ARCHIMEDES (asi pred.n.l.)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ARCHIMEDES (asi pred.n.l.)"

Transcript

1 Lenk Švnárová, M-Ge ARCHIMEDES (si 7-1 pred.n.l.) Arhimedes s nrodil v Syrkúzh n Siílii okolo roku 7 p.n.l.. Jeho ote Feids ol stronómom. Arhimedovo prvé meno olo Sporos, no jeden učene, Filonides, ho nzvl železný um ted Arhimedes. Študovl niekoľko rokov n Alexndrijskej univerzite. V slávnej Alexndrijskej knižnii oli zhromždené všetky vtedjšie význmné práe vedy kultúry. Mtemtiku s učil u nsledovníkov veľkého geometr Euklid. Po návrte do Syrkúz zsvätil elý svoj život mtemtike fyzike. Npísl dve diel. Prvé je o hydrosttike jej zákldnýh zákonoh, druhé opisuje erosttiku. N tieto zásdné ojvy y s možno nedošlo, key ho vtedjší kráľ Syrkúz Hieron nepožidl, y zistil, či ho zltník nepodviedol uroil mu korunu z číreho zlt. Prolém ol predovšetkým v určení ojemu koruny. Pri kúpeli si všimol, že jeho telo je ndľhčovné vodou, tk vyriešil úlohu prišiel n prírodný zákon: Teleso ponorené leo plávjúe v kvpline je ndľhčovné silou, ktorá s rovná tiži kvpliny toho istého ojemu, ký má ponorená čsť teles. Ndšený vyskočil z vne vyehol holý n uliu s krikom: Heurék, nšiel som to! Ponoril zlto do vody hldin stúpl o určitú výšku, keď ponoril korunu, zdvihl s o niečo vyššie, ko y zodpovedlo čistému zltu ted zistil, že v korune ol prímes strier. Stl s utorom vi než 40 vynálezov. Pre nás je dnes predovšetkým ojviteľom zákonov mehnikej rovnováhy telies. Vo svojih trktátoh o rovnováhe,o páke o ťžisku preskúml činnosť tzv. jednoduhýh strojov. Aj keď pák, kldk, nklonená rovin klin oli využívné už predtým, Arhimedes mtemtiky vypočítl ih pôsoenie. Uvedomil si, že dosttočne dlhá pák umožňuje pohnúť kýmkoľvek remenom znásoiť tk mo človek nd prírodou ("Djte mi pevný od pohnem Zemou.") Okrem toho zdokonlil kldkostroj, vynšiel závitovkový prevod. Nemenej známy je prístroj, ktorý premiestňovl vodu z nižšie položeného Nílu n pole, čím uľhčil roľníkom polievnie v Egypte (predtým polievli poli ručne s primitívnymi nádomi). Bol to orovská špirál vo vli dostl meno Arhimedov skrutk. Zviedol tktiež moment sily definovl ťžisko teles. Arhimed preslávil jeho účsť n orne Syrkúz počs rímskeho oliehni v prvej (64-41 pr.n.l.) druhej púnskej vojne (1-01 pr.n.l.), kedy jeho vojnové stroje pomáhli zdržť postup Rimnov. Použili ťžké trámy silou zhor potápli rímske lode do hlín. Železnými hákmi (podojúimi s jstrím pzúrom), loď zhytili, zdvihli ju do výšky potom ju vrhli o mestské hrdy či späť do vody. Pomoou prolikýh zrkdiel zs

