Min-max Theory, Willmore conjecture, and Energy of links

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Min-max Theory, Willmore conjecture, and Energy of links"

Transcript

1 Min-max Theory, Willmore conjecture, and Energy of links André Neves (Joint with Fernando Marques)

2 Q: What is the best way of immersing a sphere in space? A: The one that minimizes the bending energy H 2 = Σ Σ ( ) 2 k1 + k 2. 2

3 Q: What is the best way of immersing a sphere in space? A: The one that minimizes the bending energy H 2 = Σ Σ ( ) 2 k1 + k 2. 2 bending energy is conformally invariant; every compact surface has Σ H 2 4π with equality only for round sphere.

4 What is the best way of immersing a torus in space?

5 What is the best way of immersing a torus in space?

6 What is the best way of immersing a torus in space? Conjecture (Willmore, 65) For every torus Σ immersed in R 3 Σ H 2 2π 2.

7 Consider stereographic projection π : S 3 {north pole} R 3. If Σ S 3 then (1 + H 2 ) = H 2. Σ π(σ) the Willmore energy of Σ S 3 is defined to be W(Σ) = (1 + H 2 ). Σ

8 Consider stereographic projection π : S 3 {north pole} R 3. If Σ S 3 then (1 + H 2 ) = H 2. Σ π(σ) the Willmore energy of Σ S 3 is defined to be W(Σ) = (1 + H 2 ). Willmore Conjecture - 65 Every torus Σ immersed in S 3 has W(Σ) 2π 2. Σ

9 Theorem (Marques-N., 12) For every embedded surface Σ S 3 with genus g 1 W(Σ) 2π 2 with equality if and only if Σ is conformal to S 1 ( 1 2 ) S 1 ( 1 2 ). Corollary A Willmore conjecture holds. Corollary B The only two minimal surfaces in S 3 with area 2π 2 are great spheres and Clifford torus.

10 Links in space γ 1 and γ 2 two linked curves in R 3.

11 Links in space γ 1 and γ 2 two linked curves in R 3. lk (γ 1, γ 2 ) is the linking number lk = 1 lk = 3

12 Links in space Möbius cross energy of a link (γ 1, γ 2 ) is γ 1 E(γ 1, γ 2 ) = (s) γ 2 (t) ds dt. γ 1 (s) γ 2 (t) 2 S 1 S 1 E(γ 1, γ 2 ) is conformally invariant and E(γ 1, γ 2 ) 4π lk (γ 1, γ 2 )

13 Links in space Q: What is the best way of immersing a non-trivial link (γ 1, γ 2 ) in R 3? A: The one that minimizes the Möbius energy.

14 Links in space Q: What is the best way of immersing a non-trivial link (γ 1, γ 2 ) in R 3? A: The one that minimizes the Möbius energy. Conjecture (Freedman-He-Wang, 94) If lk (γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. If true, every non-trivial link has E(γ 1, γ 2 ) 2π 2.

15 Theorem (Agol-Marques-N., 12) If lk (γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2.

16 Theorem (Agol-Marques-N., 12) If lk (γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. If equality then (γ 1, γ 2 ) is conformal to the standard Hopf link in S 3 β 1 (t) = (cos t, sin t, 0, 0) and β 2 (s) = (0, 0, cos s, sin s).

17 Partial results... (Willmore 71, Shioama-Takagi 70): Conjecture is true for tubes of constant radius around a space curve.

18 Partial results... (Willmore 71, Shioama-Takagi 70): Conjecture is true for tubes of constant radius around a space curve. (Langevin-Rosenberg 76): If Σ R 3 is a knotted torus then W(Σ) 8π.

19 Partial results... (Willmore 71, Shioama-Takagi 70): Conjecture is true for tubes of constant radius around a space curve. (Langevin-Rosenberg 76): If Σ R 3 is a knotted torus then W(Σ) 8π. (Chen, 83): Conjecture is true for flat tori in 3-sphere.

20 Partial results... (Willmore 71, Shioama-Takagi 70): Conjecture is true for tubes of constant radius around a space curve. (Langevin-Rosenberg 76): If Σ R 3 is a knotted torus then W(Σ) 8π. (Chen, 83): Conjecture is true for flat tori in 3-sphere. (Langer-Singer 84): Conjecture is true for tori of revolution.

