DEFORMAŢIILE GRINZILOR SOLICITATE LA ÎNCOVOIERE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "DEFORMAŢIILE GRINZILOR SOLICITATE LA ÎNCOVOIERE"

Transcript

1 CAPITOLUL DEFORMAŢIILE GRINZILOR SOLICITATE LA ÎNCOVOIERE.. Starea plană de deformaţe Un element de volum paralelppedc dntr-un element de restenţă solctat se află în stare plană de deformaţe dacă au loc deformaţ într-un sngur plan (xoy). În acest ca tensorul deformaţlor specfce este: T x,5γ yx,5γ y xy Consderăm elementul de volum ABCD, de grosme untară, cu laturle AB de lungme, BC de lungme dy, în planul xoy (Fg..). Fg.. Datortă solctărlor exteroare elementul de volum suferă atât o deplasare, cât ş o deformare. Poţa ş forma fnală a elementulu, A B C D, se obţne prntr-o

2 4 Captolul suprapunere de deplasăr ş deformăr: ) o deplasare lnară, de vector AA, având componentele u (deplasarea pe orontală) ş v (deplasarea pe vertcală). În urma aceste deplasăr elementul de volum ajunge în poţa A B C D. ) deformarea lnară a laturlor elementulu de volum (muchle se lungesc sau se scurteaă), acesta ajungând în poţa A B C D. ) deformarea unghulară a elementulu de volum, prn rotrea muchlor cu unghurle < α xy ş < α yx, elementul ajungând în poţa A B C D. Analăm deplasărle dfertelor puncte ale elementulu de volum: a. Punctul A, de coordonate (x;y) ajunge în poţa A, vectorul deplasare totală AA având componentele u ş v. b. Punctul B(x+;y) ajunge în punctul B, vectorul deplasare totală BB având componentele: u B u + ; v B v + c. Punctul D ajunge în D, componentele vectorulu deplasare fnd: u D u + dy; v y D v + dy y Cu ajutorul acestor deplasăr se pot calcula deformaţle specfce ale elementulu de volum. Deformaţle specfce lnare ale muchlor elementulu de volum: x AB AB AB ( AE u) + u B u u + u y AD AD AD ( AF V) v + dy v dy dy + vd v dy y dy dy dy y (.) Deformaţa specfcă unghulară Unghurle < α xy ş < α yx cu care se modfcă unghurle nţal drepte ale elementulu de volum:

3 Deformaţle grnlor solctate la încovoere 4 tgα xy BB A B EB EB AE u + + x vb v + u u B v + v + u + u Deoarece unghul α xy este foarte mc ş deformaţa specfcă lnară x <<, se poate face aproxmarea: α xy tgα xy În mod analog se determnă unghul α yx : α yx tgα yx y Prn defnţe deformaţa specfcă unghulară în planul xoy este unghul total cu care se modfcă unghul nţal drept <(BAD): γ xy γ yx α xy + α yx + (.) y forma: În caul general al stăr spaţale de deformaţe tensorul deformaţlor are T x,5γ,5γ yx x,5γ y,5γ xy y,5γ,5γ x y Notând deplasărle după cele tre axe de coordonate rectangulare u, v, w, componentele tensorulu deformaţlor se calculeaă cu expresle: x ; y ; y w γ xy γ yx + ; y w γ y γ y + ; γ y x γ x w +

4 44 Captolul.. Ecuaţa dferenţală a fbre med deformate Studul deformaţlor grnlor solctate la încovoere este mportant atât în problemele în care se mpun condţ de rgdtate (anumte valor pentru deformaţ) cât ş în reolvarea sstemelor statc nedetermnate. În acest studu se cerceteaă forma pe care o a după încovoere axa geometrcă a une bare drepte. Această formă este o curbă plană, numtă fbra mede deformată a bare (f.m.d.) sau lne elastcă. Fg.. Starea de deformaţe dntr-o secţune oarecare K de ordonată x a une grn solctate la încovoere (Fg...a) se caractereaă prn următoarele mărm: a. Deplasarea centrulu de greutate al secţun transversale. În Fg...b. s-a repreentat secţunea K înante ş după deformare. Se observă că centrul de greutate al secţun G suferă o deplasare lnară, de componente v deplasarea vertcală ş u deplasarea orontală. Deplasarea orontală u este

