Matematika NPS. Výraz. je pre všetky xy, R splňujúce podmienky. xy 0 rovný: (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) (E) Také čísla neexistujú.
|
|
- Αλάστωρ Σπανός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Mtemtik NPS. n + n ( ) Postupnosť = =, n+ = =, n+ n = n je zhodná s postupnosťou:. Výrz + y y =, n+ = =, n+ = n +. n+ =, = n n Dávid hrá kždý všedný deň futbl v sobotu i v nedeľu chodí do posilňovne. Dnes s športovo vyžívl ink ko predvčerom. Počet dní v týždni, ktoré tomuto popisu vyhovujú, je: 0 4 je pre všetky y, R splňujúce podmienky y 0 rovný: 4. y y y y y y y( y) y Rozdiel druhých mocnín dvoch po sebe idúcich prirodzených čísel je 0. Súčet týchto dvoch čísel je: Tké čísl neeistujú.. Počet všetkých prirodzených čísel, ktoré vyhovujú rovnici ( ) ( ) ( ) ( ) = 0, je: Scio 04 Výhrdne pre individuálnu príprvu uchádzčov.
2 6. 9. Druhá odmocnin z podielu ľubovoľného nenulového reálneho čísl jeho prevrátenej hodnoty s rovná: Grfy funkcií f : y 4 + = g: y = + s: 7. Rovnosť pretínjú v bode pretínjú v bode pretínjú v bode A, A,4 A, pretínjú v bodoch [ ] A 0,, B, nepretínjú v židnom bode = + pltí pre všetky reálne čísl, pre ktoré je:, 0, > < 8. Kváder bol nfrbený červenou frbou následne rozrezný rovnobežne so svojimi stenmi n niekoľko zhodných kociek. Vieme, že práve zo vzniknutých kociek nemá nfrbenú ni jednu svoju stenu. Počet kociek, ktoré mjú nfrbené práve dve svoje steny, je: Obdĺžnik je jedným osovým rezom rozdelený n dv obdĺžniky, z ktorých kždý má obvod 40 cm. Iným osovým rezom je rozdelený n dv obdĺžniky, z ktorých kždý má obvod 00 cm. Obvod pôvodného obdĺžnik je: 80 cm 60 cm 40 cm 0 cm 00 cm. Z nsledujúcich čísel je njväčšie: = ( ) ( 0 0) b = ( + ) ( 0 0) c = ( ) ( 0+ 0) d = ( + ) + ( 0 0) e = ( + ) + ( 0+ 0) b c d e Scio 04 Výhrdne pre individuálnu príprvu uchádzčov.
3 . 4. Heslo, ktoré má znkov je zostvené z číslic z mlých písmen medzinárodnej becedy (ktorá má celkom 6 písmen). N kždom mieste hesl môže byť ľubovoľný znk, znky s môžu ľubovoľne opkovť. Mimálny počet všetkých hesiel, ktoré môžeme tkto zostviť, je: Grf funkcie y = + p + q pretín os v bodoch =, =. Prmetre p, q s rovnjú: p =, q = p =, q = p =, q = 6 6 p =, q = p =, q = 0.. V rovine je dný pás ohrničený dvom rovnobežnými primkmi. Vieme, že n hrnici tohto pásu leži mimo iných body [, ], [4, ], [6,] [, ]. Šírk Do rovnostrnného trojuholník ABC je vpísný pásu je: štvorec KLMN so strnou dĺžky trojuholník ABC je: + + cm cm cm + cm cm. Výšk 4 + cm Scio 04 Výhrdne pre individuálnu príprvu uchádzčov.
4 6. 9. Grf funkcie y = + + posunieme rovnobežne s osou y tk, by s dotýkl osy ; bod dotyku bude mť súrdnice: [, 0],0,0 Počet všetkých celých čísel, pre ktoré pltí + 0 >, je rovný: 4 6,0,0 0. Ak je 6 8 n! = 7 7, je číslo n rovné: 7. 6 Riešením rovnice reálnych čísel je číslo: + 4 = v množine 7 8 Tké číslo n neeistuje. 8 Rovnic nemá riešenie. 8. f = + + je: Definičný obor funkcie ( ) log ( ) ( 0, ) (0,, (, ) \ {0}, \{0} Scio 04 Výhrdne pre individuálnu príprvu uchádzčov.