21 Partial results... (Li-Yau 82): If Σ S 3 covers a point k times then W(Σ) 4πk. Thus Σ not embedded = W(Σ) 8π.

22 Partial results... (Li-Yau 82): If Σ S 3 covers a point k times then W(Σ) 4πk. Thus Σ not embedded = W(Σ) 8π. (Li-Yau 82): Conjecture is true for a set of conformal classes which contains the conformal class of the Clifford torus.

23 Partial results... (Li-Yau 82): If Σ S 3 covers a point k times then W(Σ) 4πk. Thus Σ not embedded = W(Σ) 8π. (Li-Yau 82): Conjecture is true for a set of conformal classes which contains the conformal class of the Clifford torus. (Montiel-Ros 86):Conjecture is true for a larger set of conformal classes than the set given by Li-Yau.

24 Partial results... (Benisom-Mutz 91) Conjecture is true for observed toroidal vesicles in some cells.

25 Partial results... (Simon 93): There is a torus which has least Willmore energy among all tori.

26 Partial results... (Simon 93): There is a torus which has least Willmore energy among all tori. (Ros 99, Topping 00): Conjecture is true for tori symmetric under the antipodal map.

27 Partial results... (Simon 93): There is a torus which has least Willmore energy among all tori. (Ros 99, Topping 00): Conjecture is true for tori symmetric under the antipodal map. (Ros 00): Conjecture is true for tori symmetric with respect to a point.

28 Min-max Theory Z 2 (S 3 ) = { integral 2-currents with no boundary in S 3 }. M : Z 2 (S 3 ) R, M(Σ) = mass of Σ.

29 Min-max Theory Z 2 (S 3 ) = { integral 2-currents with no boundary in S 3 }. M : Z 2 (S 3 ) R, M(Σ) = mass of Σ. φ : I n Z 2 (S 3 ) continuous in flat norm, where I n = k-cube.

30 Min-max Theory Z 2 (S 3 ) = { integral 2-currents with no boundary in S 3 }. M : Z 2 (S 3 ) R, M(Σ) = mass of Σ. φ : I n Z 2 (S 3 ) continuous in flat norm, where I n = k-cube. [φ] = {ψ homotopic to φ relative to the boundary (i.e. ψ I n = φ I n).}

31 Min-max Theory Z 2 (S 3 ) = { integral 2-currents with no boundary in S 3 }. M : Z 2 (S 3 ) R, M(Σ) = mass of Σ. φ : I n Z 2 (S 3 ) continuous in flat norm, where I n = k-cube. [φ] = {ψ homotopic to φ relative to the boundary (i.e. ψ I n = φ I n).} L([φ]) = inf ψ [φ] sup x I n M(ψ(x)).

32 Min-max Theory Theorem (Pitts, 81) Assume L([φ]) = (this means [φ] 0 π k (Z 2 (S 3 ), φ I k ).) inf sup M(ψ(x)) > sup M(φ(x)), ψ [φ] x I k x I k There is Σ S 3 smooth embedded minimal surface (with multiplicities) so that L([φ]) = M(Σ).

33 Min-max Theory Theorem (Pitts, 81) Assume L([φ]) = (this means [φ] 0 π k (Z 2 (S 3 ), φ I k ).) inf sup M(ψ(x)) > sup M(φ(x)), ψ [φ] x I k x I k There is Σ S 3 smooth embedded minimal surface (with multiplicities) so that Conjecture: index(σ) k. L([φ]) = M(Σ).

34 Min-max Theory Theorem (Pitts, 81) Assume L([φ]) = (this means [φ] 0 π k (Z 2 (S 3 ), φ I k ).) inf sup M(ψ(x)) > sup M(φ(x)), ψ [φ] x I k x I k There is Σ S 3 smooth embedded minimal surface (with multiplicities) so that L([φ]) = M(Σ). Conjecture: index(σ) k. Theorem (Almgren, 62) π k (Z 2 (S 3 ), 0) = 0 if k 1; π 1 (Z 2 (S 3 ), 0) = Z