5 Deformaţle grnlor solctate la încovoere 45 negljablă în raport cu deplasarea vertcală, dec se consderă că centrul de greutate al secţun suferă doar o deplasare vertcală. Aceasta se ma numeşte ş săgeată. Legea de varaţe a săgeţ în lungul axe grn reprentă tocma ecuaţa analtcă a fbre med deformate v(x). b. Rotrea secţun transversale ϕ Dn Fg...b. se observă ca secţunea K se roteşte cu unghul ϕ. Unghul de rotre ϕ fnd foarte mc se poate aproxma prn tangenta sa: dv ϕ tg ϕ v'(x) (.) dv Problema constă în stablrea leglor de varaţe v(x) ş ϕ ( x ) v' ( x). Notăm cu ρ raa de curbură a fbre med deformate în secţunea consderată K (Fg...a). În captolul 6. s-a demonstrat că pe o fbră a secţun de cotă y tensunea normală produsă de un moment încovoetor are expresa: E σ y (.4) ρ Utlând formula lu Naver curbura fbre med deformate: ( ) y M x σ ş relaţa (.4) se poate determna I ρ ( ) M x (.5) Dn geometra dferenţală se cunoaşte relaţa dferenţală a curbur une curbe plane de ecuaţe v(x): d v ± ρ dv + Deoarece ne aflăm în domenul deformaţlor mc se poate consdera că: dv ϕ <<. Atunc curbura fbre med deformate este:

6 46 Captolul d v ± ρ (.6) Deoarece un moment încovoetor potv mcşoreaă curbura fbre med deformate, în relaţa (.6) se va utla semnul mnus. Dn (.5) ş (.6) se va obţne ecuaţa dferenţală a fbre med deformate: d v M( x) (.7) Ţnând cont de relaţa dferenţală dntre efortur ş sarcn se obţn următoarele relaţ dferenţale: dt d M p d v T( x) d p( x) 4 v ; 4.. Metoda ntegrăr analtce a ecuaţe dferenţale a fbre med deformate Dacă grnda are un sngur tronson ş se cunoaşte funcţa de efort M(x), ecuaţa dferenţală (.7) se reolvă prntr-o dublă ntegrare: dv M x + ( ) C v + ( x) [ M( x) + C] C (.8) C ş C sunt constante de ntegrare. Dacă grnda are n tronsoane, numărul constantelor de ntegrare este n, pe fecare tronson funcţa de efort M(x) fnd dfertă. Consderăm grnda cu două tronsoane (I, II), smplu reemată dn Fg... Se noteaă cu v I, ϕ I săgeată, respectv rotrea secţun, calculată utlând funcţa de efort M(x) de pe tronsonul I. În mod analog, v II, ϕ II reprentă săgeata, respectv rotrea aceleaş secţun calculată utlând funcţa de efort M(x) de pe tronsonul II. Utlând relaţle (.8) pe cele două tronsoane vor apare 4 constante de ntegrare.

7 Deformaţle grnlor solctate la încovoere 47 Fg.. Determnarea constantelor de ntegrare se face mpunând două tpur de condţ: a. Condţ la lmtă - în reaeme săgeţle sunt nule: v v - în încastrăr atât săgeţle cât ş rotrle sunt nule: v, ϕ (fbra mede deformată este tangentă la axa nedeformată a grn). b. Condţ de contnutate a fbre med deformate Prn natura sa fcă fbra mede deformată trebue să fe contnuă, fără puncte de nflexune, adcă în fecare punct al axe grn tangenta este uncă. Pentru grnda dn Fg... cele două condţ de contnutate sunt: v I vii, ϕ I ϕ II Pentru exemplfcarea metode ntegrăr analtce a ecuaţe dferenţale a fbre med deformate se consderă grnda de rgdtate constantă ( ct ) dn Fg..4, încastrată la un capăt ş încărcată în capătul lber cu o forţă concentrată.

8 48 Captolul Fg..4 Funcţa de efort M(x): M( x) Fx Aplcând relaţle (.8) se obţn: dv x Fx + C F + C ϕ x F + C ( ) x x v( x) F + C + C ( ) v x F + Cx + C 6 Dn condţle la lmtă (în încastrare) se determnă constantele C, C : ϕ () F + C C F v () F + C + C C F F F 6 6 Funcţle ϕ(x) ş v(x): F ϕ ( x) ( x ) F v( x) ( x x + ) 6 Cu ajutorul acestor funcţ se poate determna rotrea ş săgeata orcăre secţun a grn în funcţe de dstanţa până la capătul lber x. De exemplu, rotrea ş săgeata maxmă dn secţunea se calculeaă pentru x : F F ϕ max ϕ( ) ; vmax v( ) x

