Reikniverkefni VII. Sævar Öfjörð Magnússon. 22. nóvember Merki og ker Jónína Lilja Pálsdóttir
|
|
- φώλος Λόντος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Reikniverkefni VII Sævar Öfjörð Magnússon 22. nóvember Merki og ker Jónína Lilja Pálsdóttir
2
3 KAFLI 9.2 Pólar 2. stigs kerfa Í þessum kaa vinnum við með 2. stigs ker á forminu H(s) = ω 2 n. () s 2 + 2ζω n s + ωn 2 Nánar tiltekið ætlum við að rannsaka hvernig staðsetningar póla breytast eftir því sem dempunarstuðullinn ζ og ódempaða náttúrulega tíðnin ω n breytast. Við skoðum einnig hvernig tíðnisvörun kersins breytist eftir staðsetningu pólanna. Basic Problems Í þessum dæmum munum við rannsaka staðsetningu póla og tíðnisvörun kers fyrir fjögur mismunandi gildi á ζ á meðan gildi ω n er haldið föstu í. Liður (a) Dæmi Eigum að skilgreina H (s) upp í H 4 (s) til þess að vera ker sem við fáum þegar við festum ω n = í jöfnu á meðan ζ er, /4,, og 2. Skilgreinum stuðlavigra a til a4 fyrir nefnara H (s) til H 4 (s). Finna svo og teikna póla hvers kers. Lausn Á mynd () sjáum við staðsetningu póla fyrir kern fjögur:.5 Polar fyrir H (s).5 Polar fyrir H 2 (s).5.5 \Im\,m \Re\,e Polar fyrir H 3 (s) Polar fyrir H 4 (s) Mynd : Pólar kerfanna H (s) til H 4 (s). 3 Merki og ker
4 KAFLI 9.2 Liður (b) Liður (b) Dæmi Hér eigum við að skilgreina vigurinn omega=[-5:.:5] sem þær tíðnir sem við viljum reikna tíðnisvörun fyrir. Notum freqs til þess að reikna og teikna H(jω) fyrir öll fjögur kern úr (a)-lið. Hvernig eru tíðnisvaranirnar fyrir ζ < frábrugðnar þeim sem eru fyrir ζ? Getum við útskýrt hvernig staðsetningar pólanna valda þessum mun á tíðnisvörunum? Einnig, hvers vegna er H(jω) ω= eins fyrir öll kern? Lausn Mynd 2: Stærðir tíðnisvarana fyrir kern fjögur. Sjáum þegar við berum mynd () saman við mynd (??) að þegar ζ < höfum við tvo tvinntalnapóla. Þá fáum við tvo toppa hvorn sínu megin við núllið á raunásnum. Þegar ζ stefnir hæð toppanna á. Fyrir ζ höfum við eingöngu raungilda póla og fáum bara einn topp við núllið. Þegar ζ stækkar mjókkar toppurinn. Við sjáum líka að grön skera öll lóðrétta ásinn í gildinu. Það er einfalt að sjá að þegar við stingum gildunum s = jω = og ω n = inn í jöfnu () fáum við H(jω) =. Intermediate Problems Í þessum dæmum skoðum við ferlana sem pólarnir myndast þegar við breytum gildunum á ζ og ω n, og skoðum hvernig tíðnisvörun kersins breytist þegar við breytum þessum gildum. 4 Merki og ker
5 KAFLI 9.2 Liður (c) Liður (c) Dæmi Fyrst látum við ζ hlaupa yr bilið ζ á meðan við höldum ω n föstu í gildinu. Teiknum á eitt graf raunhluta og þverhluta pólanna sem myndast þegar við breytum ζ. Merkjum inn punktana ζ =, /4, og 2. Reynum að lýsa því hvernig við höldum að tíðnisvörunin breytist þegar ζ fer frá upp í og svo frá upp í. Lausn 2.5 ζ=/4 ζ=.5 ζ=2 ζ= ζ=2.5 ζ=/4 ζ= Mynd 3: Pólar fyrir ζ og ω n =. Á mynd (??) sjáum við grað með pólunum. Þegar < ζ < fáum við alltaf tvo samoka tvinntölupóla sem raða sér á einingahringinn. Þegar ζ eykst fjarlægðin milli pólanna, sennilega vegna þess að gildin á ζ aukast logaritmískt. Þegar < ζ < fáum við tvo raungilda póla. Bilið milli þeirra er minnst við ζ = og eykst þegar ζ stækkar. Í ζ = höfum við svo tvöfaldan raungildan pól, nákvæmlega á einingahringnum. Sjá viðaukann Matlab kóðar fyrir nánari lausn. Liður (d) Dæmi Nú festum við ζ í gildinu /4 og athugum hvað gerist þegar við aukum ω n frá upp í. Teiknum á eitt graf raunhluta og þverhluta pólanna sem myndast þegar við breyta ω n. Hvernig væntum við þess að breytingar á ω n breyti tíðnisvörun H(jω)? Notum freqs til þess að meta tíðnisvörunina þegar ω n = 2 og ζ = /4 og teiknum upp stærð hennar. Berum þetta saman við grað úr (b)-lið fyrir ω n = og ζ = /4. Hver er munurinn á 5 Merki og ker
6 KAFLI 9.2 Liður (d) þeim? Passar þetta við það sem við væntum úr granu fyrir ferlana sem mynduðust þegar ω n hljóp frá upp í? Lausn Mynd 4: Pólar fyrir ω n og ζ = /4. Sjáum á mynd (??) að eftir því sem ω n stækkar stækka þverhlutar pólanna einnig. Sjá viðaukann Matlab kóðar fyrir nánari lausn. 6 Merki og ker
7 MATLAB KÓÐAR MATLAB kóðar Kai 9.2 % r e i k n i v e r k e f n i 7 2 % 2. november % Saevar Ofjord Magnusson 4 5 c l e a r a l l 6 c l o s e a l l 7 8 % a l i d u r 9 a = [ ] ; a2 = [. 5 ] ; a3 = [ 2 ] ; 2 a4 = [ 4 ] ; 3 4 ps = roots ( a ) ; 5 ps2 = roots ( a2 ) ; 6 ps3 = roots ( a3 ) ; 7 ps4 = roots ( a4 ) ; 8 9 f i g u r e () 2 subplot (2,2,) 2 plot ( r e a l ( ps ), imag ( ps ), ' x ' ) 22 axis ( [ ] ) 23 t i t l e ( ' Polar f y r i r H_( s ) ' ) 24 x l a b e l ( ' \Re\, e ' ) 25 y l a b e l ( ' \Im\,m' ) 26 grid 27 subplot (2,2,2) 28 plot ( r e a l ( ps2 ), imag ( ps2 ), ' x ' ) 29 axis ([.5.5]) 3 t i t l e ( ' Polar f y r i r H_2( s ) ' ) 3 grid 32 subplot (2,2,3) 33 plot ( r e a l ( ps3 ), imag ( ps3 ), ' x ' ) 34 axis ([ ]) 35 t i t l e ( ' Polar f y r i r H_3( s ) ' ) 36 grid 37 subplot (2,2,4) 38 plot ( r e a l ( ps4 ), imag ( ps4 ), ' x ' ) 39 axis ([ 4 ]) 4 t i t l e ( ' Polar f y r i r H_4( s ) ' ) 4 grid print depsc rv7_ % b l i d u r 46 7 Merki og ker
8 MATLAB KÓÐAR Kai omega = [ 5 :. : 5 ] ; 48 H = abs ( f r e q s (, a, omega ) ) ; 49 H2 = abs ( f r e q s (, a2, omega ) ) ; 5 H3 = abs ( f r e q s (, a3, omega ) ) ; 5 H4 = abs ( f r e q s (, a4, omega ) ) ; f i g u r e (2) 54 subplot (2,2,) 55 plot (omega, H) 56 subplot (2,2,2) 57 plot (omega, H2) 58 subplot (2,2,3) 59 plot (omega, H3) 6 subplot (2,2,4) 6 plot (omega, H4) print depsc rv7_ % c l i d u r 66 zetarange =[ logspace (,,99)]; 67 azeta = [ ones (, ) ; 2 zetarange ; ones (, ) ] ; 68 z e t a p o l e s = zeros ( 2, ) ; 69 f o r j =: 7 z e t a p o l e s ( :, j ) = roots ( azeta ( :, j ) ) ; 7 end f i g u r e (3) 74 hold on 75 f o r j =: 76 plot ( r e a l ( z e t a p o l e s ( :, j ) ), imag ( z e t a p o l e s ( :, j ) ), '. ' ) 77 end 78 plot ( r e a l ( ps ), imag ( ps ), ' o ' ) 79 plot ( r e a l ( ps2 ), imag ( ps2 ), ' o ' ) 8 plot ( r e a l ( ps3 ), imag ( ps3 ), ' o ' ) 8 plot ( r e a l ( ps4 ), imag ( ps4 ), ' o ' ) text ( r e a l ( ps )+., imag ( ps )+.5, ' \ zeta= ' ) 84 text ( r e a l ( ps2 ).2, imag ( ps2 ).5, ' \ zeta =/4 ' ) 85 text ( r e a l ( ps3 )., imag ( ps3 )+., ' \ zeta= ' ) 86 text ( r e a l ( ps4 )., imag ( ps4 )+., ' \ zeta=2 ' ) axis ( ' equal ' ) 89 axis ([ 4 2 2]) 9 9 print depsc rv7_ % d l i d u r 94 omegarange =[ logspace (,,99)]; 95 aomega = [ ones (, ) ; omegarange ; omegarange. ^ 2 ] ; 96 omegapoles = zeros ( 2, ) ; 8 Merki og ker
9 MATLAB KÓÐAR Kai f o r j =: 98 omegapoles ( :, j ) = roots ( aomega ( :, j ) ) ; 99 end f i g u r e (4) 2 hold on 3 f o r j =: 4 plot ( r e a l ( omegapoles ( :, j ) ), imag ( omegapoles ( :, j ) ), '. ' ) 5 end 6 axis ( ' equal ' ) 7 axis ([ 4 2 2]) 8 9 print depsc rv7_4 % finna tidnisvorun 2 Hw = abs ( f r e q s ( 4, [ ], omega ) ) ; 3 f i g u r e (5) 4 subplot (,2,) 5 plot (omega,hw) 6 subplot (,2,2) 7 plot (omega, H2) 8 9 print depsc rv7_5 2 2 % e l i d u r zetarange2=[ logspace (,,99) ]; 24 azeta2 = [ ones (, ) ; 2 zetarange2 ; ones (, ) ] ; 25 z e t a p o l e s 2 = zeros ( 2, ) ; 26 f o r j =: 27 z e t a p o l e s 2 ( :, j ) = roots ( azeta2 ( :, j ) ) ; 28 end 29 3 f i g u r e (6) 3 hold on 32 f o r j =: 33 plot ( r e a l ( z e t a p o l e s 2 ( :, j ) ), imag ( z e t a p o l e s 2 ( :, j ) ), '. ' ) 34 end axis ( ' equal ' ) 37 axis ( [ ] ) print depsc rv7_6 4 4 % finna tidnisvorun 42 Hw2 = abs ( f r e q s (, [ 2 (. 2 5 ) ], omega ) ) ; 43 f i g u r e (7) 44 subplot (,2,) 45 plot (omega,hw2) 46 subplot (,2,2) 9 Merki og ker
10 MATLAB KÓÐAR Kai plot (omega, H2) print depsc rv7_7 Merki og ker
x(t) = T 0 er minnsta mögulega gildi á T
Fyrir x(t) = u(t) þá fáum við lim t y(t) = lim t tu(t) = sem er óstöðugt. (oft er gott að skoða hvort impúlssvörunin sé alsamleitin, ef svo er, þá er kerð stöðugt). Tímaóháð Ker er tímaóháð ef það kemur
Meðalmánaðardagsumferð 2009
Meðalmánaðardagsumferð 2009 Almennt Á meðfylgjandi stöplaritum gefur að líta, hvernig umferð um 74 staði/snið dreifist hlutfallslega eftir mánuðum yfir árið 2009. Í upphafi var ákveðið að velja alla talningarstaði,
Þriggja fasa útreikningar.
Þriggja asa útreikningar. Hér þurum við að byrja á því að skilgreina 4 hugtök. 1. Netspenna er spenna sem við mælum á milli tveggja asa.. Netstraumur er straumurinn í hverjum asaleiðara.. Fasaspenna er
PRÓFBÚÐIR Í LÍNULEGRI ALGEBRU VIÐ HR VOR 2014 HERKÚLES
PRÓFBÚÐIR Í LÍNULEGRI ALGEBRU VIÐ HR VOR 2014 HERKÚLES GUÐMUNDUR EINARSSON Herkúles Prófbúðir April 8, 2014 1 / 52 OUTLINE 1 Grunnhugtök, einfaldar aðgerðir og innfeldi Grunnhugtök Innfeldi Jafna Línu
Eðlisfræði II: Riðstraumur. Kafli 11. Jón Tómas Guðmundsson 10. vika vor 2016
Eðlisfræði II: Riðstraumur Kafli 11 Jón Tómas Guðmundsson tumi@hi.is 10. vika vor 2016 1 Inngangur Grafið sem sýnir augnabliksgildi rafmerkis sem fall af tíma er nefnt bylgjuform merkis Gjarnan eru bylgjuform
RAF301G Merki og kerfi Miðmisserispróf, lausn
RAF301G Merki og kerfi Miðmisserispróf, lausn Miðvikudaginn 20. okóber 2010, kl. 08:20-09:50 Leyfileg hjálpargögn: reiknivél og ei A-blað með hverju sem er (innan marka heilbrigðrar skynsemi) á báðum hliðum.
t 2 c2 2 Φ = 0. (2.1)
2 Bylgjuaflfræði Eftir að de Broglie setti fram tilgátu sína og í ljós kom að hún átti við rök að styðjast var ljóst að finna þyrfti bylgjujöfnu sem þessar bylgjur hlíttu. Rafsegulbylgjur, hljóðbylgjur
Líkindi Skilgreining
Líkindi Skilgreining Ω = útkomumengi = mengi allra hugsanlegra útkoma. Atburður er hlutmengi í Ω. Ω A Skilgreining: Atburðir A og B kallast sundurlægir (ósamræmanlegir) ef A B =. Ω A B Skilgreining: Líkindi
Eðlisfræði 1. Dæmi 5.2 (frh.) Dæmi Dæmi (frh.) d) P = W tog. = 0, 47kW. = 9, 4kJ
S I S Menntakólinn Dæi 5. frh. - 5.3 R E Y K SIGILLUM J A V SCHOLÆ I C E N í Reykjavík 5. frh. d P W tog t 9,4kJ 0 0, 47kW Eðlifræði Kafli 5 - Vinna og orkuvarðveila Óleyt dæi 5. nóveber 006 Kritján Þór
Bústólpi ehf - Nýtt kjarnfóður H K / APRÍL 2014
Bústólpi ehf - Nýtt kjarnfóður H K / APRÍL 2014 Nýtt kjarnfóður frá Bústólpa PREMIUM PRO-FIT 17 PREMIUM PRO-FIT 13 Nýtt kjarnfóður frá Bústólpa PREMIUM PRO-FIT 17 Kjarnfóður sem ætlað er að hámarka fitu,
Nokkur valin atriði úr aflfræði
Einföld sveifluhreyfin Nour valin atriði úr aflfræði Soðum raftajöfnuna fyrir orm með ormstuðul sem má rita á eftirfarandi formi: mẍ = x sem er óhliðruð. stis diffurjafna. Umritum hana yfir á eftirfarandi
Menntaskólinn í Reykjavík
Menntakólinn í Reykjaík Jólaróf 006, fötudaginn 5. de. kl. 9 0 Eðlifræði í 6.M og S náttúrufræðideild I Sör erkefnið er á 5 töluettu blaðíðu. Leyfileg hjálargögn eru hjálagt forúlublað og aareiknir. otaðu
Aðskilnaður breytistærða í rúmi
Kai 9 Aðskinaður breytistærða í rúmi 9.1 Bygjujafna í skífu 2 u = c 2 2 u, x 2 + y 2 < a 2 t 2 js: u = 0, x 2 + y 2 = a 2 us: u u t=0 = ϕ, = ψ t=0 t 9.1) Geymum upphafsskiyrðin us) beitum aðskinaði breytistærða
4.01 Maður ekur 700 km. Meðalhraðinn er 60 km/klst fyrstu 250 km og 75 km/klst síðustu 450 km. Hver er meðalhraðinn?
4. kafli, dæmi og vör með útreikningum Skrifað út 9..4; :34 4. Maður ekur 7 km. Meðalhraðinn er 6 km/klt fyrtu 5 km og 75 km/klt íðutu 45 km. Hver er meðalhraðinn? S S Sv.: Hér þarf að reikna tímann fyrir
Guðbjörg Pálsdóttir Guðný Helga Gunnarsdóttir NÁMSGAGNASTOFNUN
Guðbjörg Pálsdóttir Guðný Helga GunnarsdóttirNÁMSGAGNASTOFNUN Til nemenda Námsefnisflokkurinn 8 tíu er ætlaður nemendum í 8. 10. bekk. Grunnbókin 8 tíu 5 skiptist í átta meginkafla. Í hverjum kafla er
Undirstöðuatriði RC-tengds magnara Ólafur Davíð Bjarnason og Valdemar Örn Erlingsson 28. apríl 2009
Háskóli Íslands Vor 2009 Kennari: Vilhjálmur Þór Kjartansson Undirstöðuatriði RC-tengds magnara 28. apríl 2009 1 Magnari án forspennu Notuð var rás eins og á mynd 1. Við bárum saman uce og ube á sveiflusjá.
Kaplan Meier og Cox. Aðferðafræði klínískra rannsókna haustið 2010 Fimmtudagur 11 nóvember. Thor Aspelund Hjartavernd og Háskóla Íslands
Kaplan Meier og Cox Aðferðafræði klínískra rannsókna haustið 2010 Fimmtudagur 11 nóvember Thor Aspelund Hjartavernd og Háskóla Íslands Tími að atburði í heilbrigðisvísindum Í heilbrigðisvísindum er útkoman
Ályktanir um hlutföll og tengslatöflur
Ályktanir um hlutföll og tengslatöflur LAN 203G & STÆ209G Anna Helga Jónsdóttir Sigrún Helga Lund Háskóli Íslands Anna Helga og Sigrún Helga (HÍ) Ályktanir um hlutföll og tengslatöflur 1 / 27 Helstu atriði:
6. júní 2016 kl. 08:30-11:00
Sveinsprófsnefnd sterkstraums Rafmagnsfræði, stýrikerfi og búnaður 6. júní 2016 kl. 08:30-11:00 Nafn: Kennitala: Heimilisfang:_ Hjálpargögn: Skriffæri, reglustika, og reiknivél. Nota má bókina Formúlur
FRÆÐSLUSKRIFSTOFA RAFIÐNAÐARINS
FÆÐSLSKIFSTOF FIÐNÐINS FOMÚL VEGN SVEINSÓFS Í FIÐNM Útgáfa SVEINSÓFSNEFND FIÐN STEKSTMS Fræðsuskrifstofa rafiðnaðarins Sveinsprófsnefnd sterkstraums FOMÚL FOMÚLTEXTI ρ Δ cosϕ I ρ Δ ρ Δ Spenna V I Straumur
Kafli 1: Tímastuðull RC liður. Dæmi 1.1 A: 3,3ms B: 7,56V Dæmi 1.2 A: 425µF B: 1s Dæmi 1.3 A: 34,38V B: 48,1V Dæmi 1.4 A: 59,38s
Kafli 1: Tímastuðull RC liður Dæmi 1.1 A: 3,3ms B: 7,56V Dæmi 1.2 A: 425µF B: 1s Dæmi 1.3 A: 34,38V B: 48,1V Dæmi 1.4 A: 59,38s Kafli 2: NTC, PTC, LDR, VDR viðnám Dæmi 2.1 A: Frá vinstri: NTC viðnám, VDR
Viðskipta- og Hagfræðideild Tölfræði II, fyrirlestur 6
Viðskipta- og Hagfræðideild Tölfræði II, fyrirlestur 6 Háskóli Íslands Helgi Tómasson Líkindafræði kafli 2-9 Berið saman við líkindafræðina í Newbold. Tilgangur líkindafræði í tölfræðinámsskeiði er að
Span og orka í einfaldri segulrás
Rafmagnsvélar 1 - RAF601G 1 Span og orka í einfaldri segulrás Inductance and energy in a simple magnetic circuit Rafmagnsvélar 1 - RAF601G 2 Lögmál Faradays spansegulviðnám Lögmál Faradays er hluti af
CHEMISTRY. Bylgjueðli ljóss. Bylgjueðli ljóss. Rafeindabygging atóma. Bylgjueðli ljóss. Bylgjueðli ljóss. Bylgjueðli ljóss
CHEMISTRY The Central Science 9th Edition Rafeindabygging atóma David P. White Allar bylgjur hafa einkennandi bylgjulengd, λ, og útslag, A. Tíðni bylgju, ν, er fjöldi heilla bylgna sem fara yfir línu á
1) Birgðabreyting = Innkaup - Sala + Framleiðsla - Rýrnun - Eigin notkun. Almennari útgáfa af lögmálinu hér fyrir ofan lítur svona út:
Massajöfnunarkerfi Svokölluð jöfnunarkerfi eru notuð til að fylgjast með magni efnis þegar það fer í gegnum ferli. Slík kerfi eru útgáfur af lögmálinu um varðveislu massans. Einfaldasta jöfnunarkerfið
H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun
H2S loftgæðamælingar, Hellisheiði og Nesjavöllum, 1. og 2. ársfjórðungur 2015 Bls. 1 Skýrsla nr. 15 16. júlí 2015 H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun Skýrsla um mælingar
Gagnasafnsfræði Venslaalgebra og bestun fyrirspurna. Hallgrímur H. Gunnarsson
Gagnasafnsfræði Venslaalgebra og bestun fyrirspurna Hallgrímur H. Gunnarsson Inngangur SQL: SQL er declarative mál, segir bara hvað á að reikna, en ekki hvernig. Það er undir gagnasafnskerfinu komið að
H2S mælingar í Norðlingaholti og Hveragerði Skýrsla um mælingar árið 2013 Unnið fyrir Orkuveitu Reykjavíkur
Bls. 1 Skýrsla nr. 2 (útgáfa 2) 12. janúar 2014 H2S mælingar í Norðlingaholti og Hveragerði Skýrsla um mælingar árið 2013 Unnið fyrir Orkuveitu Reykjavíkur Höfundur: Andrés Þórarinsson Verkfræðistofan
9 x 2 x 2 x 3 = 19 (9 + 2) 2 3 = 19
Verkefnablað 7.35 Horfin aðgerðartákn Settu aðgerðartákn (+,, :, ) og sviga á rétta staði þannig að svörin verði rétt. Dæmi: 9 x 2 x 2 x 3 = 19 (9 + 2) 2 3 = 19 a 9 x 8 x 3 x 2 = 7 b 16 x 9 x 5 x 5 = 10
Hagrannsóknir II fyrirlestraglósur
Hagrannsóknir II fyrirlestraglósur hluti I Björn Arnar Hauksson bah@hi.is Vor 2003 Útdráttur Efni þessa glósurits er ritað í fyrirlestrum í Hagrannsóknum II, vorið 2003. Kennt af Helga Tómassyni. Engin
H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun
H 2 S loftgæðamælingar, Hellisheiði og Nesjavöllum, 1. ársfjórðungur 2016 Bls. 1 Skýrsla nr. 21 26. apríl 2016 H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun Skýrsla um mælingar
SKALI STÆRÐFRÆÐI FYRIR UNGLINGASTIG KENNARABÓK. Grete Normann Tofteberg Janneke Tangen Ingvill Merete Stedøy-Johansen Bjørnar Alseth
SKALI KENNARABÓK STÆRÐFRÆÐI FYRIR UNGLINGASTIG Grete Normann Tofteberg Janneke Tangen Ingvill Merete Stedøy-Johansen Bjørnar Alseth Menntamálastofnun 8542 3B Skali 3B Kennarabók Heiti á frummálinu: Maximum
Verkefni 1: Splæsibrúun og jafnhæðarferlar
Verkefni 1: Splæsibrúun og jafnhæðarferlar Friðrik Freyr Gautason og Guðbjörn Einarsson I. SPLÆSIBRÚUN FORRITUÐ Hérna er markmiðið að útfæra forrit sem leyfir notanda að smella á teikniglugga eins oft
Sæmundur E. Þorsteinsson, TF3UA
Sæmundur E. Þorsteinsson, TF3UA Flutningslínur Á formlegri ensku heita þær Transmission Lines Líka oft kallaðar Feeder lines Fæðilínur Flutningslínur, merkjaflutningslínur Flutningslína flytur afl (merki)
H 2 S loftgæðamælingar við Hellisheiðarvirkjun og Nesjavallavirkjun
H 2 S loftgæðamælingar á Hellisheiði og Nesjavöllum, 1. ársfjórðungur 2018 Bls. 1 Skýrsla nr. 42 3. maí 2018 H 2 S loftgæðamælingar við Hellisheiðarvirkjun og Nesjavallavirkjun Skýrsla um mælingar fyrir
Borðaskipan í þéttefni
Eðlisfræði þéttefnis I: Borðaskipan í þéttefni Kafli 7 Jón Tómas Guðmundsson tumi@hi.is 8. vika haust 2017 1 Inngangur Sú nálgun sem gerð var með einnar rafeindar nálguninni og með því að gera ráð fyrir
Iðjuþjálfun LIE0103 Hrefna Óskarsd.
Intraplural fluid alveoli P atm = O mmhg P alv P ip = P alv = O mmhg Lung elastic recoil 4 mmhg Chest wall P ip = -4 mmhg að anda inn og út. útöndun án mikils krafts, þ.e. af ákveðnu hlutleysi, og getum
Stær fræ i. Kennsluleiðbeiningar. Kennsluleiðbeiningar. 8tíu. NÁMSGAGNASTOFNUN 15. febrúar 2007
4 1 2 3 5 6 Kennsluleiðbeiningar Kennsluleiðbeiningar 8tíu NÁMSGAGNASTOFNUN 15. febrúar 2007 Átta tíu Stærðfræði 4 Kennsluleiðbeiningar 2007 Guðbjörg Pálsdóttir og Guðný Helga Gunnarsdóttir 2007 teikningar
Skrifað út ; 18:59 gk. 6. kafli, dæmi og svör með útreikningum
6. kafli, dæmi og svör með útreikningum Skrifað út 30.3.2005; 18:59 6.1 Brennsluspritt hefur eðlismassann 0,8/cm 3. Hversu langa pípu þyrfti að nota í loftvog til að samsvara loftþrýstingi miðað við 76
Annar kafli Hraði, hröðun, kraftur og massi
Annar kafli Hraði, hröðun, kraftur og massi Markmið kaflans eru að kunna: Hraða, hröðun Stigstærð, vektorstærð Reikna krafta sem verka á hluti með hliðsjón af massa og hröðun hans Geta reiknað lokahraða
Vísandi mælitæki (2) Vísandi mælitæki. Vísandi mælitæki (1) Vísandi mælitæki (3)
1 2 Vísandi mælitæki (2) Vísandi mælitæki Fjöldi hliðrænna tækja byggir á því að rafsegulsvið myndast umhverfis leiðara með rafstraumi. Við það færist vísir: Með víxlverkun síseguls og segulsviðs umhverfis
H 2 S loftgæðamælingar í Norðlingaholti og í Hveragerði
H 2 S loftgæðamælingar, Norðlingaholti og Hveragerði, 1. - 3. ársfjórðungur 2016 Bls. 1 Skýrsla nr. 24 19. október 2016 H 2 S loftgæðamælingar í Norðlingaholti og í Hveragerði Skýrsla um mælingar fyrir
H2S loftgæðamælingar í Norðlingaholti og í Hveragerði
H2S loftgæðamælingar, Norðlingaholt, Hveragerði, 1. og 2. ársfjórðungur 2015 Bls. 1 Skýrsla nr. 14 16. júlí 2015 H2S loftgæðamælingar í Norðlingaholti og í Hveragerði Skýrsla um mælingar fyrir janúar til
H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun
H2S loftgæðamælingar, Hellisheiði og Nesjavöllum, fyrir árið 2015 Bls. 1 Skýrsla nr. 19 18. janúar 2016 H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun Skýrsla um mælingar fyrir
fyrirlestrapunktar vor 2009 Háskóli Íslands Mælingar tengdar í tíma. Kafli 7 (muna 5.5. og k. 1-4)
Viðskipta- og Hagfræðideild fyrirlestrapunktar vor 2009 Háskóli Íslands Hagrannsóknir II, Helgi Tómasson Mælingar tengdar í tíma. Kafli 7 (muna 5.5. og k. 1-4) Nokkur hugtök Stationarity: Weak/Strong.
Veghönnunarreglur 03 Vegferill
3 Veghönnunarreglur 03 01.08.2010 Flokkun gagna innan Vegagerðarinnar Flokkur Efnissvið Einkenni (litur) 1 Lög, reglugerðir, og önnur Svartur fyrirmæli stjórnvalda 2 Stjórnunarleg fyrirmæli, Gulur skipurit,
Tölfræði II Samantekt vor 2010
Tölfræði II Samatekt vor 00 Ályktuartölfræði Hvað er ályktuartölfræði (iferetial statistics)? Öryggisbil (cofidece iterval) Marktektarpróf Ályktuartölfræði: Hverig er öryggisbil reikað? Gerum ráð áðfyrir
H2S loftgæðamælingar í Norðlingaholti og í Hveragerði
H2S loftgæðamælingar, Norðlingaholti og Hveragerði, fyrir árið 2015 Bls. 1 Skýrsla nr. 18 18. janúar 2016 H2S loftgæðamælingar í Norðlingaholti og í Hveragerði Skýrsla um mælingar fyrir árið 2015 Unnið
Tölfræði II. Lausnahefti við völdum dæmum. Haustönn 2004
Tölfræð II Lausaheft vð völdum dæmum Haustö 4 Erledur Davíðsso 5 Erledur Davíðsso Efsyfrlt Dæm Slembbreytur, líkdafræð...4 Dæm - Þéttföll...4 Dæm 3 Ýmsar drefgar...4 Dæm 4 - Vætgld...5 Dæm 5 Vægsframleðarar...5
Rafbók. Loftnetskerfi. Verkefnahefti A
Loftnetskerfi Verkefnahefti A Þetta hefti er án endurgjalds á rafbókinni. Allir rafiðnaðarmenn og rafiðnaðarnemar geta fengið aðgang án endurgjalds að rafbókinni. Þetta hefti er þýtt með góðfúslegu leyfi
Stillingar loftræsikerfa
Stillingar loftræsikerfa Apríl 009 Stillingar loftræsikerfa Höfundar: og Útgefandi: IÐAN fræðslusetur ehf IÐAN fræðslusetur Skúlatúni 105 Reykjavík Fyrsta útgáfa 004 Önnur útgáfa 008 Þriðja útgáfa 009
BLDC mótorstýring. Lokaverkefni í rafmagnstæknifræði BSc. Halldór Guðni Sigvaldason
BLDC mótorstýring Halldór Guðni Sigvaldason Lokaverkefni í rafmagnstæknifræði BSc 2014 Höfundur: Halldór Guðni Sigvaldason Kennitala: 201266-2979 Leiðbeinandi: Baldur Þorgilsson Tækni- og verkfræðideild
Orkuumbreyting milli raforku og hreyfiorku
1 Orkuumbreyting milli raforku og hreyfiorku Electromechanical energy conversion principles Umbreyting milli raforku og hreyfiorku Umbreytingin getur almennt gengið í hvora áttina sem er: Umbreyting úr
Stærðfræði. Lausnir. Lausnir. 8tíu. NÁMSGAGNASTOFNUN 20. apríl 2009
4 1 2 3 5 6 Lausnir Lausnir 8tíu NÁMSGAGNASTOFNUN 20. apríl 2009 Átta Lausnir 2007 Björgvin Sigurðsson, Guðbjörg Pálsdóttir og Guðný Helga Gunnarsdóttir Ritstjóri: Hafdís Finnbogadóttir Öll réttindi áskilin
Upplýsingar um innrigerð jarðar er fundið með jarðskjálftabylgjum og loftsteinum.
Storkuberg 1 Kafli 1 Upphaf jarðar er talið hafa verið fyrir um 4,6*10 9 árum þá sem aðsóp (accrection). Upplýsingar um innrigerð jarðar er fundið með jarðskjálftabylgjum og loftsteinum. Loftsteinum er
1 Aðdragandi skammtafræðinnar
1 Aðdragandi skammtafræðinnar 1.1 Inngangur Fram yfir aldamótin 1900 töldu flestir eðlisfræðingar að aflfræði Newtons og rafsegulfræði Maxwells dygðu til að gera grein fyrir gangi náttúrunnar. Á síðustu
Hugtakalisti fyrir 10. bekk. Listinn er ekki tæmandi!!!
Hugtakalisti fyrir 10. bekk. Listinn er ekki tæmandi!!! Tölur o Talnamengin eru fjögur: N, Z, Q og R. o Náttúrulegar tölur (N) Allar jákvæðar heilar tölur. ATH. ekki 0. o Heilar tölur (Z) Allar heilar
Forritunarkeppni Framhaldsskólanna 2014
2014 Morpheus deild - eftir hádegi Háskólinn í Reykjavík 20. mars 2014 Verkefni 1 Á Milli Skrifið forrit sem les inn þrjár heiltölur a, b og c. Skrifið út Milli ef talan b er á milli a og c á talnalínunni.
Skilaverkefni 1. Skil á þriðjudaginn
Nafn: Skilaverkefni 1 Skil á þriðjudaginn 1. Bíll ekur frá Reykjavík á Selfoss. Ferðin tekur 45 mínútur og vegalendin sem bíllinn fer er 50 Km. Hver er meðalhraði bílsins á leiðinni í m/s og Km/klst? 2.
Iðjuþjálfun LIE0103 Hrefna Óskarsd.
Frumur í blóði Blóð samanstendur af vökva og frumum sem fljóta í vökvanum. Blóðvökvinn er rúmlega helmingur af rúmmáli blóðsins. Þetta er gulleitur vökvi sem er að mestu leyti vatn en inniheldur líka mörg
Grunnvatnsrannsóknir í Norðurþingi 2010
Grunnvatnsrannsóknir í Norðurþingi 2010 Hrefna Kristmannsdóttir Maí 2011 1 EFNISYFIRLIT AÐFERÐIR... 3 GAGNAÖFLUN OG SÝNATAKA... 4 NIÐURSTÖÐUR MÆLINGA... 5 MÆLING SNEFILEFNA Í VATNSSÝNUM... 18 HLUTFALL
16 kafli stjórn efnaskipta
16 kafli stjórn efnaskipta Stjórnun efnaskipta kodhydrata, próteina og fitu Þegar við erum búin að koma næringu úr meltingarveginum og út í blóðið, þarf að koma næringunni áfram yfir í þær frumur sem eiga
HÖNNUN BURÐARVIRKIS IÐNAÐARHÚSS SAMANBURÐUR Á MISMUNANDI BYGGINGAREFNUM
HÖNNUN BURÐARVIRKIS IÐNAÐARHÚSS SAMANBURÐUR Á MISMUNANDI BYGGINGAREFNUM Lokaverkefni í byggingartæknifræði BSc 2014 Höfundur: Kennitala: 110981-3929 Torfi G.Sigurðsson Tækni- og verkfræðideild School of
Greinargerð Trausti Jónsson. Sveiflur IV. Árstíðasveiflur í háloftunum yfir Keflavík
Greinargerð 44 Trausti Jónsson Sveiflur IV Árstíðasveiflur í háloftunum yfir Keflavík VÍ-VS4 Reykjavík Mars 24 Árstíðasveifla ýmissa veðurþátta í háloftunum yfir Keflavík Inngangur Hér verður fjallað um
Skýrsla LV nr: LV Dags: desember Titill: Landbrot á bökkum Hálslóns í Kringilsárrana úttekt 2017
Lykilsíða Skýrsla LV nr: LV-2017-103 Dags: desember 2017 Fjöldi síðna: 15 Upplag: Dreifing: Birt á vef LV Opin Takmörkuð til Titill: Landbrot á bökkum Hálslóns í Kringilsárrana úttekt 2017 Höfundar/fyrirtæki:
SKALI STÆRÐFRÆÐI FYRIR UNGLINGASTIG KENNARABÓK. Grete Normann Tofteberg Janneke Tangen Ingvill Merete Stedøy-Johansen Bjørnar Alseth
SKALI KENNARABÓK STÆRÐFRÆÐI FYRIR UNGLINGASTIG Grete Normann Tofteberg Janneke Tangen Ingvill Merete Stedøy-Johansen Bjørnar Alseth Menntamálastofnun 7377 2B Skali 2B Kennarabók Heiti á frummálinu: Maximum
Rafbók. Riðstraumsmótorar. Kennslubók
Kennslubók Þetta hefti er þýtt úr dönsku með góðfúslegu leyfi EVU í Danmörku. Íslensk þýðing: Sigurður H. Pétursson Mynd á kápu er fengin frá Guðna Þór í Rönning Umbrot: Ísleifur Árni Jakobsson Faglegur
Vinkill. Lausnir. Ítarefni í stærðfræði fyrir 10. bekk
Vinkill 7. ágúst 008 Ítarefni í stærðfræði frir 0. bekk Um efnið Efnisfirlit Þetta efni er ætlað sem ítarefni í stærðfræði frir unglingastig. Efnið getur hentað til einstaklings- eða paravinnu í skólanum
Vinkill 3. Ítarefni í stærðfræði fyrir 10. bekk
Vinkill 3 Ítarefni í stærðfræði frir 0. bekk Um efnið Efnisfirlit Þetta efni er ætlað sem ítarefni í stærðfræði frir unglingastig. Efnið getur hentað til einstaklings- eða paravinnu í skólanum en einnig
S t æ r ð f r æ ð i. Kennsluleiðbeiningar. Kennsluleiðbeiningar. 8tíu NÁMSGAGNASTOFNUN. 7. september 2006
2 3 4 5 6 S t æ r ð f r æ ð i Kennsluleiðbeiningar Kennsluleiðbeiningar 8tíu NÁMSGAGNASTOFNUN NÁMSGAGNASTOFNUN 2. útgáfa 2006 7. september 2006 Átta tíu Kennsluleiðbeiningar 2006 Guðbjörg Pálsdóttir og
Kafli 4 Línulegur kraftur og hreyfing
Kafli 4 Línulegur kraftur og hreyfing Kraftur (force) Ytri og innri kraftar. Við þurfum að beita miklum innri kröftum til mótvægis við ytri krafta og mikið álag á þessa innri krafta getur valdið vefjaskemmdum.
24 sem x stendur fyrir hluta í ppm og M er mólmassi efnisins. Skrifað út ; 19:01 gk. Skrifað út ; 19:01 gk
kafli, dæmi o svör með útreikninum 1 Brennsluspritt hefur eðlismassann 0,8/cm Hversu lana pípu þyrfti að nota í loftvo til að samsvara loftþrýstini miðað við cm háa kvikasilfurssúlu? Við finnum eðlismassa
SAMANTEKT Á EIGINLEIKUM LYFS
SAMANTEKT Á EIGINLEIKUM LYFS 1. HEITI LYFS Methergin 0,2 mg/ml stungulyf, lausn. 2. INNIHALDSLÝSING Hver lykja inniheldur methylergometrinmaleat 0,2 mg/ml. Sjá lista yfir öll hjálparefni í kafla 6.1. 3.
Veghönnunarreglur 02 Þversnið
3 Veghönnunarreglur 02 10.01.2011 Flokkun gagna innan Vegagerðarinnar Flokkur Efnissvið Einkenni (litur) 1 Lög, reglugerðir, og önnur Svartur fyrirmæli stjórnvalda 2 Stjórnunarleg fyrirmæli, Gulur skipurit,
Nr. 31/860 EES-viðbætir við Stjórnartíðindi Evrópusambandsins FRAMSELD REGLUGERÐ FRAMKVÆMDASTJÓRNARINNAR (ESB) 2016/1788. frá 14.
Nr. 31/860 EES-viðbætir við Stjórnartíðindi Evrópusambandsins 18.5.2017 FRAMSELD REGLUGERÐ FRAMKVÆMDASTJÓRNARINNAR (ESB) 2016/1788 2017/EES/31/54 frá 14. júlí 2016 um breytingu á reglugerð Evrópuþingsins
Hæðarkerfi og hæðir Þórarinn Sigurðsson Landmælingar Íslands
Hæðarkerfi og hæðirh Þórarinn Sigurðsson Landmælingar Íslands thorarinn@lmi.is Tilkoma hæðarkerfisinsh Nefnd til að fjalla um landmælingar lingar á Íslandi sett á fót t 1991 Sameiginlegt hæðarkerfi h fyrir
Reglur um skoðun neysluveitna
Reglur um skoðun neysluveitna 1 INNGANGUR Mannvirkjastofnun setur reglur um skoðun neysluveitna samkvæmt ákvæðum reglugerðar um raforkuvirki nr. 678/2009. Reglur um skoðun neysluveitna eru settar samkvæmt
Lauf_P :26 Page 1 Laufblaðið Gefið út af Landssamtökum áhugafólks um flogaveiki 2. tölublað 9. árg. 2001
Laufblaðið Gefið út af Landssamtökum áhugafólks um flogaveiki 2. tölublað 9. árg. 2001 Laufblaðið Gefið út af: Landssamtökum áhugafólks um flogaveiki LAUF Hátúni 10b 105 Reykjavík Sími: 551-4570 Bréfsími:
Efnatengi og uppbygging sameindanna
Námsmarkmið. Nemendur geti: Efnatengi og uppbygging sameindanna Notað rafeindaskipan frumefnanna til að skýra hversvegna málmar mynda frekar katjónir og málmleysingjar anjónir. Útskýrt orkubreytinguna
Rafmagsfræði loftræsikerfa
Rafmagsfræði loftræsikerfa Sigurður Sigurðsson Febrúar 2003 Sigurður Sigurðsson 2 Rafmagnsfræði loftræsikerfa Höfundur: Sigurður Sigurðsson Útgefandi: IÐAN fræðslusetur ehf IÐAN fræðslusetur, Skúlatúni
HÖNNUN Á STRENGLÖGN 11KV ÞINGVALLASVEIT
HÖNNUN Á STRENGLÖGN 11KV ÞINGVALLASVEIT Ágúst Jónsson Lokaverkefni í rafiðnfræði 2016 Höfundur: Ágúst Jónsson Kennitala:290174-4659 Leiðbeinandi: Lárus Einarsson Tækni- og verkfræðideild School of Science
Grunnvatnsrannsóknir í Norðurþingi
LV-2010/010 Grunnvatnsrannsóknir í Norðurþingi 2007-2010 Undirtitill Ágúst 2010 EFNISYFIRLIT INNGANGUR... 5 AÐFERÐIR... 5 GAGNAÖFLUN OG SÝNATAKA... 5 NIÐURSTÖÐUR MÆLINGA... 6 Mæling aðalefna í vatnssýnum
11979 H: Lögum um aðildarskilmála og aðlögun að sáttmálunum aðild Lýðveldisins Grikklands (Stjtíð. EB L 291, , bls. 17),
4. FÉLAGARÉTTUR A. FÉLAGARÉTTUR 1. 31968 L 0151: Fyrsta tilskipun ráðsins 68/151/EBE frá 9. mars 1968 um samræmingu verndarráðstafana, sem ætlað er að vera jafngildar í bandalaginu og aðildarríki krefjast
GeoGebruhjálp Handbók með útgáfu 3.2
GeoGebruhjálp Handbók með útgáfu 3.2 2 Markus Hohenwarter og Judith Hohenwarter www.geogebra.org Handbók GeoGebra 3.2 Höfundar Markus Hohenwarter, markus@geogebra.org Judith Hohenwarter, judith@geogebra.org
Efnasamsetning vatns úr holu ÓS-01, Ósabotnum og útfellingar vegna blöndunar við vatn frá Þorleifskoti. OS-2002/078 Desember 2002
Verknr.: 8-610811 Magnús Ólafsson Steinunn Hauksdóttir Selfossveitur Efnasamsetning vatns úr holu ÓS-01, Ósabotnum og útfellingar vegna blöndunar við vatn frá Þorleifskoti Unnið fyrir Selfossveitur OS-2002/078
Landskeppni í eðlisfræði 2014
Landskeppni í eðlisfræði 2014 Forkeppni 18. febrúar 2014, kl. 10:00-12:00 Leyleg hjálpargögn: Reiknivél sem geymir ekki texta. Verkefnið er í tveimur hlutum og er samtals 100 stig. Gættu þess að lesa leiðbeiningar
GPS-mælingar á Hengilssvæði í apríl og maí 2003
ORKUSTOFNUN Rannsóknasvið Verknr. 8 730 014 Nesjavallaveita GPS-mælingar á Hengilssvæði í apríl og maí 2003 Gunnar Þorbergsson Unnið fyrir Orkuveitu Reykjavíkur OS-2003-033 Júní 2003 ORKUSTOFNUN RANNSÓKNASVIÐ
Skýrsla nefndar um stefnumótun í íþróttum stúlkna og kvenna. í samræmi við þingsályktun sem samþykkt var á Alþingi 4. júní 1996
Skýrsla nefndar um stefnumótun í íþróttum stúlkna og kvenna í samræmi við þingsályktun sem samþykkt var á Alþingi 4. júní 1996 Efnisyfirlit Formáli...3 Inngangur...4 Niðurstöður...5 Kynjaskipting í forystu
Myndir af þrívíðum yfirborðshreyfingum jarðar út frá samtúlkun á SAR bylgjuvíxl- og GPS mælingum
Mynr f þrívíðm yfrborðshreyfngm rðr út frá smtúln á SAR bylgvíl- og GPS mælngm Sverrr Gðmnsson M.Sc. rfmgnsverfræðngr orræn lfllstöðn Rnvísnstofnn Hásól Íslns ænhásólnn í Dnmör D Yfrlt Útsýrng á mælngm
C Q T. þessu blaði. 5. tbl. 23. árg. des. 2005
C Q T F Í Þeir félagar Ársæll TF3AO og Bjarni TF3GB tóku þátt í CQ WW RTTY keppninni vestur í Otradal hjá Þorvaldi TF4M. Sjá nánar í grein í blaðinu. Myndina tók Þorvaldur Stefánsson TF4M þessu blaði 5.
FOUCAULT þrír textar 2014
FOUCAULT þrír textar www.starafugl.is 2014 Inngangur: Listaverk er ekki hlutur, það er lífið Nanna Hlín Halldórsdóttir Núna þegar niðurnjörvaður prófessjónalismi er búinn að gelda svo margt fallegt er
barnatennurnar BÓKIN UM Bókin um barnatennurnar
Sem nýbakaðir foreldrar eigum við margt ólært. Við viljum gera allt sem í okkar valdi stendur til að hugsa vel um börnin okkar. Góð munnhirða er barninu nauðsynleg. Sem foreldri gegnir þú lykilhlutverki
14, Íslenskir bændur: Framleiða um 30 þúsund tonn af kjöti á ári
20 14, 24 25 26 16. tölublað 2015 Fimmtudagur 27. ágúst Blað nr. 449 21. árg. Upplag 32.000 Mynd / HKr. Íslenskir bændur: Framleiða um 30 þúsund tonn af kjöti á ári hlutfallslega er mest selt af alifuglakjöti,
Efnasamsetning, rennsli og aurburður straumvatna á Austurlandi XI. Gagnagrunnur Jarðvísindastofnunar og Veðurstofunnar RH
Efnasamsetning, rennsli og aurburður straumvatna á Austurlandi XI. Gagnagrunnur Jarðvísindastofnunar og Veðurstofunnar RH-5-214 Eydís Salome Eiríksdóttir 1, Sigurður Reynir Gíslason 1, Árni Snorrason 2,
Niðurstöður aurburðarmælinga í Jökulsá í Fljótsdal árið 2003
Verknr.: 7-546763 Jórunn Harðardóttir Svava Björk Þorláksdóttir Niðurstöður aurburðarmælinga í Jökulsá í Fljótsdal árið 2003 Unnið fyrir Landsvirkjun OS-2004/010 Apríl 2004 ISBN 9979-68-141-1 ORKUSTOFNUN
FYLGISEÐILL. Dorbene Vet 1 mg/ml stungulyf, lausn fyrir hunda og ketti.
FYLGISEÐILL Dorbene Vet 1 mg/ml stungulyf, lausn fyrir hunda og ketti 1. HEITI OG HEIMILISFANG HANDHAFA MARKAÐSLEYFIS OG ÞESS FRAMLEIÐANDA SEM BER ÁBYRGÐ Á LOKASAMÞYKKT, EF ANNAR Laboratorios SYVA S.A.U.,
Búðartangi 10 Eyrún Anna Finnsdóttir Ingólfur Freyr Guðmundsson Magnús Valur Benediktsson Lokaverkefni í byggingariðnfræði 2016
Búðartangi 10 Lokaverkefni í byggingariðnfræði 2016 kt: 111079-5959 kt: 010273-3079 kt: 190570-3719 Leiðbeinendur: Ágúst Þór Gunnarsson og Eyþór Rafn Þórhallsson Tækni- og verkfræðideild School of Science
Umsögn. Aðferðafræði við framsetningu á arðsemiskröfu R
Umsögn Til: Borgarráðs Frá: Fjármálastjóra Efni: Tillaga um arðsemiskröfu starfsþátta Orkuveitu Reykjavíkur Stjórn Orkuveitu Reykjavíkur samþykkti tillögu um arðsemiskröfu starfsþátta OR á 258. stjórnarfundi
Veggirðingar. UNNIÐ s FYRIR VEGAGERÐINA. Höfundur: Grétar Einarsson
1 UNNIÐ s FYRIR VEGAGERÐINA Í ritgerðinni eru settar fram í nokkrum köflum kröfur er snerta efnisgæði til girðingarefnis. Ennfremur kröfur sem gerðar eru varðandi framkvæmd og vinnubrögð við uppsetningu
Γραφικές παραστάσεις (2ο μέρος)
Γραφικές παραστάσεις (2ο μέρος) Σε αυτήν την ενότητα θα εξοικειωθείτε με τον τρόπο απεικόνισης γραφικών παραστάσεων στο MATLAB χρησιμοποιώντας την εντολή plot με πίνακες. Επίσης, θα δείτε επιπλέον εντολές