35 Min-max Theory Theorem (Pitts, 81) Assume L([φ]) = (this means [φ] 0 π k (Z 2 (S 3 ), φ I k ).) inf sup M(ψ(x)) > sup M(φ(x)), ψ [φ] x I k x I k There is Σ S 3 smooth embedded minimal surface (with multiplicities) so that L([φ]) = M(Σ). Conjecture: index(σ) k. Theorem (Almgren, 62) π k (Z 2 (S 3 ), 0) = 0 if k 1; π 1 (Z 2 (S 3 ), 0) = Z and given Σ = A surface then φ 0 : [ π, π] Z 2 (S 3 ), φ 0 (t) = {x : dist(x, Σ) < t} has π 1 (Z 2 (S 3 ), 0) = Z[φ 0 ].

36 Min-max Theory Theorem (Urbano, 90) Σ S 3 compact embedded minimal surface with index(σ) 5. Then either Σ is a great sphere (index(σ) = 1 and area(σ) = 4π), or Σ is the Clifford torus (index(σ) = 5 and area(σ) = 2π 2 ).

37 Min-max Theory Theorem (Urbano, 90) Σ S 3 compact embedded minimal surface with index(σ) 5. Then either Σ is a great sphere (index(σ) = 1 and area(σ) = 4π), or Σ is the Clifford torus (index(σ) = 5 and area(σ) = 2π 2 ). L([φ 0 ]) = 4π where φ 0 = Almgren s sweepout. How to obtain φ with L([φ]) = 2π 2?

38 Min-max Theory T = {oriented great spheres} S 3 R = {oriented round spheres} S 3 [0, π]

39 Min-max Theory T = {oriented great spheres} S 3 R = {oriented round spheres} S 3 [0, π] Theorem (Marques-N.) Consider φ : I 5 Z 2 (S 3 ) continuous with

40 Min-max Theory T = {oriented great spheres} S 3 R = {oriented round spheres} S 3 [0, π] Theorem (Marques-N.) Consider φ : I 5 Z 2 (S 3 ) continuous with 1 φ(i 4 {0}) = φ(i 4 {1}) = 0;

41 Min-max Theory T = {oriented great spheres} S 3 R = {oriented round spheres} S 3 [0, π] Theorem (Marques-N.) Consider φ : I 5 Z 2 (S 3 ) continuous with 1 φ(i 4 {0}) = φ(i 4 {1}) = 0; 2 φ( I 4 I) R and for x I 4, φ(x, t) T t = 1/2;

42 Min-max Theory T = {oriented great spheres} S 3 R = {oriented round spheres} S 3 [0, π] Theorem (Marques-N.) Consider φ : I 5 Z 2 (S 3 ) continuous with 1 φ(i 4 {0}) = φ(i 4 {1}) = 0; 2 φ( I 4 I) R and for x I 4, φ(x, t) T t = 1/2; 3 the sweepout t φ(1/2, 1/2, 1/2, 1/2, 1/2, t) is non-trivial.

43 Min-max Theory T = {oriented great spheres} S 3 R = {oriented round spheres} S 3 [0, π] Theorem (Marques-N.) Consider φ : I 5 Z 2 (S 3 ) continuous with 1 φ(i 4 {0}) = φ(i 4 {1}) = 0; 2 φ( I 4 I) R and for x I 4, φ(x, t) T t = 1/2; 3 the sweepout t φ(1/2, 1/2, 1/2, 1/2, 1/2, t) is non-trivial. If φ : I 4 {1/2} S 3 T S 3 has non-zero degree then L([φ]) > 4π = max x I 5 M(φ(x)).

44 Min-max Theory Corollary For φ as in previous theorem, sup x I 5 M(φ(x)) 2π 2.

45 Min-max Theory Corollary For φ as in previous theorem, sup x I 5 M(φ(x)) 2π 2. Idea: (Previous Thm) = L([φ]) > sup x I 5 M(φ(x)) = 4π

46 Min-max Theory Corollary For φ as in previous theorem, sup x I 5 M(φ(x)) 2π 2. Idea: (Previous Thm) = L([φ]) > sup x I 5 M(φ(x)) = 4π (Pitts Thm) = Σ minimal: L([φ]) = M(Σ) > 4π and index(σ) 5

47 Min-max Theory Corollary For φ as in previous theorem, sup x I 5 M(φ(x)) 2π 2. Idea: (Previous Thm) = L([φ]) > sup x I 5 M(φ(x)) = 4π (Pitts Thm) = Σ minimal: L([φ]) = M(Σ) > 4π and index(σ) 5 (Urbano s Thm) = Σ = Clifford torus = sup x I 5 M(φ(x)) L([φ]) = 2π 2.

