3. ALGORITMI GENETICI

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3. ALGORITMI GENETICI"

Transcript

1 3. ALGORITMI GENETICI Un algoritm genetic efectuează operaţii specifice în cadrul unui proces de reproducere guvernat de operatori genetici. Noile soluţii sunt create prin selecţia şi recombinarea cromozomilor existenţi, în vederea optimizării unei funcţii de evaluare specifice fiecărei probleme în parte. Semnificaţia acestei funcţii nu este relevantă pentru algoritm, ceea ce contează fiind numai valoarea sa. În general se pleacă de la o populaţie de cromozomi generată aleator şi fiecare nouă populaţie generată prin reproducere înlocuieşte parţial sau total generaţia anterioară. Funcţia de evaluare globală se îndreaptă spre optim şi oferă soluţii din ce în ce mai bune problemei. Procesul este analog teoriei neo-darwiniste a evoluţiei biologice, care afirmă că organismele adaptate continuu la schimbările de mediu au şansele cele mai mari de supravieţuire Structura algoritmilor genetici Mecanismele fundamentale care realizează legătura dintre algoritmul genetic şi problema care trebuie rezolvată sunt următoarele: - codificarea problemei în termeni de cromozomi, - funcţia de evaluare, care furnizează o măsură a calităţii fiecărui cromozom în contextul problemei respective. Codificarea se realizează de obicei prin şiruri de cifre binare. S-a demonstrat că acest mod de codificare este robust, în sensul adaptării lui la o mare varietate de probleme practice. Ceea ce i se reproşează uneori este precizia soluţiei, limitată la numărul de biţi, pe care se face reprezentarea. Alegerea unui număr suficient de mare de biţi pentru reprezentarea valorilor reale din problemă, înlătură însă acest dezavantaj. Mai jos se prezinta programe scrise in MATLAB, care fac conversia zecimal-binar si invers. function a = zecbin(numar,nrb) %ZECBIN Face conversia zecimal-binar. % NUMAR - numarul zecimal intreg ce trebuie convertit. % NRB - numarul de biti. % Returneaza : un vector binar ca rezultat al conversiei. i=0; while numar>=2 if rem(numar,2)==0 a(1,nrb-i)=0; else a(1,nrb-i)=1; i=i+1; numar=fix(numar/2); if numar==1 a(1,nrb-i)=1; for k=1:nrb-i-1 a(1,k)=0; function y = binzec(a) %BINZEC Face conversia binar-zecimal. % A - vector ce contine numarul binar de intrare. % Returneaza: un numar zecimal, rezultat al conversiei. numar=0;

2 nrb=length(a); for i=1:nrb numar=a(1,i)*2^(nrb-i)+numar; y=numar; Funcţia de evaluare primeşte la intrare şirul de cromozomi şi returnează numere sau liste de numere ce reprezintă performanţa cromozomilor. Ea are rolul mediului înconjurător pentru evoluţia naturală. Structura unui algoritm genetic fundamental este dată mai jos: 1. Se iniţializează populaţia de cromozomi: function a = initial(nrc,nrb) %INITIAL Initializeaza aleator populatia de cromozomi. % NRC - numarul de cromozomi. % NRB - numarul de biti pe cromozom. % Returneaza : o matrice aleatoare A formata din cifre binare, cu numar de linii egal cu numarul de cromozomi si numar de coloane egal cu numarul de biti pe cromozom (= nrb). a=rand(nrc,nrb); a=a>0.5; 2. Se evaluează fiecare cromozom din populaţie. Se selectează părinţii noii populaţii. 3. Se creează o nouă generaţie de cromozomi prin împerecherea cromozomilor selectaţi, folosind operatori genetici. 4. Se şterg membrii populaţiei iniţiale, pentru a fi înlocuiţi cu noua generaţie. 5. Se evaluează noii cromozomi şi se inserează în noua populaţie. 6. Dacă timpul de căutare nu s-a terminat, se merge la pasul 3. În caz contrar, se opreşte execuţia algoritmului. Modul de reprezentare a populaţiei de cromozomi, modul de evaluare a cromozomilor şi modul de reproducere sunt componente esenţiale ale algoritmului genetic şi sunt prezentate în cele ce urmează. Selecţia este un operator genetic care stabileşte şirurile populaţiei curente care vor fi alese pentru a transmite materialul lor genetic generaţiei următoare. Există trei tehnici de selecţie: cea mai utilizată este selecţia proporţională, care modelează mecanismul selecţiei naturale, în care cromozomii cu o evaluare mai mare au o şansă mai mare de a fi aleşi. Cunoscută şi sub numele de principiul ruletei, această tehnică presupune parcurgerea următoarelor etape: 1. Se stabileşte funcţia de evaluare Eval( x i ) pentru fiecare cromozom x i din populaţia dată 2. Se sumează toate funcţiile de evaluare Eval = Eval( x i ) i 3. ilor li se atribuie aleator numerele naturale i. Repetă până la crearea unui număr suficient de perechi de cromozomi: 4. Se generează numerele aleatoare n şi m, astfel ca 1 nm, Eval 5.Se alege cromozomul x i, unde i este cel mai mic număr care satisface relaţia: Eval( x ) n 6. Se alege cromozomul x j, ca la pasul 5, cu m în loc de n 7. Se stabileşte perechea de cromozomi x i şi x j. Această modalitate de selecţie poate genera serioase probleme tehnice. Dacă un cromozom din populaţie are o funcţie de evaluare de valoare mult mai mare decât a celorlalţi cromozomi, aceasta fiind departe de optim, atunci selecţia proporţională va extinde foarte repede caracteristicile acestui cromozom în populaţie. În câteva generaţii populaţia ar putea fi alcătuită j i j