5 . Grf súmerne združený s grfom funkcie y = + podľ osy y je n obrázku:. = V ritmetickej postupnosti ( n ) n je =, =. Súčet všetkých jej členov ptricich do intervlu 00, je: Sú dné množiny K = { R ; < 7}, L = 8,, { R } M = ;. Počet všetkých celých čísel, ktoré sú prvkmi množiny ( K L) M, je: Scio 04 Výhrdne pre individuálnu príprvu uchádzčov.
6 4. Šesť chlpcov šesť dievčt (medzi nimi Emil, Féli, Gertrúd Hnk) si chcú ztncovť. Počet spôsobov, ko môžu vytvoriť šesť (zmiešných) párov, pokiľ Emil nechce tncovť s Gertrúdou Hnk chce tncovť s Féliom je: Počet všetkých štvorprvkových podmnožín množiny M = { N; < < 0} je väčší než počet všetkých jej podmnožín päťprvkových o: V trojuholníku ABC je dná dĺžk strny c = AB = 8 cm ťžnice t = AS = 0 cm. Strn = BC môže merť: cm 4 cm 8 cm 6 cm 40 cm 7. Množinou všetkých bodov [ y, ] v rovine, pre ktorých súrdnice y, R súčsne plti nerovnosti y, y 0, + y, je: prázdn množin bod primk vnútorná oblsť trojuholník vrátne jeho strán vnútorná oblsť štvorc Scio 04 Výhrdne pre individuálnu príprvu uchádzčov.
7 8. V jednej krjine s cen tovru počs posledného rok zväčšil o %. Nová cen bol vzhľdom k pôvodnej cene väčši: 0 krát 999 krát 000 krát 00 krát krát 9. Z troch rôznych číslic je vytvorené njväčšie možné trojciferné číslo druhé njväčšie možné trojciferné číslo. Ich súčet je 6. Súčet týchto troch číslic je: Koberec s dĺžkou 4 m, šírkou m hrúbkou 0,8 cm bol zvinutý do role tvru vlc s výškou m (medzi zvinutými vrstvmi nie sú židne medzery). Polomer (v cm) vlcovitej role je njbližšie k číslu: Scio 04 Výhrdne pre individuálnu príprvu uchádzčov.
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Διαβάστε περισσότερα1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Διαβάστε περισσότεραObvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Διαβάστε περισσότερα7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Διαβάστε περισσότερα24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Διαβάστε περισσότεραMatematika test M-2. M O N I T O R 2001 pilotné testovanie maturantov. forma A MONITOR EXAM, Bratislava. Realizácia projektu:
M O N I O R 00 pilotné testovnie mturntov MONIOR 00 Mtemtik test M- form A Odborný grnt projektu: Relizáci projektu: Štátn pedgogický ústv, Brtislv EXAM, Brtislv (00) Štátn pedgogický ústv EXAM Mtemtik
Διαβάστε περισσότερα1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Διαβάστε περισσότεραDESKRIPTÍVNA GEOMETRIA
EKRIÍN GEERI meódy zobrzovni priesorových úvrov do roviny (premieni) mericé polohové vzťhy priesorových úvrov riešené v rovine bsh predmeu G Zobrzovcie meódy: olohové mericé úlohy: ongeov projeci Rezy
Διαβάστε περισσότεραZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3
ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v
Διαβάστε περισσότεραMargita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )
Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým
Διαβάστε περισσότεραMatematika Test M-1, 1. časť
M O N I T O R pilotné testovnie mturntov MONITOR Mtemtik Test M-,. čsť form A Odborný grnt projektu: Relizáci projektu: Štátn pedgogický ústv, Brtislv EXAM, Brtislv () Štátn pedgogický ústv EXAM Mtemtik
Διαβάστε περισσότεραMatematika Test M-1, 1. časť
M O N I T O R pilotné testovnie mturntov MONITOR Mtemtik Test M-,. čsť form A Odborný grnt projektu: Relizáci projektu: Štátn pedgogický ústv, Brtislv EXAM, Brtislv () Štátn pedgogický ústv EXAM Mtemtik
Διαβάστε περισσότερα16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
Διαβάστε περισσότεραStart. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Διαβάστε περισσότεραAlgebraické výrazy I.
. Kontrolná prác z mtemtik 9. ročník A form Algebrické výrz I.. Zjednodušte zpíšte, ked výrz nemá zmsel : ) ( k ) s b) k k s s. Určte njmenší spoločný násobok výrzov : ) b ; b ; b) ; ; c) ; ;. Vpočítjte
Διαβάστε περισσότεραMaturita z matematiky T E S T Y
RNr. Mário oroš Maturita z matematiky príprava na prijímacie skúšky na vysokú školu T E S T Y Všetky práva sú vyhradené. Nijaká časť tejto knihy sa nesmie reprodukovať mechanicky, elektronicky, fotokopírovaním
Διαβάστε περισσότεραModerné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Διαβάστε περισσότερα6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Διαβάστε περισσότεραGoniometrické substitúcie
Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať
Διαβάστε περισσότεραTest. Matematika. Forma A. Štátny pedagogický ústav, Bratislava NUPSESO. a.s.
Test Matematika Forma A Štátny pedagogický ústav, Bratislava Ò NUPSESO a.s. 1. Koľkokrát je väčší najmenší spoločný násobok čísel 84 a 16 ako ich najväčší spoločný deliteľ. A. B. 3 C. 6 D.1. Koľko záporných
Διαβάστε περισσότεραTechnická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach
Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan
Διαβάστε περισσότεραMatematika 2. časť: Funkcia viac premenných Letný semester 2013/2014
Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk
Διαβάστε περισσότερα6. Mocniny a odmocniny
6 Moci odoci Číslo zýve oceec (leo zákld oci), s zýv ociteľ (leo epoet) Číslo s zýv -tá oci čísl Moci s piodzeý epoeto pe ľuovoľé eále číslo pe kždé piodzeé číslo je v ožie eálch čísel defiová -tá oci
Διαβάστε περισσότεραEkvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Διαβάστε περισσότεραMIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Διαβάστε περισσότερα1. Trojuholník - definícia
1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných
Διαβάστε περισσότεραKomplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Διαβάστε περισσότεραMatematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Διαβάστε περισσότερα7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu.
Teória množín To, že medzi množinami A, B existuje bijektívne zobrazenie, budeme symbolicky označovať A B alebo A B. Vtedy hovoríme, že množiny A, B sú ekvivalentné. Hovoríme tiež, že také množiny A, B
Διαβάστε περισσότεραČíslo a číslica. Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva.
Číslo a číslica Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva. Číslica (cifra) je grafický znak, pomocou ktorého zapisujeme
Διαβάστε περισσότεραObvod a obsah rovinných útvarov
Obvod a obsah rovinných útvarov Z topologického hľadiska bod môže byť vnútorný, hraničný a vonkajší vzhľadom na nejaký rovinný útvar. D. Bod je vnútorný, ak môžeme nájsť taký polomer r, že kruh so stredom
Διαβάστε περισσότεραPriamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Διαβάστε περισσότεραFakulta riadenia a informatiky Žilinskej univerzity
Poznámka k úlohám o funkciách: Ak nie je uvedené inak, je definičným oborom funkcie množina všetkých reálnych čísel, pre ktoré výraz definujúci funkciu má zmysel. 0 Ktorá z nasledujúcich funkcií nie je
Διαβάστε περισσότεραFunkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
Διαβάστε περισσότερα4 Reálna funkcia reálnej premennej a jej vlastnosti
Reálna unkcia reálnej premennej a jej vlastnosti Táto kapitola je venovaná štúdiu reálnej unkcie jednej reálnej premennej. Pojem unkcie patrí medzi základné pojmy v matematike. Je to vlastne matematický
Διαβάστε περισσότεραSúradnicová sústava (karteziánska)
Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme
Διαβάστε περισσότεραPYTAGORIÁDA Súťažné úlohy republikového kola 35. ročník, školský rok 2013/2014
Kategória P 6 1. Napíšte číslo, ktoré sa skrýva pod hviezdičkou: *. 5 = 9,55 2. Janko Hraško je 25 - krát menší ako Ďuro Truľo. Napíšte, koľko centimetrov meria Janko Hraško, ak Ďuro Truľo meria 1,75 metra.
Διαβάστε περισσότερα22 Špeciálne substitúcie, postupy a vzorce používané pri výpočte
Špeciálne substitúcie, postupy vzorce používné pri výpočte niektorých ďlších typov neurčitých integrálov. Pomocou vhodnej substitúcie tvru t = n + b (potom = tn b, = n tn dt) vypočítjte neurčitý integrál
Διαβάστε περισσότεραDefinícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
Διαβάστε περισσότεραFakulta riadenia a informatiky Žilinskej univerzity
Fakulta riadenia a informatik Žilinskej univerzit Riaditeľ siete stravovacích zariadení dal pokn, že do každej reštaurácie, v ktorej stúpne počet hostí o viac ako 3 %, musia prijať najmenej dvoch nových
Διαβάστε περισσότεραMocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník
1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5
Διαβάστε περισσότεραZákladné vzťahy medzi hodnotami goniometrických funkcií
Ma-Go-2-T List Základné vzťahy medzi hodnotami goniometrických funkcií RNDr. Marián Macko U: Predstav si, že ti zadám hodnotu jednej z goniometrických funkcií. Napríklad sin x = 0,6. Vedel by si určiť
Διαβάστε περισσότερα5. Rovnice, nerovnice a ich sústavy
. Rovnice, nerovnice ich sústvy Rovnic istý druh výrokovej formy rozumieme pod ňou vzťh: f() = g(), riešiť rovnicu znmená určiť pre ktoré s z rovnice stáv prvdivá rovnosť ted prvdivý výrok. Koreň číselná
Διαβάστε περισσότεραCvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Διαβάστε περισσότεραObsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
Διαβάστε περισσότερα2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin
2. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Verzia: 27. 9. 2009 Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi
Διαβάστε περισσότεραPDF created with pdffactory Pro trial version ZOBRAZOVANIE LOMOM. ŠOŠOVKY AKO ZOBRAZOVACIE SÚSTAVY alebo O spojkách a rozptylkách
PedDr. Joze Beňušk jbenusk@nextr.sk ZBRAZVANIE LMM ŠŠVKY AK ZBRAZVACIE SÚSTAVY lebo spojkách rozptlkách ptická sústv -je sústv optických prostredí ich rozhrní, ktorá mení smer chodu svetelných lúčov. Šošovk
Διαβάστε περισσότερα1.1. POJEM FUNKCIE - DEFINIČNÝ OBOR, OBOR HODNÔT
.. POJEM FUNKCIE - DEFINIČNÝ OBOR OBOR HODNÔT De. : Funkciou n množine A s nýv predpis ktorým je kždému prvku množiny A prirdené práve jedno reálne číslo. Množin A s nýv deiničný obor unkcie D(. Je to
Διαβάστε περισσότεραUNIVERZITA KONŠTANTÍNA FILOZOFA v NITRE FAKULTA PRÍRODNÝCH VIED GEOMETRIA V
UNIVERZITA KONŠTANTÍNA FILOZOFA v NITRE FAKULTA PRÍRODNÝCH VIED GEOMETRIA V Kužeľosečk kvdrtické ploch Ondrej Šedivý Dušn Vllo Vdné v Nitre 0 Fkultou prírodných vied Univerzit Konštntín Filozof v Nitre
Διαβάστε περισσότεραNUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky
Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory
Διαβάστε περισσότεραMotivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
Διαβάστε περισσότεραGramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
Διαβάστε περισσότερα23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
Διαβάστε περισσότεραMatematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Διαβάστε περισσότεραJán Buša Štefan Schrötter
Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako
Διαβάστε περισσότερα4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme
Διαβάστε περισσότεραNormálové rezy a geodetická čiara na referenčnom elipsoide
0 Normálové rezy geodetická čir n referenčnom elipsoide Medzi dvom odmi n referenčnom elipsoide P P s rôznymi geodetickými šírkmi dĺžkmi existujú dv normálové rezy (or 9) Or 9 Normálové rezy n elipsoide
Διαβάστε περισσότεραFunkcie komplexnej premennej
(prezentácia k prednáške FKP/10) doc. RNDr., PhD. 1 1 ondrej.hutnik@upjs.sk umv.science.upjs.sk/analyza Prednáška 1 16. februára 2016 Podmienky Obsah nepovinná účast (!prelínanie prednášok a cvičení!)
Διαβάστε περισσότεραMaturitné úlohy. Matematiky. Pre gymnázium
Jozef Vozár Maturitné úlohy Z Matematiky Pre gymnázium I. (Úlohy s krátkou odpoveďou) OBSAH ÚVOD... 3 1. ZÁKLADY MATEMATIKY... 3 1.1 Logika a množiny... 3 1.2 Čísla, premenné a výrazy... 7 1.3 Teória čísel...
Διαβάστε περισσότεραM6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Διαβάστε περισσότεραSK skmo.sk. 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh domáceho kola kategórie A
SK MATEMATICKÁOLYMPIÁDA skmo.sk 63. ročník Matematickej olympiády 2013/2014 Riešenia úloh domáceho kola kategórie A 1. Číslo n je súčinom troch (nie nutne rôznych) prvočísel. Keď zväčšíme každé z nich
Διαβάστε περισσότεραTECHNICKÁ UNIVERZITA V KOŠICIACH MATEMATIKA II. Dušan Knežo, Miriam Andrejiová, Zuzana Kimáková
TECHNICKÁ UNIVERZITA V KOŠICIACH S T R O J N Í C K A F A K U L T A MATEMATIKA II Dušn Knežo, Mirim Andrejiová, Zuzn Kimáková RECENZOVALI: prof. RNDr. Jozef Doboš, CSc. RNDr. Ján Buš, CSc. c doc. RNDr.
Διαβάστε περισσότεραObjem a povrch ihlanov
M-Te-0-T List 1 Objem povrch ihlnov RNr. Mrián Mcko U: ko by si chrkterizovl n-boký ihln? Ž: Ihln je teleso, ktoré je určené jednou význčnou stenou vrcholom, ktorý v rovine tejto steny neleží. U: ýznčnú
Διαβάστε περισσότερα1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B
. písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c
Διαβάστε περισσότεραMetodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
Διαβάστε περισσότεραPovrch a objem hranola
Povrch a objem hranola D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a priamka, ktorá nie je rovnobežná s rovinou mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme priamky rovnobežné
Διαβάστε περισσότεραVektorové a skalárne polia
Vetorové a salárne pola Ω E e prestorová oblasť - otvorená alebo uavretá súvslá podmnožna bodov prestoru E určených arteánsm súradncam usporadaným trocam reálnch čísel X [ ] R. Nech e salárna unca torá
Διαβάστε περισσότεραTREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT k predmetu Matematika pre 2. ročník SOŠ v Strážskom, študijný odbor 3760 6 00 prevádzka a ekonomika dopravy Operačný program: Vzdelávanie Programové obdobie:
Διαβάστε περισσότεραGoniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Διαβάστε περισσότεραÚvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Διαβάστε περισσότεραŠtátny pedagogický ústav, Pluhová 8, Bratislava CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY
Štátny pedgogický ústv Pluhová 8 830 00 Brtislv CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY Brtislv 008 ÚVOD Cieľové požidvky z mtemtiky sú rozdelené vo väčšine kpitol n čsti Obsh
Διαβάστε περισσότεραSK skmo.sk. 2009/ ročník MO Riešenia úloh domáceho kola kategórie A
SK MATEMATICKÁOLYMPIÁDA skmo.sk 2009/2010 59. ročník MO Riešenia úloh domáceho kola kategórie A 1. V obore reálnych čísel riešte sústavu rovníc x2 y = z 1, y2 z = x 1, z2 x = y 1. (Radek Horenský) Riešenie.
Διαβάστε περισσότεραPríklady a úlohy z krivkových integrálov
Príkldy úlohy z krivkových integrálov Riešené príkldy Príkld Vypočítjme krivkový integrál prvého druhu ds, pričom y = {(, y) R : ; y = e + e }. Riešenie. rivk s dá prmetrizovť npr. nsledujúcim spôsobom
Διαβάστε περισσότεραPREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
Διαβάστε περισσότεραXVIII. ročník BRKOS 2011/2012. Pomocný text. Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú
Pomocný text Číselné obory Číselné obory Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú ľudia začali vnímať. Abstrakcia spočívala v tom, že množstvo, ktoré sa snažili
Διαβάστε περισσότερα2. Aký obsah má vyfarbený útvar? Dĺţka strany štvorca je 3 m.
Dĺžka kružnice, obsah kruhu 1. Na obrázku je kruţnica vpísaná do štvorca so stranou 4cm a štyri kruţnicové oblúky so stredmi vo vrcholoch štvorca. ký obsah má vyfarbený útvar? 4 + π cm 16 - π cm 8π 16
Διαβάστε περισσότεραObjem a povrch hranolov
M-Te-01-T List 1 Objem povrch hrnolov RNDr. Mrián Mcko U: ko by si chrkterizovl n-boký hrnol? Ž: Je to teleso, ktoré má dve význčné steny, ktorými sú zhodné n-uholníky. Leži v nvzájom rovnobežných rovinách.
Διαβάστε περισσότεραZlomky sčítanie, odčítanie. A forma. B forma. 1. Kontrolná práca z matematiky 7. ročník. 1. Vypočítajte : = d) ( ) Vypočítajte : a) 5 + =
1. Kontrolná práca z matematiky 7. ročník Zlomky sčítanie, odčítanie 1. Vypočítajte : 6 2 5 7 2 2 2 a) + + = c) + = 7 3 21 9 3 3 9 3 5 1 1 + + 1 = d) ( ) 5 + 3,7 + 1 4 15 6 = 2. Vypočítajte : a) 1 5 5
Διαβάστε περισσότεραJMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama
MAK by T.Koyama MAK MAK f () = exp{ fex () = exp (') v(, ') ' () (') ' v (, ') ' f (), (), v (, ') f () () f () () v (, ') f () () v (, ') f () () () = + {exp( A) () f () = exp( K ) () K,,, A *** ***************************************************************************
Διαβάστε περισσότεραFUNKCIE. Funkcia základné pojmy. Graf funkcie
FUNKCIE Funkcia základné pojm. Graf funkcie V prai sa často stretávame so skúmaním závislosti veľkosti niektorých veličín od veľkosti iných veličín, napríklad dĺžka kružnice l závisí od jej priemeru d
Διαβάστε περισσότερα1.4 Rovnice, nerovnice a ich sústavy
1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,
Διαβάστε περισσότεραTECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA 1. Funkcia jednej premennej a jej diferenciálny počet
TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA časťa Funkcia jednej premennej a jej diferenciáln počet Dušan Knežo, Miriam Andrejiová, Zuzana Kimáková 200 RECENZOVALI: prof. RNDr. Jozef
Διαβάστε περισσότεραTematický výchovno - vzdelávací plán. Cvičenia z matematiky. pre 9. ročník
výchovno vzdelávací plán Cvičenia z matematiky pre 9. ročník Počet hodín : 1 hod. týždenne Plán bol vypracovaný podľa: ŠVP pre 2. stupeň ZŠ ISCED 2 Plán vypracoval/a: Mgr. Viera Obložinská Školský rok:
Διαβάστε περισσότερα1. ZAKLADY VYŠŠEJ GEODÉZIE
1. ZAKLADY VYŠŠEJ GEODÉZIE Geodézi je náuk o merní Zeme lebo jej čstí o merní n zemi. (Modernejši verzi tej istej myšlienky by mohl znieť: geodézi je vedná disciplín o poznávní priestoru čsu v oblsti plnéty
Διαβάστε περισσότεραČíslo 6 Letný semester 41. ročníka (2016/2017) vaši STROMisti. 10 p+q q p
Číslo 6 Letný semester 41. ročník (2016/2017) Jedlo zdrmo pre kždého, kto získl spoň 108 odov. Jeden y nepovedl ko rýchlo zehne ten čs pri riešení, le j oprvovní STROMu. Ani sme s nenzdli, kým sme stihli
Διαβάστε περισσότεραMATEMATIKA - úlohy z MONITOROV a MSK
MATEMATIKA - úlohy z MONITOROV a MSK P.č. Tematické celky Strana 1 1.1 - Výroky 1 1.. - Množiny 4 3.1. - Výrazy 6 4 3.1. - Teória čísel 7 5 4.1. - Rovnice 9 6 4.. - Nerovnice 11 7 4.3. - Sústavy rovníc
Διαβάστε περισσότερα7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Διαβάστε περισσότεραÚpravy výrazov na daný tvar
DSZŠM Úpravy výrazov na daný tvar. a) Ktoré z nasledujúcich výrazov nie sú druhou mocninou dvojčlena?, 9, 0, b) Zmeňte v nich koeficient pri lineárnom člene tak, aby sa stali druhou mocninou dvojčlena.