48 Sketch of proof of Theorem: Assume L([φ]) = 4π = sup x I k M (ψ(x)) for some ψ [φ].

49 Sketch of proof of Theorem: Assume L([φ]) = 4π = sup x I k M (ψ(x)) for some ψ [φ]. Set K = ψ 1 (T ), where K I 4 {1/2}.

50 Sketch of proof of Theorem: Assume L([φ]) = 4π = sup x I k M (ψ(x)) for some ψ [φ]. Set K = ψ 1 (T ), where K I 4 {1/2}. (A) [ K ] = [ I 4 {1/2}] in H 3 ( I 4 {1/2}, Z)

51 Sketch of proof of Theorem: Assume L([φ]) = 4π = sup x I k M (ψ(x)) for some ψ [φ]. Set K = ψ 1 (T ), where K I 4 {1/2}. (A) [ K ] = [ I 4 {1/2}] in H 3 ( I 4 {1/2}, Z) φ = ψ on K and ψ : K T S 3 = degree(φ I 4 {1/2}) = degree(ψ K ) = 0

52 Sketch of proof of Theorem: Assume L([φ]) = 4π = sup x I k M (ψ(x)) for some ψ [φ]. Set K = ψ 1 (T ), where K I 4 {1/2}. (A) [ K ] = [ I 4 {1/2}] in H 3 ( I 4 {1/2}, Z) φ = ψ on K and ψ : K T S 3 = degree(φ I 4 {1/2}) = degree(ψ K ) = 0 (B) [ K ] = 0 in H 3 ( I 4 {1/2}, Z)

53 Sketch of proof of Theorem: Assume L([φ]) = 4π = sup x I k M (ψ(x)) for some ψ [φ]. Set K = ψ 1 (T ), where K I 4 {1/2}. (A) [ K ] = [ I 4 {1/2}] in H 3 ( I 4 {1/2}, Z) φ = ψ on K and ψ : K T S 3 = degree(φ I 4 {1/2}) = degree(ψ K ) = 0 (B) [ K ] = 0 in H 3 ( I 4 {1/2}, Z) ψ c non-trivial sweepout with sup M(ψ c(t)) sup M(ψ(x)) = 4π t I x I k = ψ c(i) T = c(i) K.

54 Theorem (Marques-N.) If Σ S 3 has positive genus then W(Σ) 2π 2.

55 Theorem (Marques-N.) If Σ S 3 has positive genus then W(Σ) 2π 2. 1 Given v B 4 consider F v Conf (S 3 ), x 1 v 2 x v 2 (x v) v

56 Theorem (Marques-N.) If Σ S 3 has positive genus then W(Σ) 2π 2. 1 Given v B 4 consider F v Conf (S 3 ), x 1 v 2 x v 2 (x v) v 2 C : B 4 [ π, π] Z 2 (S 3 ), C(v, t) = {x : dist(x, F v (Σ)) < t}

57 Theorem (Marques-N.) If Σ S 3 has positive genus then W(Σ) 2π 2. 1 Given v B 4 consider F v Conf (S 3 ), x 1 v 2 x v 2 (x v) v 2 C : B 4 [ π, π] Z 2 (S 3 ), C(v, t) = {x : dist(x, F v (Σ)) < t} 3 (Ros, 99) M(C(v, t)) W(C(v, 0)) = W(F v (Σ)) = W(Σ)

58 Theorem (Marques-N.) If Σ S 3 has positive genus then W(Σ) 2π 2. 1 Given v B 4 consider F v Conf (S 3 ), x 1 v 2 x v 2 (x v) v 2 C : B 4 [ π, π] Z 2 (S 3 ), C(v, t) = {x : dist(x, F v (Σ)) < t} 3 (Ros, 99) M(C(v, t)) W(C(v, 0)) = W(F v (Σ)) = W(Σ) 4 C S 3 [ π,π] is not continuous v i B 4 p / Σ = F vi (Σ) { p} v i B 4 p Σ with slope θ = F vi (Σ) B π 2 θ ( cos θn(p) sin θp).