3 numai din astfel de cromozomi şi algoritmul genetic nu ar mai putea evolua, deci optimul nu mai poate fi găsit. Acest fenomen este cunoscut sub numele de convergenţă prematură. O altă problemă o constituie gradientul scăzut al funcţiei de evaluare spre sfârşitul căutării. Treptat soluţia optimă este preluată de întreaga populaţie. Efectul este cunoscut sub numele de terminare lentă (slow finishing). O altă tehnică de selecţie este selecţia pe baza rangului, în care probabilitatea de a fi ales este o funcţie liniară de locul ocupat de individ (cromozom) în cadrul populaţiei. Avantajul constă în faptul că nu mai este necesară interpolarea permanentă a evaluării ca în cazul precedent. Un caz special de selecţie de acest tip este selecţia prin trunchiere, prin care se elimină o parte din cromozomii cu cea mai slabă evaluare, iar în locul lor se generează alţii, după diferite scheme posibile. Un exemplu este prezentat în continuare: 1. Din populaţia actuală se elimină n cromozomi care au evaluarea cea mai slabă. Repetă de n ori: 2. Se generează un nou cromozom x, folosind principiul ruletei 3. Dacă x diferă de toţi ceilalţi cromozomi ai populaţiei actuale, atunci el este inclus în populaţie; în caz contrar, este supus operatorului de mutaţie (explicat mai jos) până ce devine diferit de ceilalţi cromozomi şi este inclus în populaţie. O metodă euristică de selecţie este selecţia elitistă, care reţine întotdeauna cei mai buni cromozomi ai populaţiei (de regulă unul singur). Ea garantează convergenţa asimptotică spre un minim global, dar rata de convergenţă este variabilă, funcţie de problemă. Elita poate introduce un efect de dominanţă asupra populaţiei care să ducă la o stagnare timpurie a procesului de evoluţie. Soluţia constă în utilizarea operatorului de mutaţie pentru reducerea sau eliminarea acestui efect. Încrucişarea (crossover) este operatorul necesar pentru construcţia noilor indivizi ai populaţiei. Populaţia intermediară, formată din n cromozomi, este împărţită în n/2 perechi şi operatorul de încrucişare este aplicat fiecărei perechi cu o anumită probabilitate χ. Valoarea lui χ este de obicei mai mare de 0,6 şi de cele mai multe ori se alege χ = 1. Noii indivizi ai populaţiei sunt generaţi prin combinarea unor părţi alternative de material genetic provenind din două şiruri părinte a1 şi a2. Cea mai simplă schemă este încrucişarea cu un singur. Dacă numărul de biţi din cromozomul-şir este l= nrb, atunci punctul de încrucişare este ales aleator între 1 şi l. Această schemă de încrucişare este prezentată mai jos: 1. Se generează aleator un număr natural p în intervalul [ 1, l ( a i ) ] ; 2. Se generează noua pereche de cromozomi a 1nou şi a 2nou, după cum urmează: Pentru i pse execută următoarea secvenţă: a1 () i = a 2 () i şi a2 () i = a1() i ; nou Pentru i > p se execută următoarea secvenţă: a1 () i = a 1 () i şi a2 () i = a2() i. nou function [a1,a2] = cross1(a1,a2) %CROSS1 - Realizeaza incrucisarea intr-un singur punct. % A1 - cromozomul a1, A2 - cromozomul a2. % Returneaza : doi cromozomi obtinuti dupa incrucisare. nrb = length(a1); p = fix(nrb*rand+1); for i=1:p, temp(i)=a1(i); a1(i)=a2(i); a2(i)=temp(i); nou nou O variantă mai complexă de încrucişare este încrucişarea în două puncte. O generalizare a