9 Deformaţle grnlor solctate la încovoere Metoda Mohr- Maxwell de calcul a deformaţlor Această metodă de calcul face parte dn categora metodelor energetce. Aceste metode se baeaă pe expresle energe de deformaţe a elementelor de restenţă solctate. Sub efectul solctărlor exteroare corpurle se deformeaă. Ca urmare, punctele de aplcaţe ale forţelor suferă deplasăr, dec forţele ş momentele exteroare produc lucru mecanc. Cât tmp solctărle se află în domenul elastc, lucrul mecanc produs de solctărle exteroare se acumuleaă practc în întregme ca energe potenţală a corpulu deformat. Mohr ş Maxwell au stablt următoarele expres pentru deformaţ: v ϕ n n M M ( x) m ( x) E I, ( x) m ( x) E I (.9) (.) În expresle (.9) ş (.) n este numărul de tronsoane al grn; M (x) funcţa de efort moment încovoetor produs de forţele exteroare pe tronsonul ; E modulul de elastctate longtudnal al materalulu grn pe tronsonul ş I momentul de nerţe axal al secţun grn pe tronsonul. Pentru calculul deplasăr lnare vertcale sau orontale a une secţun oarecare a grn, v sau u, se încarcă grnda, elberată de toate încărcărle exteroare, cu o forţă untară ( f ) în secţunea respectvă pe drecţa deplasăr care trebue determnată (v pe vertcală, u pe orontală). Pentru această încărcare se determnă funcţle de efort m (x) pe toate tronsoanele grn ş se aplcă relaţa (.9). Pentru calculul rotr une secţun a grn, ϕ, se încarcă grnda elberată de toate încărcărle exteroare cu un moment încovoetor untar ( m ) în secţunea respectvă, se determnă funcţle de efort m, ( x) pe tronsoanele grn, aplcându-se apo relaţa (.). Pentru exemplfcare, vom determna pentru grnda dn Fg..4 săgeata ş rotrea secţun de capăt prn metoda Mohr-Maxwell. În Fg..5. s-a repreentat grnda încărcată cu forţa exteroară F, cu o forţă untară, respectv cu un moment untar în secţunea. Funcţa de efort M(x) pentru încărcarea cu forţa F este: M( x) Fx Pentru calculul deplasăr vertcale v a secţun se încarcă grnda cu o forţă untară vertcală în secţunea ş se determnă funcţa de efort m(x): m x ( ) x

10 5 Captolul Fg..5 Utlând relaţa (.9) pentru un sngur tronson va reulta: ( Fx)( x) F x F v Pentru calculul rotr ϕ a secţun se încarcă grnda cu un moment untar în secţunea ş se determnă funcţa de efort m (x): m, ( x) Aplcând relaţa (.) va reulta rotrea secţun : ( Fx)( ) F x F ϕ Se observă că metoda Mohr-Maxwell necestă un volum de muncă mult ma mc decât metoda ntegrăr analtce a ecuaţe dferenţale a fbre med deformate, putând f utlată atât la bare drepte cât ş la bare curbe..5. Regula de ntegrare grafcă a lu Vereşceaghn În formula Mohr-Maxwell apare sub ntegrală produsul a două funcţ M(x) ş m(x), ultma funcţe fnd, la barele drepte, lnară. Consderăm o porţune dn dagramele de efort M, respectv m pentru o grndă dreaptă (Fg..6). Notăm cu Ω ara de sub dagrama M, G centrul de greutate al are Ω, x G poţa centrulu de greutate G în raport cu orgnea axe Ox ş y G c valoarea momentulu m (dagrama m) în dreptul centrulu de greutate G.

11 Deformaţle grnlor solctate la încovoere 5 Fg..6 Consderam un element de are dω de lungme ş înălţme M la ordonata oarecare x: d Ω M. Acestu element de are î corespunde valoarea m, de pe dagrama m. Integrala Mohr Maxwell este: I Mm mdω xtgαdω tgα xdω Ω Mărmea xd Ω reprentă un moment statc al suprafeţe de are Ω, dec se Ω poate scre: S xdω x G Ω. Ω Integrala Mohr-Maxwell devne: Ω I x G tgαω ygω cω (.) În conclue ntegrala Mohr-Maxwell este egală cu produsul dntre ara Ω de sub dagrama M ş ordonata c pe care o are dagrama m în dreptul centrulu de greutate al are Ω. În caul când grnda are n tronsoane deformaţa (săgeata sau rotrea) se calculeaă cu relaţa (.): Ω δ n Ωc E I (.)

12 5 Captolul drepte. La aplcarea aceste metode se ţne cont de următoarea regulă de semn: - dacă ambele dagrame, M ş m, sunt de aceeaş parte a axe Ox produsul Ω c este potv, - dacă cele două dagrame nu sunt de aceeaş parte a axe Ox produsul Ω c este negatv. Regula de ntegrare grafcă Vereşceaghn este aplcablă doar în caul barelor.6. Aplcaţ I. Pentru grnda dn Fg..7.a. se cunosc Nmm; o,5m ş p 4KN / m. Se cer săgeata secţun, v ş rotrea secţun, ϕ. Pentru reolvarea aceste probleme se aplcă metoda ntegrăr grafce Verşceaghn. Dagrama de moment se traseaă prn metoda suprapuner efectelor. În Fg..7.b. s-a repreentat grnda încărcată doar cu sarcna unform dstrbută p ş dagrama de moment pentru această încărcare M p. În Fg..7.c. s-a repreentat grnda încărcată doar cu forţa F ş dagrama de moment pentru această încărcare M F. Dagrama M se obţne prn suprapunerea celor două dagrame M p ş M F. Arle dagrame de moment Ω vor f: Ω Ω Ω p p p p p p Pentru calculul săgeţ secţun se încarcă grnda cu o forţă untară vertcală în secţunea ş se traseaă dagrama m v pentru această încărcare (Fg..7.d). Dn această dagramă vor reulta ordonatele c dn dreptul centrelor de greutate G ale arlor Ω : c ; c c

13 Deformaţle grnlor solctate la încovoere 5 Fg..7. a, b, c

14 54 Captolul Fg..7.d, e Săgeata secţun se calculeaă cu relaţa (.): n Ωc v p E I ( Ω c + Ω c + Ω c ) p + p +

15 ,66p Deformaţle grnlor solctate la încovoere 55, v,99mm Pentru calculul rotr secţun se încarcă grnda cu un moment untar în secţunea ş se traseaă dagrama m ϕ pentru această încărcare (Fg..7.e). Dn această dagramă vor reulta ordonatele c, dn dreptul centrelor de greutate G ale arlor Ω : c, ; c, ; c, Rotrea secţun va f: ϕ Ωc E I,, ( + Ω c Ω c ) p n, p,66p ϕ, ,8 rad Semnul mnus arată că rotrea secţun nu se produce în sensul momentulu încovoetor untar (ales arbtrar), c în sens nvers. II. Pentru cadrul plan dn Fg..8.a, de rgdtate constantă se cer: a. deplasarea orontală a secţun, u b. rotrea secţun, ϕ c. deplasarea vertcală a secţun, v Deoarece cadrul plan are o porţune curbă (tronsonul -) metoda ntegrăr grafce nu este aplcablă. Se va utla metoda Mohr-Maxwell. Pe o bară curbă elementul de lungme este de fapt un element de arc de cerc ds, acesta exprmându-se prn unghul la centru dϕ: ds Rdϕ. În acest ca formula Mohr-Maxwell devne: δ n ϕ M ( ϕ) m ( ϕ) E I Rdϕ

16 56 Captolul Funcţa de efort M pe tronsoane: Fg..8 Tronsonul -, ϕ [,π/]: Mϕ) -Ft -FRsnϕ Tronsonul -, x [,R] : M(x) -FR Pentru calculul deplasăr orontale u se încarcă bara cu o forţă untară orontală în secţunea, ca în Fg..8.b, stablndu-se funcţle de efort m u pe tronsoane pentru această încărcare: Tronsonul -: m u (ϕ) - Rsnϕ Tronsonul -: m u (x) - R Calculul deplasăr orontale u u π / R π / ( ϕ) m ( ϕ) Rdϕ + M( x) m ( x) FR sn ϕdϕ + FR M u u R

17 Deformaţle grnlor solctate la încovoere 57 π / π / u cos ϕ R π / sn ϕ ϕ + ϕ + FR d FR x FR FR 4 π FR π FR + u Pentru calculul rotr ϕ se încarcă bara cu un moment încovoetor untar în secţunea, ca în Fg..8.c, stablndu-se funcţle de efort m ϕ pentru această încărcare: Tronsonul -: m ϕ (ϕ) - Tronsonul -: m ϕ (x) - Calculul rotr ϕ ϕ π / M ( ϕ) m ( ϕ) Rdϕ + M( x) m ( x) FR sn ϕdϕ + FR ϕ π / FR cos ϕ + FR FR ϕ R ϕ π / FR Pentru calculul deplasăr vertcale v se încarcă bara cu o forţă untară vertcală în secţunea, ca în Fg..8.d, stablndu-se funcţle de efort m v pentru această încărcare: Tronsonul -: m v (ϕ) Tronsonul -: m v (x) - x R Calculul deplasăr vertcale v R x v M( x) m v ( x) FRx FR R R FR FR v

Numere complexe. a numerelor complexe z b b arg z.

Numere complexe. a numerelor complexe z b b arg z. Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea

Διαβάστε περισσότερα

CARACTERISTICI GEOMETRICE ALE SUPRAFEŢELOR PLANE

CARACTERISTICI GEOMETRICE ALE SUPRAFEŢELOR PLANE CRCTERSTC GEOMETRCE LE SUPRFEŢELOR PLNE 1 Defnţ Pentru a defn o secţune, complet, cunoaşterea are ş a centrulu de greutate nu sunt sufcente. Determnarea eforturlor, tensunlor ş deformaţlor mpune cunoaşterea

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

DETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE PRIN METODA PENDULULUI FIZIC

DETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE PRIN METODA PENDULULUI FIZIC UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICĂ BN - 1 B DETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE PRIN METODA PENDULULUI FIZIC 004-005 DETERMINAREA ACCELERAŢIEI

Διαβάστε περισσότερα

Capitolul 4 Amplificatoare elementare

Capitolul 4 Amplificatoare elementare Captolul 4 mplfcatoare elementare 4.. Etaje de amplfcare cu un tranzstor 4... Etajul sursa comuna L g m ( GS GS L // r ds ) m ( r ) g // L ds // r o L ds 4... Etajul drena comuna g g s m s m s m o g //

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Durata medie de studiu individual pentru această prezentare este de circa 120 de minute.

Durata medie de studiu individual pentru această prezentare este de circa 120 de minute. Semnar 6 5. Caracterstc geometrce la suprafeţe plane I 5. Introducere Presupunând cunoscute mecansmele de evaluare a stăr de efortur la nvelul une structur studate (calcul reacţun, trasare dagrame de efortur),

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z : Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Legea vitezei se scrie în acest caz: v t v gt

Legea vitezei se scrie în acest caz: v t v gt MIŞCĂRI ÎN CÂMP GRAVITAŢIONAL A. Aruncarea pe vertcală, de jos în sus Aruncarea pe vertcală în sus reprezntă un caz partcular de mşcare rectlne unform varată. Mşcarea se realzează pe o snură axă Oy. Pentru

Διαβάστε περισσότερα

5.1 Realizarea filtrelor cu răspuns finit la impuls (RFI) Filtrul caracterizat prin: 5. STRUCTURI DE FILTRE NUMERICE. 5.1.

5.1 Realizarea filtrelor cu răspuns finit la impuls (RFI) Filtrul caracterizat prin: 5. STRUCTURI DE FILTRE NUMERICE. 5.1. 5. STRUCTURI D FILTR UMRIC 5. Realzarea ltrelor cu răspuns nt la mpuls (RFI) Fltrul caracterzat prn: ( z ) = - a z = 5.. Forma drectă - - yn= axn ( ) = Un ltru cu o asemenea structură este uneor numt ltru

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

4. FUNCŢII DIFERENŢIABILE. EXTREME LOCALE Diferenţiabilitatea funcţiilor reale de o variabilă reală.

4. FUNCŢII DIFERENŢIABILE. EXTREME LOCALE Diferenţiabilitatea funcţiilor reale de o variabilă reală. 4. FUNCŢII DIFERENŢIABILE. EXTREME LOCALE. 4.. Noţun teoretce ş rezultate fundamentale. 4... Dferenţabltatea funcţlor reale de o varablă reală. Multe robleme concrete conduc la evaluarea aromatvă a creşter

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Curs 10 TRANZISTOARE. TRANZISTOARE BIPOLARE

Curs 10 TRANZISTOARE. TRANZISTOARE BIPOLARE Curs 10 TRANZISTOARE. TRANZISTOARE IPOLARE CUPRINS Tranzstoare Clasfcare Prncpu de funcțonare ș regun de funcțonare Utlzarea tranzstorulu de tp n. Caracterstc de transfer Utlzarea tranzstorulu de tp p.

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

ÎNCOVOIEREA BARELOR DREPTE

ÎNCOVOIEREA BARELOR DREPTE CPTOLUL 6 ÎNCOVOERE BRELOR DREPTE 6.1. Încovoierea pură. Formula lui Navier. Considerăm bara de secţiune dreptungiulară din Fig.6.1, pentru care s-au trasat diagramele de eforturi T şi M. Fig.6.1 Se observă

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

SOLICITAREA DE TRACŢIUNE COMPRESIUNE

SOLICITAREA DE TRACŢIUNE COMPRESIUNE CPITOLUL 4 SOLICITRE DE TRCŢIUE COMPRESIUE 4.1. Forţe axiale Dacă asupra unei bare drepte se aplică forţe dirijate în lungul axei longitudinale bara este solicitată la tracţiune (Fig.4.1.a) sau la compresiune

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

CAP. 2. NOŢIUNI DESPRE AERUL UMED ŞI USCAT Proprietăţile fizice ale aerului Compoziţia aerului

CAP. 2. NOŢIUNI DESPRE AERUL UMED ŞI USCAT Proprietăţile fizice ale aerului Compoziţia aerului CAP.. NOŢIUNI DESPRE AERUL UED ŞI USCAT... 5.. Propretăţle fzce ale aerulu... 5... Compozţa aerulu... 5... Temperatura, presunea ş greutatea specfcă... 5.. Aerul umed... 6... Temperatura... 7... Umdtatea...

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Curs 4 mine Starea de magnetizare. Câmpul magnetic în vid

Curs 4 mine Starea de magnetizare. Câmpul magnetic în vid Curs 4 mne 1.12 tarea de magnetzare. Câmpul magnetc în vd Expermental se constată că exstă în natură substanńe, ca de exemplu magnettul (Fe 3 O 4 ), care au propretatea că între ele sau între ele ş corpur

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

PRELUCRAREA DATELOR EXPERIMENTALE

PRELUCRAREA DATELOR EXPERIMENTALE PRELUCRAREA DATELOR EXPERIMETALE I. OŢIUI DE CALCULUL ERORILOR Orce măsurare epermentală este afectată de eror. După cauza care le produce, acestea se pot împărţ în tre categor: eror sstematce, eror întâmplătoare

Διαβάστε περισσότερα

Mădălina Roxana Buneci. Optimizări

Mădălina Roxana Buneci. Optimizări Mădălna Roxana Bunec Optmzăr Edtura Academca Brâncuş Târgu-Ju, 8 Mădălna Roxana Bunec ISBN 978-973-44-87- Optmzăr CUPRINS Prefaţă...5 I. Modelul matematc al problemelor de optmzare...7 II. Optmzăr pe mulţm

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

3.5. Forţe hidrostatice

3.5. Forţe hidrostatice 35 oţe hidostatice 351 Elemente geneale lasificaea foţelo hidostatice: foţe hidostatice e suafeţe lane Duă foma eeţilo vasului: foţe hidostatice e suafeţe cube deschise foţe hidostatice e suafeţe cube

Διαβάστε περισσότερα

FORŢE INTERIOARE. EFORTURI. DIAGRAME DE EFORTURI.

FORŢE INTERIOARE. EFORTURI. DIAGRAME DE EFORTURI. 2.1.Metoda secţiunilor CAPITOLUL 2 FORŢE INTERIOARE. EFORTURI. DIAGRAME DE EFORTURI. În orice corp solid există forţe interioare, de structură, care asigură păstrarea formei şi dimensiunilor corpului.

Διαβάστε περισσότερα

Seminariile Capitolul IX. Integrale curbilinii

Seminariile Capitolul IX. Integrale curbilinii Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 7 8 Capitolul IX. Integrale curbilinii. Să se calculee Im ) d, unde este segmentul

Διαβάστε περισσότερα

Sondajul statistic- II

Sondajul statistic- II 08.04.011 odajul statstc- II EŞATIOAREA s EXTIDEREA REZULTATELOR www.amau.ase.ro al.sac-mau@cse.ase.ro Data : 13 aprle 011 Bblografe : ursa I,cap.VI,pag.6-70 11.Aprle.011 1 odajul aleator smplu- cu revere

Διαβάστε περισσότερα

CALCULUL PIESELOR ŞI STRUCTURILOR DIN MATERIALE COMPOZITE

CALCULUL PIESELOR ŞI STRUCTURILOR DIN MATERIALE COMPOZITE 11. CALCULUL PIESELOR ŞI STRUCTURILOR DIN MATERIALE COMPOZITE 11.1. Generaltăţ Materalele compozte sunt amestecur de două sau ma multe componente, în anumte proporţ ş condţ, ale căror propretăţ se completează

Διαβάστε περισσότερα

REZISTENŢA MATERIALELOR

REZISTENŢA MATERIALELOR Ion DUMITRU Ncolae FAUR ELEMENTE DE CALCUL ŞI APLICAŢII ÎN REZISTENŢA MATERIALELOR p 0 x a) - - - + + + b) λ λ + + c) CUVÂNT ÎNAINTE, Cernţele care se pun la ora actuală în faţa ngnerulu mecanc prvnd calculul

Διαβάστε περισσότερα

SISTEME DE ACTIONARE II. Prof. dr. ing. Valer DOLGA,

SISTEME DE ACTIONARE II. Prof. dr. ing. Valer DOLGA, SISTEME DE ACTIONARE II Prof. dr. ng. Valer DOLGA, Cuprns_3. Caracterstc statce. Stabltatea functonar ssteulu 3. Moent de nerte redus, asa redusa. 4. Forta redusa s oent redus Prof. dr. ng. Valer DOLGA

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

13. Grinzi cu zăbrele Metoda izolării nodurilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...

13. Grinzi cu zăbrele Metoda izolării nodurilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate... SEMINAR GRINZI CU ZĂBRELE METODA IZOLĂRII NODURILOR CUPRINS. Grinzi cu zăbrele Metoda izolării nodurilor... Cuprins... Introducere..... Aspecte teoretice..... Aplicaţii rezolvate.... Grinzi cu zăbrele

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

III. Statica III. Statica. Echilibrul mecanic al corpurilor. 1. Sistem de forțe concurente. Sistemul de forțe

III. Statica III. Statica. Echilibrul mecanic al corpurilor. 1. Sistem de forțe concurente. Sistemul de forțe III. Statica III. Statica. Echilibrul mecanic al corpurilor. 1. Sistem de forțe concurente. Sistemul de forțe reprezintă totalitatea forțelor care acționează simultan asupra unui corp, Fig. 1. În Fig.

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

3. REPREZENTAREA PLANULUI

3. REPREZENTAREA PLANULUI 3.1. GENERALITĂŢI 3. REPREZENTAREA PLANULUI Un plan este definit, în general, prin trei puncte necoliniare sau prin o dreaptă şi un punct exterior, două drepte concurente sau două drepte paralele (fig.3.1).

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Statistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu

Statistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu Statstca descrptvă (contnuare) Şef de Lucrăr Dr. Mădălna Văleanu mvaleanu@umfcluj.ro VARIABILE CANTITATIVE MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medana, Modul, Meda geometrca, Meda armonca, Valoarea

Διαβάστε περισσότερα

Lucrarea Nr. 5 Comportarea cascodei EC-BC în domeniul frecvenţelor înalte

Lucrarea Nr. 5 Comportarea cascodei EC-BC în domeniul frecvenţelor înalte Lucaea N. 5 opoaea cascode E-B în doenul fecenţelo înale Scopul lucă - edenţeea cauzelo ce deenă copoaea la HF a cascode E-B; - efcaea coespondenţe dne ezulaele obţnue expeenal penu la supeoaă a benz acesu

Διαβάστε περισσότερα

4.2. Formule Biot-Savart-Laplace

4.2. Formule Biot-Savart-Laplace Patea IV. Câmp magnetc staţona 57 4.2. Fomule Bot-Savat-Laplace ) Cazul 3 evenm la ecuaţle câmpulu magnetc în egmul staţona (Cap.): ot H (4.4) dv B 0 (4.5) B H (4.6) n elaţa (4.5), ezultă că putem sce

Διαβάστε περισσότερα

Capitolul 9. Geometrie analitică. 9.1 Repere

Capitolul 9. Geometrie analitică. 9.1 Repere Capitolul 9 Geometrie analitică 9.1 Repere Vom considera spaţiile liniare (X, +,, R)în careelementelespaţiului X sunt vectorii de pe odreaptă, V 1, dintr-un plan, V sau din spaţiu, V 3 (adică X V 1 sau

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare

Διαβάστε περισσότερα

STUDIUL INTERFERENŢEI LUMINII CU DISPOZITIVUL LUI YOUNG

STUDIUL INTERFERENŢEI LUMINII CU DISPOZITIVUL LUI YOUNG UNIVESITATEA "POLITEHNICA" DIN BUCUEŞTI DEPATAMENTUL DE FIZICĂ LABOATOUL DE OPTICĂ BN - 10 A STUDIUL INTEFEENŢEI LUMINII CU DISPOZITIVUL LUI YOUNG 004-005 STUDIUL INTEFEENŢEI LUMINII CU DISPOZITIVUL LUI