59 Theorem (Marques-N.) If Σ S 3 has positive genus then W(Σ) 2π 2. 1 Given v B 4 consider F v Conf (S 3 ), x 1 v 2 x v 2 (x v) v 2 C : B 4 [ π, π] Z 2 (S 3 ), C(v, t) = {x : dist(x, F v (Σ)) < t} 3 (Ros, 99) M(C(v, t)) W(C(v, 0)) = W(F v (Σ)) = W(Σ) 4 C S 3 [ π,π] is not continuous v i B 4 p / Σ = F vi (Σ) { p} v i B 4 p Σ with slope θ = F vi (Σ) B π 2 θ ( cos θn(p) sin θp). 5 Reparametrize C to obtain φ : B 4 [ π, π] Z 2 (S 3 ) continuous with φ(s 3 [ π, π]) R and φ(x, t) T t = 0; 6 degree(φ S3 {0}) = genus of Σ!

60 Theorem (Marques-N.) If Σ S 3 has positive genus then W(Σ) 2π 2. 1 Given v B 4 consider F v Conf (S 3 ), x 1 v 2 x v 2 (x v) v 2 C : B 4 [ π, π] Z 2 (S 3 ), C(v, t) = {x : dist(x, F v (Σ)) < t} 3 (Ros, 99) M(C(v, t)) W(C(v, 0)) = W(F v (Σ)) = W(Σ) 4 C S 3 [ π,π] is not continuous v i B 4 p / Σ = F vi (Σ) { p} v i B 4 p Σ with slope θ = F vi (Σ) B π 2 θ ( cos θn(p) sin θp). 5 Reparametrize C to obtain φ : B 4 [ π, π] Z 2 (S 3 ) continuous with φ(s 3 [ π, π]) R and φ(x, t) T t = 0; 6 degree(φ S3 {0}) = genus of Σ! 7 Corollary to our Min-max Thm can be applied and so 2π 2 sup (v,t) B 4 [ π,π] M(φ(x)) = sup M(C(v, t)) W(Σ) (v,t) B 4 [ π,π]

61 Min-max Theory Continuous I n = n-cube; Discrete I(n, k) vertices of 3 nk subdivisions of I n ;

62 Min-max Theory Continuous I n = n-cube; φ : I n Z 2 (S 3 ) continuous in the flat topology; Discrete I(n, k) vertices of 3 nk subdivisions of I n ; sequence S = {φ i } i N with φ i : I(n, k i ) Z 2 (S 3 ), where x, y adjacent vertices = M(φ i (x) φ i (y)) δ i 0;

63 Min-max Theory Continuous I n = n-cube; φ : I n Z 2 (S 3 ) continuous in the flat topology; sup{m(φ(x)) : x I n }; Discrete I(n, k) vertices of 3 nk subdivisions of I n ; sequence S = {φ i } i N with φ i : I(n, k i ) Z 2 (S 3 ), where x, y adjacent vertices = M(φ i (x) φ i (y)) δ i 0; L(S) = lim i sup{m(φ i (x)) : x I(n, k i )};

64 Min-max Theory Continuous I n = n-cube; φ : I n Z 2 (S 3 ) continuous in the flat topology; sup{m(φ(x)) : x I n }; define [φ] π n (Z 2 (S 3 ), φ I n); Discrete I(n, k) vertices of 3 nk subdivisions of I n ; sequence S = {φ i } i N with φ i : I(n, k i ) Z 2 (S 3 ), where x, y adjacent vertices = M(φ i (x) φ i (y)) δ i 0; L(S) = lim i sup{m(φ i (x)) : x I(n, k i )}; define Π = [S] π n # (Z 2 (S 3 ), φ I n) (need φ I n continuous in varifold norm);

65 Min-max Theory Continuous I n = n-cube; φ : I n Z 2 (S 3 ) continuous in the flat topology; sup{m(φ(x)) : x I n }; define [φ] π n (Z 2 (S 3 ), φ I n); L([φ]) = inf ψ [φ] sup{m(ψ(x)) : x I n }. Discrete I(n, k) vertices of 3 nk subdivisions of I n ; sequence S = {φ i } i N with φ i : I(n, k i ) Z 2 (S 3 ), where x, y adjacent vertices = M(φ i (x) φ i (y)) δ i 0; L(S) = lim i sup{m(φ i (x)) : x I(n, k i )}; define Π = [S] π n # (Z 2 (S 3 ), φ I n) (need φ I n continuous in varifold norm); L([S]) = inf S [S] L(S).

