỰC hương 4: Transistor mối nối lưỡng cực hương 4 TANSISTO MỐI NỐI LƯỠNG Ự Transistor mối nối lưỡng cực (JT) được phát minh vào năm 1948 bởi John ardeen và Walter rittain tại phòng thí nghiệm ell (ở Mỹ). Một

Διαβάστε περισσότερα

BÀI TẬP. 1-5: Dòng phân cực thuận trong chuyển tiếp PN là 1.5mA ở 27oC. Nếu Is = 2.4x10-14A và m = 1, tìm điện áp phân cực thuận.

BÀI TẬP. 1-5: Dòng phân cực thuận trong chuyển tiếp PN là 1.5mA ở 27oC. Nếu Is = 2.4x10-14A và m = 1, tìm điện áp phân cực thuận. BÀI TẬP CHƯƠNG 1: LÝ THUYẾT BÁN DẪN 1-1: Một thanh Si có mật độ electron trong bán dẫn thuần ni = 1.5x10 16 e/m 3. Cho độ linh động của electron và lỗ trống lần lượt là n = 0.14m 2 /vs và p = 0.05m 2 /vs.

Διαβάστε περισσότερα

Thuật toán Cực đại hóa Kì vọng (EM)

Thuật toán Cực đại hóa Kì vọng (EM) Thuật toán Cực đại hóa Kì vọng (EM) Trần Quốc Long 1 1 Bộ môn Khoa học Máy tính Khoa Công nghệ Thông tin Trường Đại học Công nghệ Thứ Tư, 30/03/2016 Long (Đại học Công nghệ) Thuật toán EM 30/03/2016 1

Διαβάστε περισσότερα

Бизнес Заказ. Заказ - Размещение. Официально, проба

Бизнес Заказ. Заказ - Размещение. Официально, проба - Размещение Εξετάζουμε την αγορά... Официально, проба Είμαστε στην ευχάριστη θέση να δώσουμε την παραγγελία μας στην εταιρεία σας για... Θα θέλαμε να κάνουμε μια παραγγελία. Επισυνάπτεται η παραγγελία

Διαβάστε περισσότερα

Chứng minh. Cách 1. EO EB = EA. hay OC = AE

Chứng minh. Cách 1. EO EB = EA. hay OC = AE ài tập ôn luyện đội tuyển I năm 2016 guyễn Văn inh ài 1. (Iran S 2007). ho tam giác. ột điểm nằm trong tam giác thỏa mãn = +. Gọi, Z lần lượt là điểm chính giữa các cung và của đường tròn ngoại tiếp các

Διαβάστε περισσότερα

Μπορείτε να με βοηθήσετε να γεμίσω αυτή τη φόρμα; Για να ρωτήσετε αν κάποιος μπορεί να σας βοηθήσει να γεμίσετε μια φόρμα

Μπορείτε να με βοηθήσετε να γεμίσω αυτή τη φόρμα; Για να ρωτήσετε αν κάποιος μπορεί να σας βοηθήσει να γεμίσετε μια φόρμα - Γενικά Πού μπορώ να βρω τη φόρμα για ; Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα Πότε εκδόθηκε το [έγγραφο] σας; Για να ρωτήσετε πότε έχει εκδοθεί ένα έγγραφο

Διαβάστε περισσότερα

ĐỀ CƯƠNG CHI TIẾT HỌC PHẦN (Chương trình đào tạo tín chỉ, từ Khóa 2011)

ĐỀ CƯƠNG CHI TIẾT HỌC PHẦN (Chương trình đào tạo tín chỉ, từ Khóa 2011) Đề cương chi tiết Toán cao cấp 2 1 TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP. HCM KHOA CÔNG NGHỆ THÔNG TIN CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập Tự do Hạnh phúc 1. Thông tin chung về môn học ĐỀ CƯƠNG CHI TIẾT HỌC

Διαβάστε περισσότερα

BÀI TẬP CHƯƠNG 1 Đ/S: a) 4,1419 triệu b) 3,2523 triệu Đ/S: nên đầu tư, NPV=499,3 $

BÀI TẬP CHƯƠNG 1 Đ/S: a) 4,1419 triệu b) 3,2523 triệu Đ/S: nên đầu tư, NPV=499,3 $ BÀI TẬP CHƯƠNG 1 1. Trong điều kiện lãi suất 0,9% một tháng, hãy cho biết: a) Giá trị tương lai của 3 triệu đồng bạn có hôm nay sau 3 năm. b) Giá trị hiện tại của khoản tiền 5 triệu đồng bạn sẽ nhận được

Διαβάστε περισσότερα

BÀI TẬP ÔN THI HOC KỲ 1

BÀI TẬP ÔN THI HOC KỲ 1 ÀI TẬP ÔN THI HOC KỲ 1 ài 1: Hai quả cầu nhỏ có điện tích q 1 =-4µC và q 2 =8µC đặt cách nhau 6mm trong môi trường có hằng số điện môi là 2. Tính độ lớn lực tương tác giữa 2 điện tích. ài 2: Hai điện tích

Διαβάστε περισσότερα

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC NGÀY THI : 19/06/2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề)

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC NGÀY THI : 19/06/2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề) SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ TI TUYỂN SIN LỚP NĂM ỌC 9- KÁN OÀ MÔN : TOÁN NGÀY TI : 9/6/9 ĐỀ CÍN TỨC Thời gian làm bài: phút (không kể thời gian giao đề) ài ( điểm) (Không dùng máy tính cầm tay) a Cho biết

Διαβάστε περισσότερα

có nghiệm là:. Mệnh đề nào sau đây đúng?

có nghiệm là:. Mệnh đề nào sau đây đúng? SỞ GD & ĐT TỈNH HƯNG YÊN TRƯỜNG THPT MINH CHÂU (Đề có 6 trng) ĐỀ THI THỬ THPT QG MÔN TOÁN LẦN NĂM HỌC 7-8 MÔN TOÁN Thời gin làm bài : 9 Phút; (Đề có câu) Họ tên : Số báo dnh : Mã đề 84 Câu : Bất phương

Διαβάστε περισσότερα

Ví dụ 2 Giải phương trình 3 " + = 0. Lời giải. Giải phương trình đặc trưng chúng ta nhận được

Ví dụ 2 Giải phương trình 3  + = 0. Lời giải. Giải phương trình đặc trưng chúng ta nhận được CHƯƠNG 6. PHƯƠNG TRÌNH VI PHÂN CẤP CAO Những ý tưởng cơ bản của phương trình vi phân đã được giải thích trong Chương 9, ở đó chúng ta đã tập trung vào phương trình cấp một. Trong chương này, chúng ta nghiên

Διαβάστε περισσότερα

ĐỀ 83. https://www.facebook.com/nguyenkhachuongqv2

ĐỀ 83. https://www.facebook.com/nguyenkhachuongqv2 ĐỀ 8 https://www.facebook.com/nguyenkhachuongqv GV Nguyễn Khắc Hưởng - THPT Quế Võ số - https://huongphuong.wordpress.com SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯNG YÊN KỲ THI THỬ THPT QUỐC GIA 016 LẦN TRƯỜNG THPT MINH

Διαβάστε περισσότερα

- Toán học Việt Nam

- Toán học Việt Nam - Toán học Việt Nam PHƯƠNG PHÁP GIẢI TOÁN HÌNH HỌ KHÔNG GIN ẰNG VETOR I. Á VÍ DỤ INH HỌ Vấn đề 1: ho hình chóp S. có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng () là điểm H thuộc

Διαβάστε περισσότερα

1. Nghiên cứu khoa học là gì?

1. Nghiên cứu khoa học là gì? Nội dung cần trình bày Bài 1: Khái niệm về NCKH và các bước viết một đề cương nghiên cứu PGS.TS. Lưu Ngọc Hoạt Viện YHDP và YTCC Trường ĐH Y Hà Nội 1. Nghiên cứu khoa học là gì? 2. Tại sao cán bộ y tế

Διαβάστε περισσότερα

1.5.2 Hai quá trình ngẫu nhiên quan trọng... 13

1.5.2 Hai quá trình ngẫu nhiên quan trọng... 13 Mục lục Lời nói đầu 5 1 Kiến thức chuẩn bị 7 1.1 Không gian L p và tính đo được.............. 7 1.2 Hàm biến phân bị chặn và tích phân Stieltjes...... 8 1.3 Không gian xác suất,biến ngẫu nhiên,lọc.........

Διαβάστε περισσότερα

c) y = c) y = arctan(sin x) d) y = arctan(e x ).

c) y = c) y = arctan(sin x) d) y = arctan(e x ). Trường Đại học Bách Khoa Hà Nội Viện Toán ứng dụng và Tin học ĐỀ CƯƠNG BÀI TẬP GIẢI TÍCH I - TỪ K6 Nhóm ngành 3 Mã số : MI 3 ) Kiểm tra giữa kỳ hệ số.3: Tự luận, 6 phút. Nội dung: Chương, chương đến hết

Διαβάστε περισσότερα

QCVN 28:2010/BTNMT. National Technical Regulation on Health Care Wastewater

QCVN 28:2010/BTNMT. National Technical Regulation on Health Care Wastewater CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM QCVN 28:2010/BTNMT QUY CHUẨN KỸ THUẬT QUỐC GIA VỀ NƯỚC THẢI Y TẾ National Technical Regulation on Health Care Wastewater HÀ NỘI - 2010 Lời nói đầu QCVN 28:2010/BTNMT

Διαβάστε περισσότερα

CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG

CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG Nguyễn Tăng Vũ 1. Đường thẳng Euler. Bài toán 1. Trong một tam giác thì trọng tâm, trực tâm và tâm đường tròn ngoại tiếp cùng nằm trên một đường thẳng. (Đường thẳng

Διαβάστε περισσότερα

LẤY MẪU VÀ KHÔI PHỤC TÍN HIỆU

LẤY MẪU VÀ KHÔI PHỤC TÍN HIỆU LẤY MẪU VÀ KHÔI PHỤC TÍN HIỆU Nội dung: 2.1 Lấy mẫu tín hiệu 2.2 Bộ tiền lọc 2.3 Lượng tử hóa 2.4 Khôi phục tín hiệu tương tự 2.5 Các bộ biến đổi ADC và DAC Bài tập 1 2.1 Lấy mẫu tín hiệu: Quá trình biến

Διαβάστε περισσότερα

Biên soạn và giảng dạy : Giáo viên Nguyễn Minh Tuấn Tổ Hóa Trường THPT Chuyên Hùng Vương Phú Thọ

Biên soạn và giảng dạy : Giáo viên Nguyễn Minh Tuấn Tổ Hóa Trường THPT Chuyên Hùng Vương Phú Thọ B. PHƯƠNG PHÁP GIẢI BÀI TẬP VỀ AMIN I. Phản ứng thể hiện tính bazơ của amin Phương pháp giải Một số điều cần lưu ý về tính bazơ của amin : + Các amin đều phản ứng được với các dung dịch axit như HCl, HNO,

Διαβάστε περισσότερα

MỤC LỤC LỜI NÓI ĐẦU...

MỤC LỤC LỜI NÓI ĐẦU... MỤC LỤC LỜI NÓI ĐẦU... 5 Chƣơng I: Mở đầu... 8 1.1 Tập hợp và các cấu trúc đại số... 8 1.1.1 Tập hợp và các tập con... 8 1.1.2 Tập hợp và các phép toán hai ngôi... 9 1.3 Quan hệ và quan hệ tương đương...

Διαβάστε περισσότερα

A. ĐẶT VẤN ĐỀ B. HƯỚNG DẪN HỌC SINH SỬ DỤNG PHƯƠNG PHÁP VECTƠ GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN

A. ĐẶT VẤN ĐỀ B. HƯỚNG DẪN HỌC SINH SỬ DỤNG PHƯƠNG PHÁP VECTƠ GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN . ĐẶT VẤN ĐỀ Hình họ hông gin là một hủ đề tương đối hó đối với họ sinh, hó ả áh tiếp ận vấn đề và ả trong tìm lời giải ài toán. Làm so để họ sinh họ hình họ hông gin dễ hiểu hơn, hoặ hí ít ũng giải đượ

Διαβάστε περισσότερα

Vectơ và các phép toán

Vectơ và các phép toán wwwvnmathcom Bài 1 1 Các khái niệm cơ bản 11 Dẫn dắt đến khái niệm vectơ Vectơ và các phép toán Vectơ đại diện cho những đại lượng có hướng và có độ lớn ví dụ: lực, vận tốc, 1 Định nghĩa vectơ và các yếu

Διαβάστε περισσότερα

7. Phương trình bậc hi. Xét phương trình bậc hi x + bx + c 0 ( 0) Công thức nghiệm b - 4c Nếu > 0 : Phương trình có hi nghiệm phân biệt: b+ b x ; x Nế

7. Phương trình bậc hi. Xét phương trình bậc hi x + bx + c 0 ( 0) Công thức nghiệm b - 4c Nếu > 0 : Phương trình có hi nghiệm phân biệt: b+ b x ; x Nế TỔNG HỢP KIẾN THỨC VÀ CÁCH GIẢI CÁC DẠNG ÀI TẬP TÁN 9 PHẦN I: ĐẠI SỐ. KIẾN THỨC CẦN NHỚ.. Điều kiện để căn thức có nghĩ. có nghĩ khi 0. Các công thức biến đổi căn thức.. b.. ( 0; 0) c. ( 0; > 0) d. e.

Διαβάστε περισσότερα

ĐỀ PEN-CUP SỐ 01. Môn: Vật Lí. Câu 1. Một chất điểm có khối lượng m, dao động điều hòa với biên độ A và tần số góc. Cơ năng dao động của chất điểm là.

ĐỀ PEN-CUP SỐ 01. Môn: Vật Lí. Câu 1. Một chất điểm có khối lượng m, dao động điều hòa với biên độ A và tần số góc. Cơ năng dao động của chất điểm là. Hocmai.n Học chủ động - Sống tích cực ĐỀ PEN-CUP SỐ 0 Môn: Vật Lí Câu. Một chất điểm có khối lượng m, dao động điều hòa ới biên độ A à tần số góc. Cơ năng dao động của chất điểm là. A. m A 4 B. m A C.

Διαβάστε περισσότερα

Μετανάστευση Σπουδές. Σπουδές - Πανεπιστήμιο. Για να δηλώσετε ότι θέλετε να εγγραφείτε

Μετανάστευση Σπουδές. Σπουδές - Πανεπιστήμιο. Για να δηλώσετε ότι θέλετε να εγγραφείτε - Πανεπιστήμιο Θα ήθελα να εγγραφώ σε πανεπιστήμιο. Για να δηλώσετε ότι θέλετε να εγγραφείτε Tôi muốn ghi danh vào một trường đại học Θα ήθελα να γραφτώ για. Tôi muốn đăng kí khóa học. Για να υποδείξετε

Διαβάστε περισσότερα

Liên hệ:

Liên hệ: Giáo trình Vi tích phân 2 Bộ môn Giải tích (Kho Toán Tin học, Đại học Kho học Tự nhiên Thành phố Hồ Chí Minh) Bản ngày 19 tháng 1 năm 218 2 Đây là giáo trình cho các môn toán Vi tích phân 2 cho khối B

Διαβάστε περισσότερα

1 Dãy số và các bài toán về dãy số Giớithiệu Định nghĩa và các định lý cơ bản Một số phương pháp giải bài toán về dãy số...

1 Dãy số và các bài toán về dãy số Giớithiệu Định nghĩa và các định lý cơ bản Một số phương pháp giải bài toán về dãy số... Mục lục 1 Dãy số và các bài toán về dãy số 4 1.1 Giớithiệu... 4 1. Định nghĩa và các định lý cơ bản................... 5 1.3 Một số phương pháp giải bài toán về dãy số............. 8 1.3.1 Dãy số thực:

Διαβάστε περισσότερα

2.1 Tam giác. R 2 2Rr = d 2 (2.1.1) 1 R + d + 1. R d = 1 r (2.1.2) R d r + R + d r = ( R + d r. R d r

2.1 Tam giác. R 2 2Rr = d 2 (2.1.1) 1 R + d + 1. R d = 1 r (2.1.2) R d r + R + d r = ( R + d r. R d r Một số vấn đề về đa giác lưỡng tâm Nguyễn Văn Linh Sinh viên K50 TNH ĐH Ngoại thương 1 Giới thiệu Một đa giác lồi được gọi là lưỡng tâm khi đa giác đó vừa nội tiếp vừa ngoại tiếp đường tròn. Những đa giác

Διαβάστε περισσότερα

CHƯƠNG I NHỮNG KHÁI NIỆM CƠ BẢN

CHƯƠNG I NHỮNG KHÁI NIỆM CƠ BẢN Chương Những khái niệm cơ bản - CHƯƠNG I NHỮNG KHÁI NIỆM CƠ BẢN DẠNG SÓNG CỦA TÍN HIỆU Hàm mũ Hàm nấc đơn vị Hàm dốc Hàm xung lực Hàm sin Hàm tuần hoàn PHẦN TỬ ĐIỆN Phần tử thụ động Phần tử tác động ĐIỆN

Διαβάστε περισσότερα

KÝ HIỆU HÀN TRÊN BẢN VẼ THIẾT KẾ. Th.s TRẦN NGỌC DÂN BM: KỸ THUẬT TÀU THỦY. ĐH BÁCH KHOA TP. HCM

KÝ HIỆU HÀN TRÊN BẢN VẼ THIẾT KẾ. Th.s TRẦN NGỌC DÂN BM: KỸ THUẬT TÀU THỦY. ĐH BÁCH KHOA TP. HCM KÝ HIỆU HÀN TRÊN BẢN VẼ THIẾT KẾ Th.s TRẦN NGỌC DÂN BM: KỸ THUẬT TÀU THỦY. ĐH BÁCH KHOA TP. HCM TẠI SAO CẦN PHẢI ĐỌC HIỂU CHÍNH XÁC KÝ HIỆU HÀN TRÊN BẢN VẼ? TRẢ LỜI: BỞI VÌ KÝ HIỆU HÀN THÔNG BÁO RÕ RÀNG

Διαβάστε περισσότερα

B. chiều dài dây treo C.vĩ độ địa lý

B. chiều dài dây treo C.vĩ độ địa lý ĐỀ THI THỬ LẦN 1 TRƯỜNG THPT CHUYÊN HẠ LONG QUẢNG NINH MÔN VẬT LÝ LỜI GIẢI: LẠI ĐẮC HỢP FACEBOOK: www.fb.com/laidachop Group: https://www.facebook.com/groups/dethivatly.moon/ Câu 1 [316487]: Đặt điện áp

Διαβάστε περισσότερα