2 dokázl zpáliť rímske lode v dosttočnej vzdilenosti od mestského opevneni. No práve vojn s mu stl osudnou. Keď rímsky vojk vtrhol do jeho domu, nšiel Arhimed, ko kreslí do piesku mtemtiké digrmy. Vojk urzilo, že si ho nevším prikázl mu, y prestl kresliť. Arhimedes ho neposlúhol zvoll: Noli tngere irulos meos - Nedotýkj s mojih kruhov! Po týhto slováh ho rozzúrený vojk preodol mečom. Arhimedes s tktiež venovl optike. Túto prolemtiku ojsňuje vo svojom diele Ktoptik v ktorom vysvetľuje odrz svetl, lom svetl vo vode vo vzduhu. Tktiež v ňom hovorí o dúhe o vlstnostih guľového zrkdl pomoou ktorého s djú zpáliť predmety. Prínos v mtemtike Arhimedes ol prvý, ktorý s význmne zoerl nielen primkmi rovinmi, le tktiež krivkmi, olými plohmi, oshom ojemov tvrov, ktoré vymedzovli. Ay to mohol zvládnuť využívl ko jeden z mál Eudoxovu exhustívnu metódu, ktorá ol vytvorená pre výpočet plôh leo ojemov konkrétnyh orzov, či telies. Dokázl konkrétne výsledky zoeniť nšiel oené prvidlá pre ojem elipsoidu leo proloidu. Oené vzťhy pre ojemy telies ževrj skúšl njskôr hľdť tým, že telesá vyrál z drev, vážil ih,podľ zmeny váhy usudzovl zmeny ojemov tie odhdovl oenou zákonitosťou pre ojem. Vzore, o ktorom vďk tomu už tušil, ko vyzerá, potom oene odvodil. Odvodil tiež, že pomer medzi ojemom vl (s výškou rovnou jeho priemeru), gule kužeľ do nej vpísnýh je 3::1. (údjne vďk tomuto výsledku Ciero podľ zvláštneho tvru vl s vloženou guľou nšiel zudnutý Arhimedov hro) Prol Arhimedes s snžil vypočítť osh pod prolou. Táto metód spočív v jednoduhom zákone páky. Nmiesto síl n páku pôsoi oshy plošnýh útvrov dĺžky úsečiek. Zákon páky znie: sil pôsoi n jedno rmeno páky vynásoená dĺžkou rmen s rovná sile pôsoiej n druhé rmeno páky vynásoenej dĺžkou druhého rmen. Ak tm dáme úsečky, je to v podstte to isté. Ak n jedno rmeno páky zvesíme úsečku o dĺžke 1 m, pričom rmeno, n ktorom ude, ude mť 1 m, ké dlhé ude druhé rmeno, n ktorom ude úsečk s dĺžkou m, y s udržl rovnováh páky? Dĺžku úsečky si oznčíme v dĺžku rmen d. d 1 v 1 d v 1 1 d > 1 d Dĺžk druhého rmen je jedn polovi. Tk isto to funguje j s oshmi.

3 Prol je komplikovná krivk. Jej predpis je y x². Ay s dl zmerť osh útvru pod prolou, pokúsil s Arhimedes vytvoriť iný útvr, ktorého osh y s dl vypočítť. Dokreslil si k prole trojuholník. Bod C má súrdnie [x,0], to znmená, že v smere osi x je vzdilený od nuly o x. Ak predpis pre prolu je y x², tk dĺžk úsečky AC x², pretože k hodnot x je x, hodnot y ude x² k [0;0]C x, tk AC x². Úsečk BD leži v dokreslenom trojuholníku má dĺžku x, pretože úsečk [1;1,5][1;-1,5] má dĺžku 1 je vo vzdilenosti 1 od [0;0]. To znmená, že k nnesieme úsečku do vzdilenosti x od [0;0], tá čsť v trojuholníku ude mť dĺžku x, pretože trojuholníky [0;0][1;-1,5][1;1,5] [0;0]DB sú si podoné. Arhimedes si uvedomil jednu ve: k úsečku AC prenesie do odu K úsečku BD nehá tm, kde je vytvorí koy páku, udú tieto dve úsečky v rovnováhe, k od [0,0] je odom otáčni. AC x BD x AC 1 BD x x 1 x x Tu je vidno, že táto sústv je nozj v rovnováhe. Tkýhto čiernyh úsečiek, kou ol AD, uroil viero. Tú čsť týhto úsečiek, ktoré oli v trojuholníku s rovnými čirmi nehl tm, kde oli (ko npríkld BD). Tie, ktoré oli v krivočirom trojuholníku, preniesol do odu K (ko npríkld AC). Podľ predhádzjúeho príkldu, kde sú úsečky AC BD vyvážené, s dá zistiť, že j v tomto prípde je pák vyvážená. Ted úsečky proly, všetky

4 nskldné v ode K, pôsoi v ode K. Keďže dvojie úsečiek z trojuholníkov sú n páke v rovnováhe, je jsné, že j o trojuholníky udú v rovnováhe. Tiž, kou pôsoí trojuholník n páku, s nhádz v ode T, čo je jeho ťžiskom. Ako vidíme, úsečk [0;0][1;0] je jeho ťžni, ťžisko n ťžnii s vždy nhádz v dvoh tretináh úsečky spájjúej vrhol trojuholník so stredom protiľhlej strny. N orázku je trojuholník s prolou oznčený P ten s rovnými strnmi R. Zvesme si ih n páku. Ak si vypočítme osh trojuholník R: v p 11 1 S R túto oshovú váhu zvesíme n od n páke s názvom T, čo je ťžisko trojuholník R, zistíme, že trojuholník R pôsoí n páku momentom sily rovnjúemu s jednej tretine. 1 P P 3 3 To znmená, že k nrysujeme štvore so strnou dĺžky 1 (čiže jeho osh ude tiež 1) vpíšeme do neho prolu, tá prol ho predelí n jednu tretinu dve tretiny.

5 Pí () Metódou, ktorá je v podstte exhustívn, nšiel tiež pomerne presný odhd čísl. Hodnotu tohto irionálneho čísl ojvil rdom elkom jednoduhýh operáii, ktoré sú nižšie spomenuté. Zorl si kruh, pričom polomer s rovná číslu jeden či už meter leo entimeter. Pokúsil s vypočítť jeho priližný osh tk, že do neho vpisovl opisovl iné útvry, ktorýh osh vedel vypočítť. Zčl štvorom. Kruh vložil do štvor jeden štvore vložil j do kruhu. Oshy štvorov vypočítme nsledovne väčší je jednoduhý, pretože polovii jeho strny s rovná polomer kruhu; menší vypočítme Pytgorovou vetou. Osh kruhu ude niečo medzi 4, ted k je to násook druhej moniny polomeru, tk pí ude niečo medzi 4. To všk nie je dosttočne presné. Preto následne štvore nhrdil osemuholníkmi. Tento proes potom opkovl dovtedy, kým ml stodvdsťosem uholníky. Podsttné je, že väčší ml osh 3,1417 menší ml osh 3,1415 ted mu vyšlo, že priližná hodnot čísl je 3,1416.

6 Hippokrtove mesičiky Ide o Hippokrtov ojv, kde dokázl, že s dá zostrojiť olúkovitý plošný útvr s rovnkým oshom ko hrntý plošný útvr. Zistil, že keď má prvouhlý trojuholník zostrojí polkruh, dotýkjúi s všetkýh vrholov tkisto zostrojí polkruhy nd odvesnmi, tk priestor medzi tými polkruhmi mesičiky mjú rovnký osh ko trojuholník. or.1 Vypočítť osh, z ktorého má vyjsť, že s rovná oshu trojuholník. or. or.3 Všetko z orázku spočítl odpočítl od toho orázok 3. ( ) S S S S 4 4 Pytgorov vet hovorí: 0. To nám dáv nulu v zátvorke, číslo vypdáv z hry vyhádz nám výsledok, že osh mesičikov s rovná oshu trojuholník.

7 Biliogrfiké zdroje: stihnuté dň stihnuté dň stih.dň Mreš, M.: Příěhy mtemtiky. Stručná historie královny věd. Pistorius & Olšnská. Přírm, 00.

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

22 Špeciálne substitúcie, postupy a vzorce používané pri výpočte

22 Špeciálne substitúcie, postupy a vzorce používané pri výpočte Špeciálne substitúcie, postupy vzorce používné pri výpočte niektorých ďlších typov neurčitých integrálov. Pomocou vhodnej substitúcie tvru t = n + b (potom = tn b, = n tn dt) vypočítjte neurčitý integrál

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a ) Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B . písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Objem a povrch ihlanov

Objem a povrch ihlanov M-Te-0-T List 1 Objem povrch ihlnov RNr. Mrián Mcko U: ko by si chrkterizovl n-boký ihln? Ž: Ihln je teleso, ktoré je určené jednou význčnou stenou vrcholom, ktorý v rovine tejto steny neleží. U: ýznčnú

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

10 Určitý integrál, jeho výpočet a aplikácie

10 Určitý integrál, jeho výpočet a aplikácie Híc, P. Pokorý, M.: Mtemtk pre formtkov prírodé vedy Určtý tegrál, jeho výpočet plkáce. Motvác k určtému tegrálu Úvodom s udeme zoerť jedou úlohou z geometre, rešee ktorej vede k zvedeu pojmu určtý tegrál.

Διαβάστε περισσότερα

Normálové rezy a geodetická čiara na referenčnom elipsoide

Normálové rezy a geodetická čiara na referenčnom elipsoide 0 Normálové rezy geodetická čir n referenčnom elipsoide Medzi dvom odmi n referenčnom elipsoide P P s rôznymi geodetickými šírkmi dĺžkmi existujú dv normálové rezy (or 9) Or 9 Normálové rezy n elipsoide

Διαβάστε περισσότερα

Príklady a úlohy z krivkových integrálov

Príklady a úlohy z krivkových integrálov Príkldy úlohy z krivkových integrálov Riešené príkldy Príkld Vypočítjme krivkový integrál prvého druhu ds, pričom y = {(, y) R : ; y = e + e }. Riešenie. rivk s dá prmetrizovť npr. nsledujúcim spôsobom

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

1. Trojuholník - definícia

1. Trojuholník - definícia 1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

6. Mocniny a odmocniny

6. Mocniny a odmocniny 6 Moci odoci Číslo zýve oceec (leo zákld oci), s zýv ociteľ (leo epoet) Číslo s zýv -tá oci čísl Moci s piodzeý epoeto pe ľuovoľé eále číslo pe kždé piodzeé číslo je v ožie eálch čísel defiová -tá oci

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

2. Aký obsah má vyfarbený útvar? Dĺţka strany štvorca je 3 m.

2. Aký obsah má vyfarbený útvar? Dĺţka strany štvorca je 3 m. Dĺžka kružnice, obsah kruhu 1. Na obrázku je kruţnica vpísaná do štvorca so stranou 4cm a štyri kruţnicové oblúky so stredmi vo vrcholoch štvorca. ký obsah má vyfarbený útvar? 4 + π cm 16 - π cm 8π 16

Διαβάστε περισσότερα

16. Základne rovinné útvary kružnica a kruh

16. Základne rovinné útvary kružnica a kruh 16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

MONITOR 9 (2007) riešenia úloh testu z matematiky

MONITOR 9 (2007) riešenia úloh testu z matematiky MONITOR 9 (007) riešenia úloh testu z matematiky Autormi nasledujúcich riešení sú pracovníci spoločnosti EXAM testing Nejde teda o oficiálne riešenia, ktoré môže vydať ia Štátny pedagogický ústav (wwwstatpedusk)

Διαβάστε περισσότερα

Objem a povrch hranolov

Objem a povrch hranolov M-Te-01-T List 1 Objem povrch hrnolov RNDr. Mrián Mcko U: ko by si chrkterizovl n-boký hrnol? Ž: Je to teleso, ktoré má dve význčné steny, ktorými sú zhodné n-uholníky. Leži v nvzájom rovnobežných rovinách.

Διαβάστε περισσότερα

0,8A. 1,2a. 1,4a. 1,6a F 2 5 2A. 1,6a 1,2A

0,8A. 1,2a. 1,4a. 1,6a F 2 5 2A. 1,6a 1,2A Sttik určité konštrukie Znie č. : JEDNODUCHÝ ŤH TLK rík : Učte prieeh normáovýh sí, normáovýh npätí posunutí priereov. rieeh uveenýh veičín náornite grfik. Shém poľ. čís kóu 0,8 0,8, 0,5,,6, 0,8, 0,6,8

Διαβάστε περισσότερα

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom

Διαβάστε περισσότερα

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

Obvod a obsah rovinných útvarov

Obvod a obsah rovinných útvarov Obvod a obsah rovinných útvarov Z topologického hľadiska bod môže byť vnútorný, hraničný a vonkajší vzhľadom na nejaký rovinný útvar. D. Bod je vnútorný, ak môžeme nájsť taký polomer r, že kruh so stredom

Διαβάστε περισσότερα

MATEMATIKA. (zbierka úloh) Matematika. 2. ročník. PaedDr. K. Petergáčová

MATEMATIKA. (zbierka úloh) Matematika. 2. ročník. PaedDr. K. Petergáčová (Té) MATEMATIKA (ziek úloh) Vzelávi olsť Peet Ročník, tie Mtetik pá s infoáii Mtetik očník Tetiký elok Vpovl PeD K Petegáčová Dátu Moené vzelávnie pe veoostnú spoločnosť/pojekt je spolufinnovný zo zojov

Διαβάστε περισσότερα

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies. ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

Povrch a objem zrezaného ihlana

Povrch a objem zrezaného ihlana Povrch a objem zrezaného ihlana Ak je daný jeden ihlan a zobereme rovinu rovnobežnú s postavou, prechádzajúcu ihlanom, potom táto rovina rozdelí teleso na dve telesá. Jedno teleso je ihlan (pôvodný zmenšený

Διαβάστε περισσότερα

Povrch a objem ihlana

Povrch a objem ihlana Povrch a objem ihlana D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme polpriamky

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

KAGEDA AUTORIZOVANÝ DISTRIBÚTOR PRE SLOVENSKÚ REPUBLIKU

KAGEDA AUTORIZOVANÝ DISTRIBÚTOR PRE SLOVENSKÚ REPUBLIKU DVOJEXCENTRICKÁ KLAPKA je uzatváracia alebo regulačná armatúra pre rozvody vody, horúcej vody, plynov a pary. Všetky klapky vyhovujú smernici PED 97/ 23/EY a sú tiež vyrábané pre výbušné prostredie podľa

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

ZONES.SK Zóny pre každého študenta

ZONES.SK Zóny pre každého študenta ZONES.SK Zón pe každého študenta http://www.zones.sk /6 MO 8: TELESÁ MO 8: TELESÁ Hanol: majme piestoe oinu ρ, nej konený mnohouholník A A...A n nech A je od, ktoý neleží ρ eistuje páe jedno posunutie

Διαβάστε περισσότερα

PDF created with pdffactory Pro trial version ZOBRAZOVANIE LOMOM. ŠOŠOVKY AKO ZOBRAZOVACIE SÚSTAVY alebo O spojkách a rozptylkách

PDF created with pdffactory Pro trial version  ZOBRAZOVANIE LOMOM. ŠOŠOVKY AKO ZOBRAZOVACIE SÚSTAVY alebo O spojkách a rozptylkách PedDr. Joze Beňušk jbenusk@nextr.sk ZBRAZVANIE LMM ŠŠVKY AK ZBRAZVACIE SÚSTAVY lebo spojkách rozptlkách ptická sústv -je sústv optických prostredí ich rozhrní, ktorá mení smer chodu svetelných lúčov. Šošovk

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

DESKRIPTÍVNA GEOMETRIA

DESKRIPTÍVNA GEOMETRIA EKRIÍN GEERI meódy zobrzovni priesorových úvrov do roviny (premieni) mericé polohové vzťhy priesorových úvrov riešené v rovine bsh predmeu G Zobrzovcie meódy: olohové mericé úlohy: ongeov projeci Rezy

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Matematika NPS. Výraz. je pre všetky xy, R splňujúce podmienky. xy 0 rovný: (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) (E) Také čísla neexistujú.

Matematika NPS. Výraz. je pre všetky xy, R splňujúce podmienky. xy 0 rovný: (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) (E) Také čísla neexistujú. Mtemtik NPS. n + n ( ) Postupnosť = =, n+ = =, n+ n = n je zhodná s postupnosťou:. Výrz + y y =, n+ = =, n+ = n +. n+ =, = n n Dávid hrá kždý všedný deň futbl v sobotu i v nedeľu chodí do posilňovne. Dnes

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Ročník: Priezvisko: Katedra chemickej fyziky. Krúžok: Meno: Dátum cvičenia: Dvojica: Známka:

Ročník: Priezvisko: Katedra chemickej fyziky. Krúžok: Meno: Dátum cvičenia: Dvojica: Známka: Kter heikej fyziky Dátu vičeni: Ročník: Krúžok: Dvoji: Priezvisko: Meno: Úloh č. MERAIE ZÁKLADÝCH MECHAICKÝCH ELIČÍ DĹŽKY, HMOTOSTI A OBJEMU Znák: Teóri Tuľk ýpočet Zokrúhľovnie Záver Mernie. Úlohy: Určiť

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ / ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΑΝΑΘΕΣΗ ΣΥΜΒΟΥΛΩΝ - ΚΑΘΗΓΗΤΩΝ ΑΚΑΔΗΜ. ΕΤΟΥΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ / ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΑΝΑΘΕΣΗ ΣΥΜΒΟΥΛΩΝ - ΚΑΘΗΓΗΤΩΝ ΑΚΑΔΗΜ. ΕΤΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ / ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΑΝΑΘΕΣΗ ΣΥΜΒΟΥΛΩΝ - ΚΑΘΗΓΗΤΩΝ ΑΚΑΔΗΜ. ΕΤΟΥΣ 2012-13 α/α Επώνυμο Όνομα Βαθμίδα Α.Μ. πρωτοετούς φοιτητή 1 ΑΓΓΕΛΑΤΟΥ ΦΕΒΡΩΝΙΑ 316052, 316053 2 ΑΘΑΝΑΣΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

1 Kinematika hmotného bodu

1 Kinematika hmotného bodu Kinemik hmnéh bdu - kinemik berá určením plôh bd ich mien če (kinemik phb ele piuje, neberá príčinmi phbu) - pri ereickm šúdiu mechnickéh phbu (prce, pri krm mení plh jednéh ele hľdm n iné ele) ád pjem

Διαβάστε περισσότερα

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru

Διαβάστε περισσότερα

Objem a povrch rotačného valca

Objem a povrch rotačného valca Ma-Te-03-T List 1 Objem a povrch rotačného valca RNDr. Marián Macko Ž: Prečo má valec prívlastok rotačný? U: Vysvetľuje podstatu vzniku tohto telesa. Rotačný valec vznikne rotáciou, čiže otočením obdĺžnika

Διαβάστε περισσότερα

Certifikačný test z matematiky

Certifikačný test z matematiky Meno: Priezvisko: ertifikčný test z mtemtiky eloslovenské testovnie žikov 9. ročník ZŠ T9-011 Milí žici, máte pred seou testz mtemtiky.testoshuje 0 testových úloh. Kždá správn odpoveď ude hodnotená 1 odom.

Διαβάστε περισσότερα

Číslo 6 Letný semester 41. ročníka (2016/2017) vaši STROMisti. 10 p+q q p

Číslo 6 Letný semester 41. ročníka (2016/2017) vaši STROMisti. 10 p+q q p Číslo 6 Letný semester 41. ročník (2016/2017) Jedlo zdrmo pre kždého, kto získl spoň 108 odov. Jeden y nepovedl ko rýchlo zehne ten čs pri riešení, le j oprvovní STROMu. Ani sme s nenzdli, kým sme stihli

Διαβάστε περισσότερα

PDF created with pdffactory Pro trial version

PDF created with pdffactory Pro trial version 7.. 03 Na rozraní sla a vody je ovrc vody zarivený Na rozraní sla a ortuti je ovrc ortuti zarivený JAY NA OZHANÍ PENÉHO TELES A KAPALINY alebo O ailárnej elevácii a deresii Povrc vaaliny je dutý, vaalina

Διαβάστε περισσότερα

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)

Διαβάστε περισσότερα

η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa

η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa 1.4.1. Návrh priečneho rezu a pozĺžnej výstuže prierezu ateriálové charakteristiky: - betón: napr. C 0/5 f ck [Pa]; f ctm [Pa]; fck f α [Pa]; γ cc C pričom: α cc 1,00; γ C 1,50; η 1,0 pre f ck 50 Pa η

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

9 Planimetria. identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov,

9 Planimetria. identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov, 9 Planimetria Ciele Preštudovanie tejto kapitoly vám lepšie umožní: identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov, používať jednotky

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Výpočet. grafický návrh

Výpočet. grafický návrh Výočet aaetov a afcký návh ostuu vtýčena odobných bodov echodníc a kužncových obúkov Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene kajnej echodnce č. Vstuné údaje: = 00 ; = 8 ; o = 8 S ohľado

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

Deliteľnosť a znaky deliteľnosti

Deliteľnosť a znaky deliteľnosti Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a

Διαβάστε περισσότερα

Modul pružnosti betónu

Modul pružnosti betónu f cm tan α = E cm 0,4f cm ε cl E = σ ε ε cul Modul pružnosti betónu α Autori: Stanislav Unčík Patrik Ševčík Modul pružnosti betónu Autori: Stanislav Unčík Patrik Ševčík Trnava 2008 Obsah 1 Úvod...7 2 Deformácie

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia

Διαβάστε περισσότερα

9 Planimetria. 9.1 Uhol. Matematický kufrík

9 Planimetria. 9.1 Uhol. Matematický kufrík Matematický kufrík 89 9 Planimetria 9.1 Uhol Pojem uhol patrí k najzákladnejším pojmom geometrie. Uhol môžeme definovať niekoľkými rôznymi spôsobmi, z ktorých má každý svoje opodstatnenie. Jedna zo základných

Διαβάστε περισσότερα

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n Cơ sở Toán 1 Chương 2: Ma trận - Định thức GV: Phạm Việt Nga Bộ môn Toán, Khoa CNTT, Học viện Nông nghiệp Việt Nam Bộ môn Toán () Cơ sở Toán 1 - Chương 2 VNUA 1 / 22 Mục lục 1 Ma trận 2 Định thức 3 Ma

Διαβάστε περισσότερα

ΓΡΑΜΜΑΤΕΙΑ ΚΥΡΙΟ ΓΡΑΦΕΙΑ ΝΟΜΙΚΩΝ ΣΥΜΒΟΥΛΩΝ & ΔΙΚΑΣΤΙΚΑ ΓΡΑΦΕΙΑ ΠΕΡΙΦΕΡΕΙΑΣ ΠΡΟΣΩΠΙΚΟ ΤΗΛΕΦΩΝΑ Ν.Σ.Κ. FAX. Πάρεδρος. Μπακόπουλος Ιωάννης

ΓΡΑΜΜΑΤΕΙΑ ΚΥΡΙΟ ΓΡΑΦΕΙΑ ΝΟΜΙΚΩΝ ΣΥΜΒΟΥΛΩΝ & ΔΙΚΑΣΤΙΚΑ ΓΡΑΦΕΙΑ ΠΕΡΙΦΕΡΕΙΑΣ ΠΡΟΣΩΠΙΚΟ ΤΗΛΕΦΩΝΑ Ν.Σ.Κ. FAX. Πάρεδρος. Μπακόπουλος Ιωάννης ΓΡΑΦΕΙΑ ΝΟΜΙΚΩΝ ΣΥΜΒΟΥΛΩΝ & ΔΙΚΑΣΤΙΚΑ ΓΡΑΦΕΙΑ ΠΕΡΙΦΕΡΕΙΑΣ ΓΡΑΜΜΑΤΕΙΑ ΤΗΛΕΦΩΝΑ ΚΥΡΙΟ ΠΡΟΣΩΠΙΚΟ Ν.Σ.Κ. ΒΑΘΜΟΣ ΤΗΛΕΦΩΝΑ ΥΠΟΥΡΓΕΙΟ ΝΑΥΤΙΛΙΑΣ & ΝΗΣΙΩΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΑΙΓΑΙΟΥ & ΝΗΣΙΩΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ

Διαβάστε περισσότερα

ZADANIE 2 _ ÚLOHA 10

ZADANIE 2 _ ÚLOHA 10 ZADANIE _ ÚLOHA 0 _ Rčý phyb ele ZADANIE _ ÚLOHA 0 ÚLOHA 0.: Zvčík piemee 3m áčl vmee áčkmi = 90 /mi. Odľhčeím j jeh áčky vmee zýchľvli k že z dbu 0 dihli 0 /mi. N ých vých áčkch j uáli. Uče: zčičú kečú

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa, Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

23. Zhodné zobrazenia

23. Zhodné zobrazenia 23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:

Διαβάστε περισσότερα

STREDNÁ ODBORNÁ ŠKOLA drevárska KRÁSNO nad KYSUCOU PRÍKLADY Z MATEMATIKY

STREDNÁ ODBORNÁ ŠKOLA drevárska KRÁSNO nad KYSUCOU PRÍKLADY Z MATEMATIKY STREDNÁ ODBORNÁ ŠKOLA drevársk KRÁSNO nd KYSUCOU PRÍKLADY Z MATEMATIKY Osh. Logik, dôvodenie dôkz.... Výrok, negái výroku.... Zložený výrok, logiké spojk.... Negái zloženýh výrokov.... Prvdivostná hodnot

Διαβάστε περισσότερα

SONATA D 295X245. caza

SONATA D 295X245. caza SONATA D 295X245 caza 01 Γωνιακός καναπές προσαρμόζεται σε όλα τα μέτρα σε όλους τους χώρους με μηχανισμούς ανάκλησης στα κεφαλάρια για περισσότερή αναπαυτικότητα στην χρήση του-βγαίνει με κρεβάτι η χωρίς

Διαβάστε περισσότερα

Algebraické výrazy I.

Algebraické výrazy I. . Kontrolná prác z mtemtik 9. ročník A form Algebrické výrz I.. Zjednodušte zpíšte, ked výrz nemá zmsel : ) ( k ) s b) k k s s. Určte njmenší spoločný násobok výrzov : ) b ; b ; b) ; ; c) ; ;. Vpočítjte

Διαβάστε περισσότερα

Základné poznatky molekulovej fyziky a termodynamiky

Základné poznatky molekulovej fyziky a termodynamiky Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky

Διαβάστε περισσότερα

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2. Vele u ehc Rd, g eegj D. do. Sl. Veo 3. Tezo II. ed 4. Tezo IV. ed. Sl: 3 0 pod je jedc (ezo ulog ed). Veo: 3 3 pod je jedc (ezo pog ed) 3. Tezo dugog ed 3 9 pod je jedc 4. Tezoeog ed 3 4 8 pod je jedc

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU Tà lệ kha test đầ xân 4 Á ÔNG THỨ Ự TỊ ĐỆN XOAY HỀ GÁO VÊN : ĐẶNG VỆT HÙNG. Đạn mạch có thay đổ: * Kh thì Max max ; P Max còn Mn ư ý: và mắc lên tếp nha * Kh thì Max * Vớ = hặc = thì có cùng gá trị thì

Διαβάστε περισσότερα

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2 Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú

Διαβάστε περισσότερα

ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY. školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU

ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY. školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU V teste, ktorý máš vyriešiť, je 20 úloh. Na prácu je určených 120 minút. Úlohy nemusíš

Διαβάστε περισσότερα

1. ZAKLADY VYŠŠEJ GEODÉZIE

1. ZAKLADY VYŠŠEJ GEODÉZIE 1. ZAKLADY VYŠŠEJ GEODÉZIE Geodézi je náuk o merní Zeme lebo jej čstí o merní n zemi. (Modernejši verzi tej istej myšlienky by mohl znieť: geodézi je vedná disciplín o poznávní priestoru čsu v oblsti plnéty

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

UNIVERZITA KONŠTANTÍNA FILOZOFA v NITRE FAKULTA PRÍRODNÝCH VIED GEOMETRIA V

UNIVERZITA KONŠTANTÍNA FILOZOFA v NITRE FAKULTA PRÍRODNÝCH VIED GEOMETRIA V UNIVERZITA KONŠTANTÍNA FILOZOFA v NITRE FAKULTA PRÍRODNÝCH VIED GEOMETRIA V Kužeľosečk kvdrtické ploch Ondrej Šedivý Dušn Vllo Vdné v Nitre 0 Fkultou prírodných vied Univerzit Konštntín Filozof v Nitre

Διαβάστε περισσότερα