Διαβάστε περισσότεραPRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
Διαβάστε περισσότεραŠTÁTNY PEDAGOGICKÝ ÚSTAV CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY
ŠTÁTNY PEDAGOGICKÝ ÚSTAV CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY BRATISLAVA 009 ÚVOD Cieľové požidvky z mtemtiky sú rozdelené n čsti Obsh Požidvky n vedomosti zručnosti. Tet
Διαβάστε περισσότεραGoniometrické nerovnice
Ma-Go--T List Goniometrické nerovnice RNDr. Marián Macko U: Problematiku, ktorej sa budeme venovať, začneme úlohou. Máme určiť definičný obor funkcie f zadanej predpisom = sin. Máš predstavu, s čím táto
Διαβάστε περισσότερα1. Stereometria. 1.1 Premena jednotiek :10 :10 :10 :1000. Jednotky dĺžky: Jednotky obsahu :
1. Stereometria 1.1 Premena jednotiek Jednotky dĺžky: :10 :10 :10 :1000 Jednotky obsahu : 1 Jednotky objemu: : 1000 : 1000 : 1000 : 1000 000 000 : 10 : 10 : 10 : 100 Cvičenia: 1) Premeňte na uvedené jednotky:
Διαβάστε περισσότεραMaturitné otázky z matematiky
Gmnázium Pavla Horova Michalovce Maturitné otázk z matematik školský rok 00 / 00 . VÝROKY A MNOŽINY Maturitné otázk a príklad z matematik, Gmnázium Pavla Horova, Michalovce Výrok a jeho negácia. Kvantifikované
Διαβάστε περισσότεραRiešenia. Základy matematiky. 1. a) A = { 4; 3; 2; 1; 0; 1; 2; 3}, b) B = {4; 9; 16}, c) C = {2; 3; 5},
Riešenia Základy matematiky 1. a) A = { ; ; ; 1; 0; 1; ; }, b) B = {; 9; 16}, c) C = {; ; 5}, d) D = { 1}, e) E =.. B, C, D, F (A neobsahuje prvok 1, E obsahuje navyše prvok 1, G neobsahuje prvok 1)..
Διαβάστε περισσότεραTézy matematika. 1. Množiny, základné pojmy a vzťahy. 2. Výroky a ich pravdivostné hodnoty
Tézy matematika 1. Množiny, základné pojmy a vzťahy 1. Vysvetlite obsah pojmov množina, prázdna množina, disjunktné množiny, popíšte vzťahy medzi množinami (podmnožina, rovnosť množín) a operácie s množinami
Διαβάστε περισσότεραALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov
ALGEBRA Číselné množiny a operácie s nimi. Úprava algebrických výrazov Definícia Množinu považujeme za určenú, ak vieme o ľubovoľnom objekte rozhodnúť, či je alebo nie je prvkom množiny. Množinu určujeme
Διαβάστε περισσότεραŠtátny pedagogický ústav, Pluhová 8, Bratislava CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY ÚROVEŇ B
Štátny pedgogický ústv, Pluhová 8, 830 00 Brtislv CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY ÚROVEŇ B Brtislv 004 ÚVOD Cieľové požidvky z mtemtiky sú rozdelené vo väčšine kpitol
Διαβάστε περισσότεραRiešenie rovníc s aplikáciou na elektrické obvody
Zadanie č.1 Riešenie rovníc s aplikáciou na elektrické obvody Nasledujúce uvedené poznatky z oblasti riešenia elektrických obvodov pomocou metódy slučkových prúdov a uzlových napätí je potrebné využiť
Διαβάστε περισσότεραP Y T A G O R I Á D A
30 P Y T A G O R I Á D A Súťažné úlohy a riešenia celoštátneho kola Kategórie P6 - P8 30. ročník Školský rok 2008/2009 BRATISLAVA, 2009 Súťažné úlohy celoslovenského kola. Školský rok 2008/2009. Kategória
Διαβάστε περισσότεραRozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523
Διαβάστε περισσότερα