Διαβάστε περισσότερα

Fig. 1.1 Sistem de acţionare în linie

Fig. 1.1 Sistem de acţionare în linie . dnamca.. Introducere O clasfcare a sstemelor de acţonare electrcă a în consderare numărul de motoare raportate la sarcna de acţonat: - sstem de acţonare în lne reprezntă cea ma veche varantă. Sstemul

Διαβάστε περισσότερα

Liviu BERETEU DINAMICA MAŞINILOR ŞI UTILAJELOR

Liviu BERETEU DINAMICA MAŞINILOR ŞI UTILAJELOR Lvu BERETEU DINAMICA MAŞINILOR ŞI UTILAJELOR 9 . Noţun fundamentale de dnamcă.. Momente de nerţe mecance Momentele de nerţe mecance arată modul în care este dstrbută masa unu corp faţă de dferte elemente

Διαβάστε περισσότερα

Amplificatoare. A v. Simbolul unui amplificator cu terminale distincte pentru porturile de intrare si de iesire

Amplificatoare. A v. Simbolul unui amplificator cu terminale distincte pentru porturile de intrare si de iesire mplfcatare Smblul unu amplfcatr cu termnale dstncte pentru prturle de ntrare s de esre mplfcatr cu un termnal cmun (masa) pentru prturle de ntrare s de esre (CZU UZU) Cnectarea unu amplfcatr ntre sursa

Διαβάστε περισσότερα

CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1

CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1 CURS 5 REDUCEREA SISTEMELOR DE FORŢE (CONTINUARE) CUPRINS 5. Reducerea sistemelor de forţe (continuare)...... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 5.1. Teorema lui Varignon pentru sisteme

Διαβάστε περισσότερα

Descriere CIP a Bibliotecii Naționale a României SOFONEA, GALAFTION Rezistența materialelor /

Descriere CIP a Bibliotecii Naționale a României SOFONEA, GALAFTION Rezistența materialelor / Galaftion SOFONEA Adrian Marius PASCU REZISTENȚA MATERIAEOR Universitatea ucian Blaga din Sibiu 007 Copyright 007 Toate drepturile asupra acestei lucrări sunt reervate autorilor. Reproducerea integrală

Διαβάστε περισσότερα

Sisteme cu partajare - continut. M / M /1 PS ( numar de utilizatori, 1 server, numar de pozitii pentru utilizatori)

Sisteme cu partajare - continut. M / M /1 PS ( numar de utilizatori, 1 server, numar de pozitii pentru utilizatori) Ssteme cu partajare - cotut Recaptulare: modelul smplu de trafc M / M / PS ( umar de utlzator, server, umar de pozt petru utlzator) M / M / PS ( umar de utlzator, servere, umar de pozt petru utlzator)

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Clasa a IX-a, Lucrul mecanic. Energia

Clasa a IX-a, Lucrul mecanic. Energia 1. LUCRUL MECANIC 1.1. Un resort având constanta elastică k = 50Nm -1 este întins cu x = 0,1m de o forță exterioară. Ce lucru mecanic produce forța pentru deformarea resortului? 1.2. De un resort având

Διαβάστε περισσότερα

1. NOŢIUNI DE FIZICA SEMICONDUCTOARELOR

1. NOŢIUNI DE FIZICA SEMICONDUCTOARELOR . NOŢIUNI DE FIZICA SEMICONDUCTOARELOR.. Introducere Electronca s-a mpus defntv în cele ma dverse domen ale veţ contemporane, nfluenţând profund dezvoltarea ştnţe, a producţe ş char modul de vaţă al oamenlor.

Διαβάστε περισσότερα

LEC IA 1: INTRODUCERE

LEC IA 1: INTRODUCERE LE Lec\a.. Defnrea dscplne LE LEC IA : INRODUCERE Abrever: LE eora Lnear` a Elastct`\ NE eora Nelnear` a Elastct`\ MSD Mecanca Soldulu Deformabl RM Resten\a Materalelor MDF Metoda Dferen\elor Fnte MEF

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

Cercul lui Euler ( al celor nouă puncte și nu numai!)

Cercul lui Euler ( al celor nouă puncte și nu numai!) Cercul lui Euler ( al celor nouă puncte și nu numai!) Prof. ION CĂLINESCU,CNDG, Câmpulung Voi prezenta o abordare simplă a determinării cercului lui Euler, pe baza unei probleme de loc geometric. Preliminarii:

Διαβάστε περισσότερα