66 Min-Max Theory Pitts Theorem Consider [S] π # n (Z 2 (S 3 ), φ I n) with L([S]) > sup{m(φ(x)) : x I n }.

67 Min-Max Theory Pitts Theorem Consider [S] π # n (Z 2 (S 3 ), φ I n) with L([S]) > sup{m(φ(x)) : x I n }. There is Σ a smooth embedded minimal surface (with multiplicities) so that L([S]) = inf L(S) = M(Σ). S [S]

68 Min-Max Theory Pitts Theorem Consider [S] π # n (Z 2 (S 3 ), φ I n) with L([S]) > sup{m(φ(x)) : x I n }. There is Σ a smooth embedded minimal surface (with multiplicities) so that L([S]) = inf L(S) = M(Σ). S [S] Interpolation Theorem Given φ : I n Z 2 (S 3 ) continuous in the flat topology, there exists k i N and φ i : I(n, k i ) 0 Z 2 (S 3 ) so that: (a) S = [{φ i } i N ] π # n (Z 2 (S 3 ), φ I n),

69 Min-Max Theory Pitts Theorem Consider [S] π # n (Z 2 (S 3 ), φ I n) with L([S]) > sup{m(φ(x)) : x I n }. There is Σ a smooth embedded minimal surface (with multiplicities) so that L([S]) = inf L(S) = M(Σ). S [S] Interpolation Theorem Given φ : I n Z 2 (S 3 ) continuous in the flat topology, there exists k i N and φ i : I(n, k i ) 0 Z 2 (S 3 ) so that: (a) S = [{φ i } i N ] π # n (Z 2 (S 3 ), φ I n), (b) L({φ i }) sup{m(φ(x)) : x I n },

70 Min-Max Theory Pitts Theorem Consider [S] π # n (Z 2 (S 3 ), φ I n) with L([S]) > sup{m(φ(x)) : x I n }. There is Σ a smooth embedded minimal surface (with multiplicities) so that L([S]) = inf L(S) = M(Σ). S [S] Interpolation Theorem Given φ : I n Z 2 (S 3 ) continuous in the flat topology, there exists k i N and φ i : I(n, k i ) 0 Z 2 (S 3 ) so that: (a) S = [{φ i } i N ] π # n (Z 2 (S 3 ), φ I n), (b) L({φ i }) sup{m(φ(x)) : x I n }, (c) Moreover, L([S]) = L([φ]). lim sup{f(φ i(x) φ(x)) x I(n, k i ) 0 } = 0. i

71 Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2.

72 Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. Given (σ 1, σ 2 ) R 4 consider G(σ 1, σ 2 ) : S 1 S 1 S 3 G(σ 1, σ 2 )(s, t) = (σ 1(s) σ 2 (t)) σ 1 (s) σ 2 (t).

73 Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. Given (σ 1, σ 2 ) R 4 consider G(σ 1, σ 2 ) : S 1 S 1 S 3 area(g(σ 1, σ 2 )) E(γ 1, γ 2 ). G(σ 1, σ 2 )(s, t) = (σ 1(s) σ 2 (t)) σ 1 (s) σ 2 (t).

74 Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. Given (σ 1, σ 2 ) R 4 consider G(σ 1, σ 2 ) : S 1 S 1 S 3 G(σ 1, σ 2 )(s, t) = (σ 1(s) σ 2 (t)) σ 1 (s) σ 2 (t). area(g(σ 1, σ 2 )) E(γ 1, γ 2 ). Given v B 4, F v (x) = Conf (R 4 ). F v (B 1 (0)) = B r(v) (c(v)). x v x v 2

75 Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. Given (σ 1, σ 2 ) R 4 consider G(σ 1, σ 2 ) : S 1 S 1 S 3 G(σ 1, σ 2 )(s, t) = (σ 1(s) σ 2 (t)) σ 1 (s) σ 2 (t). area(g(σ 1, σ 2 )) E(γ 1, γ 2 ). Given v B 4, F v (x) = Conf (R 4 ). F v (B 1 (0)) = B r(v) (c(v)). x v x v 2 1 φ : B 4 [0, + ] Z 2 (S 3 ), φ(v, λ) = G(F v (γ 1 ), λ(f v (γ 2 ) c(v)) + c(v)).