4 acestei scheme este încrucişarea în puncte multiple, folosită mai rar, numai în situaţiile în care cromozomul conţine un număr foarte mare de biţi. Mai jos prezentăm schema de încrucişare în două puncte: 1. Se generează aleator două numere naturale p 1 şi p 2 în intervalul [ 1, l ( a i ) ] ; 2. Se generează noua pereche de cromozomi a 1nou şi a 2nou, după cum urmează: Pentru p i 1 p2se execută următoarea secvenţă: a1 nou () i = a2 () i şi a2nou () i = a1() i ; Pentru p2 < i < p 1 se execută următoarea secvenţă: a1 nou () i = a1 () i şi a2nou () i = a2() i. Mutaţia permite algoritmului genetic să găsească noi soluţii în cadrul populaţiei şi îl protejează împotriva pierderii de informaţie în cazul unor încrucişări nepotrivite. Rata mutaţiei este foarte redusă, probabilitatea mutaţiei ( notată cu μ ) având valori cuprinse între 0,001 şi 0,01. Dacă operatorul de selecţie reduce diversitatea în populaţie, cel de mutaţie determină o nouă creştere a diversităţii. Cu cât probabilitatea mutaţiei este mai mare, cu atât mai redus este riscul convergenţei premature, dar apare un nou risc datorită faptului că o rată mare de mutaţie va transforma algoritmul genetic într-un algoritm de căutare aleatoare. O schemă tipică de mutaţie pentru un cromozom x =< x1,..., x n > este: 1. Se generează aleator un număr z astfel încât 1 z n ; 2. Se selectează gena x z ; 3. x = 1 x. z z function y = mutatie(a) %MUTATIE Modifica aleator un bit al vectorului a. % A - vectorul de intrare. % Returneaza : Vectorul modificat. nrb = length(a); z=fix(rand*(nrb-1)+1); a(z)=1-a(z); y = a; 3.2. Algoritmi genetici pentru optimizare numerică Pentru a ilustra cât mai simplu modul de funcţionare a unui algoritm genetic vom rezolva două probleme simple de căutare a valorii maxime a unei funcţii unidimensionale pentru un domeniu de definiţie dat, folosind structura unui algoritm genetic fundamental. Ne propunem să găsim valoarea maximă a funcţiei: f ( x) = x 2, unde x [ 0, 31 ] şi x N. (3.1) Numărul de soluţii posibile este 2 5 = 32, deci pentru o codificare binară minimală fixăm lungimea cromozomului la 5 biţi. Considerăm că populaţia este formată din 4 indivizi, iar operatorii genetici folosiţi sunt mutaţia uniformă şi încrucişarea într-un punct. Selecţia se face pe principiul ruletei. Funcţia de evaluare este f ( x ). După iniţializarea aleatoare a populaţiei sunt posibile valorile din tabelul 3.1. Selecţia cromozomilor care participă la crearea noii generaţii se face folosind principiul ruletei. ul 3 care are evaluarea cea mai slabă este eliminat. În locul lui se alege un alt cromozom dintre cei rămaşi, pentru a păstra neschimbat numărul de indivizi din populaţie. Este foarte posibilă alegerea cromozomului 2, care are evaluarea maximă şi deci probabilitatea maximă de a fi ales. Împerecherea cromozomilor se face aleator, iar numărul de biţi schimbat între doi cromozomi în cadrul încrucişării într-un singur punct se stabileşte tot aleator. Evoluţia spre noua generaţie se face conform tabelului 3.2.

5 Tabelul 3.1. Numărul cromozomului Reprezentare binară Valoarea zecimala x f(x) , , , ,9 Suma ,0 Media 292,5 Maxima 576 relativă(%) Tabelul 3.2. părinte Număr de biţi încrucişare copil Valoarea x f(x) = x Suma 1890 Media 472,5 Maxima 841 Observăm până acum o creştere a valorii maxime de la 576 la 841 şi a valorii medii de la 292,5 la 472,5. Următoarele două iteraţii generează rezultatele prezentate în tabelele 3.3 şi respectiv 3.4. Dacă în generaţia imediat următoare nu se obţine o creştere a valorii maxime a funcţiei Tabelul 3.3. Părinte Număr de biţi încrucişare copil Valoarea x Suma 2587 Media 646,7 Maxima 841 Tabelul 3.4. părinte f(x) Număr de biţi încrucişare copil Valoarea x Suma 3003 Media 750,7 Maxima 961 f(x) obiectiv f ( x), se poate observa o creştere a valorii medii de la 472,5 la 646,7. În ultima generaţie se obţine valoarea maximă 961, corespunzătoare lui x = 31, cromozom care reprezintă

6 soluţia problemei. Datorită instrucţiunilor aleatoare este posibil ca o nouă rulare a programului să furnizeze soluţia corectă ceva mai devreme sau ceva mai târziu, dar datorită alegerii celor mai bune soluţii ca bază pentru generarea unor noi soluţii, convergenţa algoritmului spre soluţia optimă este asigurată. Un alt exemplu, care ne apropie mai mult de o problemă reală de optimizare a unei funcţii de o singură variabilă este dat în cele ce urmează. Ne propunem să găsim valoarea reală a lui x din intervalul [-1,2] care maximizează valoarea funcţiei lui Michalewicz [1], definită prin următoarea expresie: f ( x) = x sin( 10π x) + 1 (3.2) Trebuie deci să găsim o valoare din intervalul dat, astfel încât: x 0 ( ) ( ) [ ] f x0 f x, x 12, (3.3) Reprezentarea grafică a funcţiei f ( x) este dată în figura 3.1. Rezolvarea analitică a problemei Fig. 3.1 presupune rezolvarea ecuaţiei f '( x) = 0, care devine: f '( x) = sin( 10π x) + 10π x cos( 10π x) = 0, (3.4) şi care este echivalentă cu ecuaţia: tan( 10π x) = 10π x. (3.5) Ecuaţia 3.5 este o ecuaţie transcentă, care are o infinitate de soluţii de forma: 2i 1 + εi, i = 12,, xi = 0 i = 0 2i + 1 εi, i = 1, 2, (3.6) unde termeniiε i formează un şir descrescător de numere reale, convergent la zero. Maximul 37 funcţiei pe domeniul indicat se obţine pentru x 19 = + ε , şi este ceva mai mare de π valoarea lui f ( 185, ), adică f ( 185, ) = 185, sin 18π + + 1= 285,. 2 Pentru rezolvarea problemei cu algoritm genetic, pentru început stabilim modul de reprezentare a datelor. Soluţia problemei sau cromozomul este un vector binar de lungime suficientă pentru a asigura precizia dorită. Dacă dorim ca soluţia să aibă 6 zecimale, atunci domeniul [ 1, 2] trebuie împărţit în 3 10 valori distincte. Lungimea cromozomilor va fi de 22 biţi, deoarece: < (3.7)

7 Corespondenţa dintre valoarea binară a cromozomului şi numărul real pe care acesta îl reprezintă se face printr-o interpolare liniară simplă. ul care conţine numai biţi de 0 corespunde valorii reale -1, iar cromozomul care conţine numai biţi de 1 corespunde valorii reale +2. Orice alt cromozom reprezintă o valoare reală cuprinsă între cele două limite. function s = interpolare(valmin,valmax,nrb,val) %INTERPOLARE - calculeaza valoarea argumentului pentru aplicatia ceruta. % VALMIN - valoarea minima a argumentului. % VALMAX - valoarea maxima a argumentului. % NRB - numarul de biti pe cromozom. % VAL - valoarea calculata a argumentului, cuprinsa intre 0 si 2^NRB. % Returneaza : valoarea corecta in domeniul de variatie a argumentului. p=(valmax-valmin)/2^nrb; s=valmin+p*val; Populaţia de cromozomi este iniţializată prin generarea unei matrici cu număr de linii egal cu numărul cromozomilor din populaţie şi cu număr de coloane egal cu numărul biţilor dintr-un cromozom, adică 22. Toate elementele matricei sunt cifre binare generate aleator. Funcţia de evaluare a cromozomilor este echivalentă funcţiei f ( x ). Operatorii genetici folosiţi sunt şi aici încrucişarea şi mutaţia. Încrucişarea se face într-un singur punct, iar numărul biţilor care se schimbă între doi cromozomi părinţi este aleator. Mutaţia este uniformă şi - de această dată - se produc mutaţii, deoarece elementele care stabilesc probabilitatea de mutaţie pe generaţie, numărul de cromozomi din populaţie şi lungimea cromozomilor, sunt acum mult mai mari decât în exemplul precedent. Algoritmul genetic folosit pentru rezolvarea problemei are o populaţie formată din 50 de cromozomi, probabilitate de încrucişare de 0,25 şi probabilitate de mutaţie de 0,01. De multe ori se alege o probabilitate de încrucişare unitară. Acest lucru măreşte de obicei convergenţa algoritmului, dar creşte timpul de execuţie. Rezultatele experimentale obţinute pentru o evoluţie pe parcursul a 150 de generaţii sunt prezentate în figura 3.2. şi în tabelul 3.5. Se poate observa că evaluarea maximă este apropiată Fig. 3.2 de soluţia corectă încă de la prima generaţie. Ea este dată de cel mai bun individ din populaţia iniţială de 50 de indivizi care a fost generată aleator, individ care este păstrat de la o generaţie la alta. Din acest motiv, evaluarea maximă este o funcţie monoton crescătoare. Nu acelaşi lucru se întâmplă cu evaluarea medie, care prezintă şi porţiuni scăzătoare începând cu generaţia 20,

8 Tabelul 3.5. Numărul generaţiei medie maximă 1 1, , , , , , , , , , , , , , datorită încrucişărilor şi mutaţiilor produse. Deşi valoarea medie a populaţiei este în creştere, datorită eliminării celor mai slabi indivizi la fiecare generaţie, se mai întâmplă, ce-i drept cu o probabilitate destul de mică, ca părinţi reuşiţi să nu genereze întotdeauna copii la fel de reuşiţi sau mai reuşiţi, aşa cum ar fi de dorit. Algoritmul propus converge după mai puţin de 50 de generaţii la valoarea 2,850273, care corespunde unei erori relative de - 0,002 %. S-a folosit o selecţie prin trunchiere folosind principiul ruletei şi eliminând 8 dintre cei mai slabi cromozomi la fiecare generaţie. BIBLIOGRAFIE 1) Z. Michalewicz Genetic Algorithms + Data Structures = Evolution Programs, Springer- Verlag, ) R. Popa Cercetari privind elaborarea unor noi metode de testare a structurilor numerice, Teza de doctorat, Universitatea "Dunarea de Jos" din Galati, 1998.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Algoritmi genetici. 1.1 Generalităţi

Algoritmi genetici. 1.1 Generalităţi 1.1 Generalităţi Algoritmii genetici fac parte din categoria algoritmilor de calcul evoluţionist şi sunt inspiraţi de teoria lui Darwin asupra evoluţiei. Idea calculului evoluţionist a fost introdusă în

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

UNIVERSITATEA TEHNICĂ GH. ASACHI IAŞI FACULTATEA DE AUTOMATICĂ ŞI CALCULATOARE. Algoritmi genetici. Inteligenţă artificială - referat -

UNIVERSITATEA TEHNICĂ GH. ASACHI IAŞI FACULTATEA DE AUTOMATICĂ ŞI CALCULATOARE. Algoritmi genetici. Inteligenţă artificială - referat - UNIVERSITATEA TEHNICĂ GH. ASACHI IAŞI FACULTATEA DE AUTOMATICĂ ŞI CALCULATOARE Algoritmi genetici Inteligenţă artificială - referat - Chelariu Angela, Topolniceanu Irina, Dumitru Alin - 2002/2003 - ALGORITMI

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

prin egalizarea histogramei

prin egalizarea histogramei Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

III. Reprezentarea informaţiei în sistemele de calcul

III. Reprezentarea informaţiei în sistemele de calcul Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

Laborator 6. Integrarea ecuaţiilor diferenţiale

Laborator 6. Integrarea ecuaţiilor diferenţiale Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Universitatea din Bucureşti Facultatea de Matematică şi Informatică. Algebră (1)

Universitatea din Bucureşti Facultatea de Matematică şi Informatică. Algebră (1) Universitatea din ucureşti.7.4 Facultatea de Matematică şi Informatică oncursul de admitere iulie 4 omeniul de licenţă alculatoare şi Tehnologia Informaţiei lgebră (). Fie x,y astfel încât x+y = şi x +

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Sisteme liniare - metode directe

Sisteme liniare - metode directe Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice Teme de implementare in Matlab pentru Laboratorul de Metode Numerice As. Ruxandra Barbulescu Septembrie 2017 Orice nelamurire asupra enunturilor/implementarilor se rezolva in cadrul laboratorului de MN,

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

9 Testarea ipotezelor statistice

9 Testarea ipotezelor statistice 9 Testarea ipotezelor statistice Un test statistic constă în obţinerea unei deducţii bazată pe o selecţie din populaţie prin testarea unei anumite ipoteze (rezultată din experienţa anterioară, din observaţii,

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Ecuatii trigonometrice

Ecuatii trigonometrice Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos

Διαβάστε περισσότερα

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER 2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care

Διαβάστε περισσότερα

Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey

Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey Mihai Suciu Facultatea de Matematică și Informatică (UBB) Departamentul de Informatică Mai, 16, 2018 Mihai Suciu (UBB) Algoritmica

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

Seminar Algebra. det(a λi 3 ) = 0

Seminar Algebra. det(a λi 3 ) = 0 Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Statisticǎ - curs 3. 1 Seria de distribuţie a statisticilor de eşantioane 2. 2 Teorema limitǎ centralǎ 5. 3 O aplicaţie a teoremei limitǎ centralǎ 7

Statisticǎ - curs 3. 1 Seria de distribuţie a statisticilor de eşantioane 2. 2 Teorema limitǎ centralǎ 5. 3 O aplicaţie a teoremei limitǎ centralǎ 7 Statisticǎ - curs 3 Cuprins 1 Seria de distribuţie a statisticilor de eşantioane 2 2 Teorema limitǎ centralǎ 5 3 O aplicaţie a teoremei limitǎ centralǎ 7 4 Estimarea punctualǎ a unui parametru; intervalul

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 21.2 - Sistemul de criptare ElGamal Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Scurt istoric

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2)

Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2) Lucrarea 6 Zgomotul în imagini BREVIAR TEORETIC Zgomotul este un semnal aleator, care afectează informaţia utilă conţinută într-o imagine. El poate apare de-alungul unui lanţ de transmisiune, sau prin

Διαβάστε περισσότερα

7 Distribuţia normală

7 Distribuţia normală 7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Cap. 9. REZOLVAREA NUMERICĂ A PROBLEMELOR DE OPTIMIZARE

Cap. 9. REZOLVAREA NUMERICĂ A PROBLEMELOR DE OPTIMIZARE Cap. 9. REZOLVAREA NUMERICĂ A PROBLEMELOR DE OPTIMIZARE 9.1. Definirea unei probleme de optimizare În sens larg, optimizare înseamnă [D5], [I1] acţiunea de stabilire, pe baza unui criteriu prestabilit,

Διαβάστε περισσότερα

Scoruri standard Curba normală (Gauss) M. Popa

Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard cunoaştere evaluare, măsurare evaluare comparare (Gh. Zapan) comparare raportare la un sistem de referință Povestea Scufiței Roşii... 70

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

2. Circuite logice 2.5. Sumatoare şi multiplicatoare. Copyright Paul GASNER

2. Circuite logice 2.5. Sumatoare şi multiplicatoare. Copyright Paul GASNER 2. Circuite logice 2.5. Sumatoare şi multiplicatoare Copyright Paul GASNER Adunarea în sistemul binar Adunarea se poate efectua în mod identic ca la adunarea obişnuită cu cifre arabe în sistemul zecimal

Διαβάστε περισσότερα

I. Noţiuni introductive

I. Noţiuni introductive Metode Numerice Curs 1 I. Noţiuni introductive Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate astfel încât să fie rezolvate numai prin operaţii aritmetice. Prin trecerea

Διαβάστε περισσότερα