76 Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. Given (σ 1, σ 2 ) R 4 consider G(σ 1, σ 2 ) : S 1 S 1 S 3 G(σ 1, σ 2 )(s, t) = (σ 1(s) σ 2 (t)) σ 1 (s) σ 2 (t). area(g(σ 1, σ 2 )) E(γ 1, γ 2 ). Given v B 4, F v (x) = Conf (R 4 ). F v (B 1 (0)) = B r(v) (c(v)). x v x v 2 1 φ : B 4 [0, + ] Z 2 (S 3 ), φ(v, λ) = G(F v (γ 1 ), λ(f v (γ 2 ) c(v)) + c(v)). 2 area(φ(v, λ)) E(φ(v, 1)) = E(F v (γ 1 ), F v (γ 2 )) = E(γ 1, γ 2 ).

77 Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. Given (σ 1, σ 2 ) R 4 consider G(σ 1, σ 2 ) : S 1 S 1 S 3 G(σ 1, σ 2 )(s, t) = (σ 1(s) σ 2 (t)) σ 1 (s) σ 2 (t). area(g(σ 1, σ 2 )) E(γ 1, γ 2 ). Given v B 4, F v (x) = Conf (R 4 ). F v (B 1 (0)) = B r(v) (c(v)). x v x v 2 1 φ : B 4 [0, + ] Z 2 (S 3 ), φ(v, λ) = G(F v (γ 1 ), λ(f v (γ 2 ) c(v)) + c(v)). 2 area(φ(v, λ)) E(φ(v, 1)) = E(F v (γ 1 ), F v (γ 2 )) = E(γ 1, γ 2 ). 3 Given v S 3, φ(v, 1) = lk(γ 1, γ 2 ) B π/2 ( v) = degree(φ S3 {1}) = lk(γ 1, γ 2 ) 0

78 Theorem (Agol-Marques-N.) If (γ 1, γ 2 ) link in S 3 has lk(γ 1, γ 2 ) = ±1, then E(γ 1, γ 2 ) 2π 2. Given (σ 1, σ 2 ) R 4 consider G(σ 1, σ 2 ) : S 1 S 1 S 3 G(σ 1, σ 2 )(s, t) = (σ 1(s) σ 2 (t)) σ 1 (s) σ 2 (t). area(g(σ 1, σ 2 )) E(γ 1, γ 2 ). Given v B 4, F v (x) = Conf (R 4 ). F v (B 1 (0)) = B r(v) (c(v)). x v x v 2 1 φ : B 4 [0, + ] Z 2 (S 3 ), φ(v, λ) = G(F v (γ 1 ), λ(f v (γ 2 ) c(v)) + c(v)). 2 area(φ(v, λ)) E(φ(v, 1)) = E(F v (γ 1 ), F v (γ 2 )) = E(γ 1, γ 2 ). 3 Given v S 3, φ(v, 1) = lk(γ 1, γ 2 ) B π/2 ( v) = degree(φ S3 {1}) = lk(γ 1, γ 2 ) 0 4 Can apply our Min-max Thm to conclude 2π 2 max (v,t) B 4 [0,+ ] area(φ(v, t)) E(γ 1, γ 2 ).

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

The circle theorem and related theorems for Gauss-type quadrature rules

The circle theorem and related theorems for Gauss-type quadrature rules OP.circle p. / The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu Purdue University OP.circle p. 2/ Web Site http : //www.cs.purdue.edu/ archives/22/wxg/codes

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Phase-Field Force Convergence

Phase-Field Force Convergence Phase-Field Force Convergence Bo Li Department of Mathematics and Quantitative Biology Graduate Program UC San Diego Collaborators: Shibin Dai and Jianfeng Lu Funding: NSF School of Mathematical Sciences

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα