Annar kafli Hraði, hröðun, kraftur og massi

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Annar kafli Hraði, hröðun, kraftur og massi"

Transcript

1 Annar kafli Hraði, hröðun, kraftur og massi

2 Markmið kaflans eru að kunna: Hraða, hröðun Stigstærð, vektorstærð Reikna krafta sem verka á hluti með hliðsjón af massa og hröðun hans Geta reiknað lokahraða og vegalengd Þyngdarhröðun, orka, vinna, afl Þekkja helstu orkuform Reikna þyngdarstöðuorku hlutar Þekkja muninn á föstu efni og kvikefni Geta reiknað þrýsting Þekkja muninn á þyngd og massa Reikna þyngd með hliðsjón af massa og þyngdarhröðun Reiknað uppdrif sem verkar á hlut með hliðsjón af rúmmáli og eðlismassa Geta notað gasjöfnur til að reikna þrýsting, rúmmál

3 Tákn og einingar

4 Hraði Súvegalengd sem hlutur fer á tímaeiningu. Ef hlutur fer langa vegalengd á stuttum tíma er hraðinn mikill en ef það tekur langan tíma að fara stutta vegalengd þá er hraðinn lítill. Hra ði = Vegalengd tími s fyrir vegalengd, t fyrir tíma v fyrir hraða (velocity) SI-eining fyrir hraða er því m/s. v = s t

5 Dæmi: 1. Bíll ekur 1500 m á 110 s. Hver er hraði bílsins? Svar: 2. Bíll ekur með hraðanum 25 m/s í 20 sekúndur. Hversu langt fer bíllinn á þessum tíma? Svar: 3. Hversu lengi er bíll að aka 600 m á hraðanum 25 m/s? Svar:

6 Dæmi: 1. Bíll ekur 6000 m á 900 s. Hver er hraði bílsins? Svar: 2. Bíll ekur með hraðanum 50km/h í 20 mín. Hversu langt fer bíllinn á þessum tíma? Svar: 3. Hversu lengi er bíll að aka 6000 m á hraðanum 25 m/s? Svar:

7 Stefna hraðans Hreyfing hluta hefur alltaf stefnu. stærðir sem lýsa hreyfingu hafa stefnu. s er færsla hlutarins. Færslan er tölulega stærð og stefnu. Vektorar (vigrar). tala sem hefur bæði stærð og stefnu. auðkenndir með ör ofan við táknið. Hraði er vektor líkt og færslan því hann hefur stefnu. Tími er stigstærð því hann hefur ekki stefnu

8 Stefna hraðans Í hröðun felst að hraðavektor breytist með tíma. Þ.e hraði breytir um stærð eða stefnu eða hvort tveggja.

9 Hröðun (acceleration) - vektorstærð Fjallar um það hversu ört hlutir auka eða minnka hraða sinn Hraðaaukning/minnkun á tímaeiningu Segir til um hversu mikið harði breytist á tímaeiningu hraðabreyting hröð un = tími semtekur að breyta hraða Delta breyting, reiknuð sem mismunur lokagildis og upphafsgildis v a er hröðun a = t er tími t V er hraði SI-eining m/s 2 v = lokahraði upphafshraði = v v0 t = lokatími upphafstími = t t 0

10 Hraði Þegar hraði hluti breytist er sagt að hann hafi hröðun. Það á einnig við þegar hraðinn minnkar. Þegar hraði eykst er a jákvæð stærð. Þegar hraði minnkar er a neikvæð stærð.

11 Hröðun-dæmi Bíll sem tekur af stað úr kyrrstöðu með hröðunina 3 m/s 2, verður hraði hans eftir 1 s orðinn 3 m/s, eftir 2 s er hann 6 m/s, eftir 3 s er hann 9 m/s o.s.frv.

12 Dæmi: Ef bifreið byrjar í kyrrstöðu og nær hraðanum 10 m/s á 5s. Hver er hröðun bifreiðarinnar? Svar: Við upphaf tímamælingar er hraði sportbíls 15 m/s. Við lokin, 10 s seinna, er hraðinn orðinn 35 m/s. Hver er hröðun bílsins á tímabilinu? Svar:

13 Stefna hröðunar Vektorstærð Jákvæð hröðun Hraðaaukning Kraftur með hreyfistefnu Neikvæðstærð Neikvæð hröðun Hraðaminnkun Kraftur á móti hreyfistefnu Jákvæð stærð

14 Vegalengdar-tímalínurit Halli línu gefur hraða Hvor hluturinn fer hraðar A eða B?

15 Hraða-tímalínurit Halli línu gefur hröðun Hvor hluturinn hefur meiri hröðun A eða B

16 Ferðalag með breytilegri hröðun Ef hröðun breytist er ferðalaginu skipt í áfanga Reina verður gildi fyrir a, t, v, v 0 og s fyrir hvern áfanga. Heildar vegalengd er þá t.d. s 1 +s 2 +s 3

17 Þyngdarhröðun Sú hröðun sem hlutir fá í frjálsu falli Hröðun hlutar í frjálsu falli við yfirborð jarðar er alltaf sú sama. fall án mótstöðu eða núnings, lofttæmi Ræðst af massa og radíus hnatta.

18 Þyngdarhröðun Í frjálsu falli hafa allir hlutir jafna hröðun þegar loftmótstöðu er sleppt

19 Mæling á þyngdarhröðun Finna má þyngdarhröðun við tiltekið yfirborð með jöfnunni g = 2 t h 2

20 Þyngdarhröðun Hnöttur Massi (kg) Radíus (km) Þyngdarhröðun (m/s 2 ) Jörð 5, ,81 Tunglið 7, ,57 Merkúr 3, ,73 Venus 4, ,93 Mars 6, ,83 Júpiter 1, ,9 Satúrnus 5, ,5 Sólin 1,

21 Hreyfijöfnurnar V=V 0 +at S=1/2(V+V 0 )t S=V 0 t+1/2at 2 V 2 =V 02 +2as

22 Hraða-tíma línurit. Lýsa því hvernig hraði hlutar breytist með tíma. Vegalengd á y-ásinn og tími á x-ásinn. Ferillinn segir hver hraði hlutarins er á hverjum tíma. Reikna má hraðannir, vegalengdina sem hluturinn hefur farið

23 Dæmi Hlutur fer úr kyrrstöðu í 15 m/s á 10s, hann heldur jöfnum hraða í 20 s og hægir á sér á 5 s. Teiknaðu hraða tíma línurit Hver er hröðunin í upphafi ferðalagsins? Hversu langt ekur hann? Hver er hröðunin í lok ferðalagsins? Er hún jákvæð eða neikvæð

24 1. lögmál Newtons-tregðulögmálið hreyfing hluta 1. Hlutur helst kyrrstæður eða hreyfist með jöfnum hraða nema á hann verki kraftur. ef hlutur hreyfist með jöfnum hraða þá verkar annað hvort enginn kraftur á hann eða að summa allra krafta sem á hlutinn verka er núll. ef hraði hlutar er að breytast þá er það vegna einhvers óuppvegins krafts sem verkar á hlutinn.

25 2. Lögmál Newtons-Kraftur Ýting eða tog eins hlutar í annan Kraftur sem veldur hröðun hlutar er jafn margfeldi massa hlutarins og hröðunar hans F = ma Newton = N = kgm/s 2 Vektor, hann hefur stærð og stefnu.

26 Útreikningar með vektorum Samsíðakraftar Ef kraftar hafa sömu stefnu er hægt að leggja þá saman

27 Útreikningar með vektorum Mótlægir kraftar Ef kraftar hafa gagnstæða stefnu eru þeir dregnir frá hver öðrum

28 Útreikningar með vektorum Samsíðureglan Samlagning krafta úr tveimur víddum Ef kraftar eru hvorki mótlægir né samsíða Reiknað á myndrænan hátt og hornafræðin notuð til að reikna stærðir og horn milli vektora.

29 Samsíðureglan Oft byrja þeir kraftar sem verka á hlut í sama punkti, punktur O. Þetta eru kraftar sem verka á sama hlutinn (punktinn) og summa þeirra verður heildarkrafturinn sem verkar á hlutinn. Nauðsynlegt er að þekkja bæði stærðir kraftanna og hornið á milli þeirra til að finna heildarkraftinn a 2 = b 2 + c 2 2 b c cos A Þegar kraftar verka hornrétt á hlutinn er Pythagorasarreglan notuð

30 Dæmi 40,0 kg hlutur er dreginn með 100,0 N krafti eftir núningslausum láréttum fleti. Hvaða hröðun fær hluturinn?

31 Bíl, sem vegur 1,20 tonn er ekið eftir láréttum vegi. Bílstjórinn hemlar og verkar þá á bílinn N núningskraftur. Hvaða hröðun fær bíllinn? Togað er í hlut með 78 N láréttum krafti. Hluturinn er á núningslausu láréttu borði og fær hann hröðunina 2,4 m/s 2. Hver er massi hlutarins? 56,4 kg hlutur er dreginn eftir láréttu gólfi og fær við það hröðunina 4,20 m/s 2. Hversu stór láréttur heildarkraftur verkar á hlutinn?

32 Hver er massi hlutar ef þyngdarkrafturinn sem verkar á hann við yfirborð jarðar er 1640 N? Geimfari fylgist með líkamsástandi sínu með Geimfari fylgist með líkamsástandi sínu með því að mæla hröðunina sem hann fær þegar verkar á hann ákveðinn kraftur. Hver er massi geimfarans ef hann fær hröðunina 3,2 m/s 2 þegar verkar á hann 230 N kraftur?

33 Massi Mælikvarði á tregðu hlutar gegn hreyfingu Stigstærð, hefur aldrei stefnu SI-eining-Kg Massi er fundinn með skálarvog

34 Þyngd Aðdráttarkraftur frá massamiklum hnetti Þyngd=massi þyngdarhröðun Eining, N Þyngd er fundin með gormvog

35 Vinna Unnin í hvert skipti sem kraftur veldur hreyfingu Margfeldi krafts og vegalengdar Vinna=kraftur færsluvegalengd í stefnu krafts W=Fs Eining-J=Nm Maður lyftir 2 kg steini 1 m frá jörðu framkvæmir ákveðna vinnu, hver er hún?

36 Orka Vinnumáttur, loforð um vinnu í framtíðinni Hæfni til að framkvæma vinnu Eining=J 1 kal=4,185j Hversu mikla orku þarf til að lyft 200 Kg hlut upp í 2 m hæð? Breyttu svarinu í kalóríur. Nokkur orkuform Geislaorka, stöðuorka, hreyfirorka, varmaorka, efnaorka

37 Algeng orkuform Stöðuorka Hreyfiorka Varmaorka Efnaorka

38 Meira um orku og vinnu Orka eyðist ekki, hún einfaldlega breytir um form Þegar orka fer að einu formi yfir á annað er framkvæmd vinna Þegar 100 J stöðuorka breytist í 100 J hreyfiorku hefur vinna 100 J verið unnin

39 Afl Vinnuhraði Afl=vinna/tíma Eining J/s=W Vél með vinnufrálagið 5 W, hversu mikla vinnu framkvæmir hún á 10 s.

40 Þrýstingur Er kraftur á flatarmálseiningu P er þrýstingur F er krafturinn sem verkar á flötinn A stendur fyrir flötinn.

41 Dæmi: Trékassi hefur hliðarlengdir 30 cm, 40cm og 50 cm en massi hans er 2 kg. Hvernig látum við kassann liggja til að. þrýstingur milli hans og jarðar sé eins lítill og unnt er? Hvernig höfum við kassann til að þrýstingurinn verði eins mikill og unnt er?

42 Þyngdarstöðuorka orkan sem myndast þegar hlutur lækkar þyngdaraflið sitt, þ.e. dettur niður. Þegar hluturinn dettur, breytist þyngdarstöðuorkan í hreyfiorku. E s =mgh SI-eining=J=Nm

43 Þyngdarstöðuorka Þegar hlutur fellur breytist stöðuorka í hreyfiorku

44 Þrýstingur í kvikefnum Kvikefni-vökvi og lofttegundir Þrýstingur á botni í vökvafylltu rými P=hρg SI-eining Paskal Þrýstingurinn verkar í allar áttir Eykst með dýpi Háður eðlismassa Óháður lögun íláts

45 Þrýstingur í kvikefnum

46 Flotgeta og uppdrif Uppdrif Kraftur sem verkar á móti aðdráttarkrafti (lóðrétt upp á hlut) Háð eðlismassa þess kvikefnis sem hlutur er í Háð rúmmáli hlutar Verka á hluti í kvikefnum Uppdrif er jafn þunga þess kvikefnis sem hluturinn ryður frá sér Hlutur léttist meira í eðlisþungu kvikefni en eðlisléttu Ef eðlismassi hlutar er minni en eðlismassi kvikefnis er þungi kvikefnis sem hlutur ryður frá sér meiri en þungi hlutar og hlutur flýtur ρ hlutar < ρ kvikefnis => hlutir fljóta

47 Flotgeta og uppdirf Dæmi

48 A Sýnidæmi bls 36 V tenings = 1 m 3 m tenings = Kg g=9,8m/s 2 ρ vatns =1.000Kg/m 3 ρ hlutar =1.100Kg/m 3 ρ vökvi =1.300Kg/m 3 Þungi kvikefnis = V hlutar ρg Uppdrif=Þungi kvikefnis = 1m Kg/m 3 9,8m/s 2 Þungi kvikefnis = 9.800N B Þungi hlutar = Vρg Þungi hlutar = 1 m Kg/m 3 9,8m/s 2 Þungi hlutar = N Þungi hlutar í vatni = Þungi hlutar -Þungi kvikefnis Þungi hlutar í vatni = N-9.800N Þungi tenings í vatni = 980N Hann sekkur Þungi = V hlutar ρg Uppdrif=Þungi kvikefnis = 1 m Kg/m 3 9,8m/s 2 Þungi vatns = N Þungi hlutar í kvikefnii = Þungi hlutar -Þungi kvikefnis Þungi hlutar í vatni = N N Þungi tenings í vatni = N Hann flýtur

49 A Kaflaverkefni 16 bls ρ hlutar = m/v Eðlismassi hlutar = 0.012Kg/0,000004m 3 Eðlismassi= Kg/m 3 V tenings = 1 m 3 m tenings = Kg g=9,8m/s 2 ρ vatns =1.000Kg/m 3 ρ hlutar =1.300Kg/m 3 B Þungi kvikefnis = V hlutar ρg Uppdrif=Þungi kvikefnis = 0,000004m Kg9,8m/s 2 Þungi kvikefnis = 0,0392N Þungi hlutar = Vρg Þungi hlutar = m Kg/m 3 9,8m/s 2 Þungi hlutar = 0,05096N Þungi hlutar í kvikefni = Þungi hlutar -Þungi kvikefnis Þungi hlutar í vatni = 0,05096 N-0,0392N Þungi tenings í vatni = 0,01176N Hann sekkur

50 Samantekt Þungi hlutar í kvikefni = Þungi hlutar Þungi kvikefnis Neikvæð tala => hluti flýtur Jákvæð tala => hluti sekkur

51 Gasjafnan Lýsir sambandi hita, þrýstings, rúmmáls og efnismagns Gasjöfnur Rúmmál gass er í réttu hlutfalli við hitastig á Kelvin ef þrýstingur er óbreyttur Sá þrýstingur sem skapast í lokuðu rými er í réttu hlutfalli við hitastig gass í K Þrýstingur í ákveðnu magni af gasi er í öfug hlutfalli við rúmmál þess ef hitastig helst óbreytt P 2 V 2 /T 2 = P 1 V 1 /T 1

52 Helstu hugtök kaflans eru: Hraði, hröðun, jákvæðhröðun, neikvæðhröðun, stigstærð, vektorstærð, kraftur, lokahraði, byrjunarhraði, þyngdarhröðun, orka, vinna, afl, hreyfiorka, geislaorka, stöðuorka, varmaorka, efnaorka,þyngdarstöðuorka, þrýstingur, kvikefni, fast efni, flotgeta, uppdrif, þrýstingur, hiti og gasjöfnur.

4.01 Maður ekur 700 km. Meðalhraðinn er 60 km/klst fyrstu 250 km og 75 km/klst síðustu 450 km. Hver er meðalhraðinn?

4.01 Maður ekur 700 km. Meðalhraðinn er 60 km/klst fyrstu 250 km og 75 km/klst síðustu 450 km. Hver er meðalhraðinn? 4. kafli, dæmi og vör með útreikningum Skrifað út 9..4; :34 4. Maður ekur 7 km. Meðalhraðinn er 6 km/klt fyrtu 5 km og 75 km/klt íðutu 45 km. Hver er meðalhraðinn? S S Sv.: Hér þarf að reikna tímann fyrir

Διαβάστε περισσότερα

Skilaverkefni 1. Skil á þriðjudaginn

Skilaverkefni 1. Skil á þriðjudaginn Nafn: Skilaverkefni 1 Skil á þriðjudaginn 1. Bíll ekur frá Reykjavík á Selfoss. Ferðin tekur 45 mínútur og vegalendin sem bíllinn fer er 50 Km. Hver er meðalhraði bílsins á leiðinni í m/s og Km/klst? 2.

Διαβάστε περισσότερα

Menntaskólinn í Reykjavík

Menntaskólinn í Reykjavík Menntakólinn í Reykjaík Jólaróf 006, fötudaginn 5. de. kl. 9 0 Eðlifræði í 6.M og S náttúrufræðideild I Sör erkefnið er á 5 töluettu blaðíðu. Leyfileg hjálargögn eru hjálagt forúlublað og aareiknir. otaðu

Διαβάστε περισσότερα

CHEMISTRY. Eðli orkunnar. Kafli 5 Varmaefnafræði. Hiti-varmi. MR efnafræði í 4. bekk. The Central Science 9th Edition. David P.

CHEMISTRY. Eðli orkunnar. Kafli 5 Varmaefnafræði. Hiti-varmi. MR efnafræði í 4. bekk. The Central Science 9th Edition. David P. CHEMISTRY The Central Science 9th Edition Kafli 5 Varmaefnafræði David P. White Hreyfiorka(skriðorka) og stöðuorka Hreyfiorka er orka hreyfingar. Ek = 1 mv Stöðuorka er orkan sem fólgin er í stöðu. Stöðuorku

Διαβάστε περισσότερα

Meðalmánaðardagsumferð 2009

Meðalmánaðardagsumferð 2009 Meðalmánaðardagsumferð 2009 Almennt Á meðfylgjandi stöplaritum gefur að líta, hvernig umferð um 74 staði/snið dreifist hlutfallslega eftir mánuðum yfir árið 2009. Í upphafi var ákveðið að velja alla talningarstaði,

Διαβάστε περισσότερα

Eðlisfræði 1. Dæmi 5.2 (frh.) Dæmi Dæmi (frh.) d) P = W tog. = 0, 47kW. = 9, 4kJ

Eðlisfræði 1. Dæmi 5.2 (frh.) Dæmi Dæmi (frh.) d) P = W tog. = 0, 47kW. = 9, 4kJ S I S Menntakólinn Dæi 5. frh. - 5.3 R E Y K SIGILLUM J A V SCHOLÆ I C E N í Reykjavík 5. frh. d P W tog t 9,4kJ 0 0, 47kW Eðlifræði Kafli 5 - Vinna og orkuvarðveila Óleyt dæi 5. nóveber 006 Kritján Þór

Διαβάστε περισσότερα

Reikniverkefni VII. Sævar Öfjörð Magnússon. 22. nóvember Merki og ker Jónína Lilja Pálsdóttir

Reikniverkefni VII. Sævar Öfjörð Magnússon. 22. nóvember Merki og ker Jónína Lilja Pálsdóttir Reikniverkefni VII Sævar Öfjörð Magnússon 22. nóvember 25 8.3.4 Merki og ker Jónína Lilja Pálsdóttir KAFLI 9.2 Pólar 2. stigs kerfa Í þessum kaa vinnum við með 2. stigs ker á forminu H(s) = ω 2 n. ()

Διαβάστε περισσότερα

Þriggja fasa útreikningar.

Þriggja fasa útreikningar. Þriggja asa útreikningar. Hér þurum við að byrja á því að skilgreina 4 hugtök. 1. Netspenna er spenna sem við mælum á milli tveggja asa.. Netstraumur er straumurinn í hverjum asaleiðara.. Fasaspenna er

Διαβάστε περισσότερα

Kafli 4 Línulegur kraftur og hreyfing

Kafli 4 Línulegur kraftur og hreyfing Kafli 4 Línulegur kraftur og hreyfing Kraftur (force) Ytri og innri kraftar. Við þurfum að beita miklum innri kröftum til mótvægis við ytri krafta og mikið álag á þessa innri krafta getur valdið vefjaskemmdum.

Διαβάστε περισσότερα

Landskeppni í eðlisfræði 2014

Landskeppni í eðlisfræði 2014 Landskeppni í eðlisfræði 2014 Forkeppni 18. febrúar 2014, kl. 10:00-12:00 Leyleg hjálpargögn: Reiknivél sem geymir ekki texta. Verkefnið er í tveimur hlutum og er samtals 100 stig. Gættu þess að lesa leiðbeiningar

Διαβάστε περισσότερα

6. júní 2016 kl. 08:30-11:00

6. júní 2016 kl. 08:30-11:00 Sveinsprófsnefnd sterkstraums Rafmagnsfræði, stýrikerfi og búnaður 6. júní 2016 kl. 08:30-11:00 Nafn: Kennitala: Heimilisfang:_ Hjálpargögn: Skriffæri, reglustika, og reiknivél. Nota má bókina Formúlur

Διαβάστε περισσότερα

Span og orka í einfaldri segulrás

Span og orka í einfaldri segulrás Rafmagnsvélar 1 - RAF601G 1 Span og orka í einfaldri segulrás Inductance and energy in a simple magnetic circuit Rafmagnsvélar 1 - RAF601G 2 Lögmál Faradays spansegulviðnám Lögmál Faradays er hluti af

Διαβάστε περισσότερα

Vísandi mælitæki (2) Vísandi mælitæki. Vísandi mælitæki (1) Vísandi mælitæki (3)

Vísandi mælitæki (2) Vísandi mælitæki. Vísandi mælitæki (1) Vísandi mælitæki (3) 1 2 Vísandi mælitæki (2) Vísandi mælitæki Fjöldi hliðrænna tækja byggir á því að rafsegulsvið myndast umhverfis leiðara með rafstraumi. Við það færist vísir: Með víxlverkun síseguls og segulsviðs umhverfis

Διαβάστε περισσότερα

1) Birgðabreyting = Innkaup - Sala + Framleiðsla - Rýrnun - Eigin notkun. Almennari útgáfa af lögmálinu hér fyrir ofan lítur svona út:

1) Birgðabreyting = Innkaup - Sala + Framleiðsla - Rýrnun - Eigin notkun. Almennari útgáfa af lögmálinu hér fyrir ofan lítur svona út: Massajöfnunarkerfi Svokölluð jöfnunarkerfi eru notuð til að fylgjast með magni efnis þegar það fer í gegnum ferli. Slík kerfi eru útgáfur af lögmálinu um varðveislu massans. Einfaldasta jöfnunarkerfið

Διαβάστε περισσότερα

Nokkur valin atriði úr aflfræði

Nokkur valin atriði úr aflfræði Einföld sveifluhreyfin Nour valin atriði úr aflfræði Soðum raftajöfnuna fyrir orm með ormstuðul sem má rita á eftirfarandi formi: mẍ = x sem er óhliðruð. stis diffurjafna. Umritum hana yfir á eftirfarandi

Διαβάστε περισσότερα

x(t) = T 0 er minnsta mögulega gildi á T

x(t) = T 0 er minnsta mögulega gildi á T Fyrir x(t) = u(t) þá fáum við lim t y(t) = lim t tu(t) = sem er óstöðugt. (oft er gott að skoða hvort impúlssvörunin sé alsamleitin, ef svo er, þá er kerð stöðugt). Tímaóháð Ker er tímaóháð ef það kemur

Διαβάστε περισσότερα

FRÆÐSLUSKRIFSTOFA RAFIÐNAÐARINS

FRÆÐSLUSKRIFSTOFA RAFIÐNAÐARINS FÆÐSLSKIFSTOF FIÐNÐINS FOMÚL VEGN SVEINSÓFS Í FIÐNM Útgáfa SVEINSÓFSNEFND FIÐN STEKSTMS Fræðsuskrifstofa rafiðnaðarins Sveinsprófsnefnd sterkstraums FOMÚL FOMÚLTEXTI ρ Δ cosϕ I ρ Δ ρ Δ Spenna V I Straumur

Διαβάστε περισσότερα

Bústólpi ehf - Nýtt kjarnfóður H K / APRÍL 2014

Bústólpi ehf - Nýtt kjarnfóður H K / APRÍL 2014 Bústólpi ehf - Nýtt kjarnfóður H K / APRÍL 2014 Nýtt kjarnfóður frá Bústólpa PREMIUM PRO-FIT 17 PREMIUM PRO-FIT 13 Nýtt kjarnfóður frá Bústólpa PREMIUM PRO-FIT 17 Kjarnfóður sem ætlað er að hámarka fitu,

Διαβάστε περισσότερα

Orkuumbreyting milli raforku og hreyfiorku

Orkuumbreyting milli raforku og hreyfiorku 1 Orkuumbreyting milli raforku og hreyfiorku Electromechanical energy conversion principles Umbreyting milli raforku og hreyfiorku Umbreytingin getur almennt gengið í hvora áttina sem er: Umbreyting úr

Διαβάστε περισσότερα

Upprifjun á námsefni í rafvirkjun Kafli A -RAF Formúlur, töflur o.fl. A-1

Upprifjun á námsefni í rafvirkjun Kafli A -RAF Formúlur, töflur o.fl. A-1 pprifjun á námsefni í rafvirkjun Kafi -F Formúur, töfur o.f. - pprifjunarefni Tafa. okkur mikivæg formúutákn, stærðir og einingar, fest samkvæmt. Formúutákn: eiti: Eining: Eining (stytt, samsett) Fötur,

Διαβάστε περισσότερα

Kaplan Meier og Cox. Aðferðafræði klínískra rannsókna haustið 2010 Fimmtudagur 11 nóvember. Thor Aspelund Hjartavernd og Háskóla Íslands

Kaplan Meier og Cox. Aðferðafræði klínískra rannsókna haustið 2010 Fimmtudagur 11 nóvember. Thor Aspelund Hjartavernd og Háskóla Íslands Kaplan Meier og Cox Aðferðafræði klínískra rannsókna haustið 2010 Fimmtudagur 11 nóvember Thor Aspelund Hjartavernd og Háskóla Íslands Tími að atburði í heilbrigðisvísindum Í heilbrigðisvísindum er útkoman

Διαβάστε περισσότερα

Líkindi Skilgreining

Líkindi Skilgreining Líkindi Skilgreining Ω = útkomumengi = mengi allra hugsanlegra útkoma. Atburður er hlutmengi í Ω. Ω A Skilgreining: Atburðir A og B kallast sundurlægir (ósamræmanlegir) ef A B =. Ω A B Skilgreining: Líkindi

Διαβάστε περισσότερα

Undirstöðuatriði RC-tengds magnara Ólafur Davíð Bjarnason og Valdemar Örn Erlingsson 28. apríl 2009

Undirstöðuatriði RC-tengds magnara Ólafur Davíð Bjarnason og Valdemar Örn Erlingsson 28. apríl 2009 Háskóli Íslands Vor 2009 Kennari: Vilhjálmur Þór Kjartansson Undirstöðuatriði RC-tengds magnara 28. apríl 2009 1 Magnari án forspennu Notuð var rás eins og á mynd 1. Við bárum saman uce og ube á sveiflusjá.

Διαβάστε περισσότερα

Viðskipta- og Hagfræðideild Tölfræði II, fyrirlestur 6

Viðskipta- og Hagfræðideild Tölfræði II, fyrirlestur 6 Viðskipta- og Hagfræðideild Tölfræði II, fyrirlestur 6 Háskóli Íslands Helgi Tómasson Líkindafræði kafli 2-9 Berið saman við líkindafræðina í Newbold. Tilgangur líkindafræði í tölfræðinámsskeiði er að

Διαβάστε περισσότερα

Kafli 1: Tímastuðull RC liður. Dæmi 1.1 A: 3,3ms B: 7,56V Dæmi 1.2 A: 425µF B: 1s Dæmi 1.3 A: 34,38V B: 48,1V Dæmi 1.4 A: 59,38s

Kafli 1: Tímastuðull RC liður. Dæmi 1.1 A: 3,3ms B: 7,56V Dæmi 1.2 A: 425µF B: 1s Dæmi 1.3 A: 34,38V B: 48,1V Dæmi 1.4 A: 59,38s Kafli 1: Tímastuðull RC liður Dæmi 1.1 A: 3,3ms B: 7,56V Dæmi 1.2 A: 425µF B: 1s Dæmi 1.3 A: 34,38V B: 48,1V Dæmi 1.4 A: 59,38s Kafli 2: NTC, PTC, LDR, VDR viðnám Dæmi 2.1 A: Frá vinstri: NTC viðnám, VDR

Διαβάστε περισσότερα

t 2 c2 2 Φ = 0. (2.1)

t 2 c2 2 Φ = 0. (2.1) 2 Bylgjuaflfræði Eftir að de Broglie setti fram tilgátu sína og í ljós kom að hún átti við rök að styðjast var ljóst að finna þyrfti bylgjujöfnu sem þessar bylgjur hlíttu. Rafsegulbylgjur, hljóðbylgjur

Διαβάστε περισσότερα

PRÓFBÚÐIR Í LÍNULEGRI ALGEBRU VIÐ HR VOR 2014 HERKÚLES

PRÓFBÚÐIR Í LÍNULEGRI ALGEBRU VIÐ HR VOR 2014 HERKÚLES PRÓFBÚÐIR Í LÍNULEGRI ALGEBRU VIÐ HR VOR 2014 HERKÚLES GUÐMUNDUR EINARSSON Herkúles Prófbúðir April 8, 2014 1 / 52 OUTLINE 1 Grunnhugtök, einfaldar aðgerðir og innfeldi Grunnhugtök Innfeldi Jafna Línu

Διαβάστε περισσότερα

H 2 S loftgæðamælingar í Norðlingaholti og í Hveragerði

H 2 S loftgæðamælingar í Norðlingaholti og í Hveragerði H 2 S loftgæðamælingar, Norðlingaholti og Hveragerði, 1. - 3. ársfjórðungur 2016 Bls. 1 Skýrsla nr. 24 19. október 2016 H 2 S loftgæðamælingar í Norðlingaholti og í Hveragerði Skýrsla um mælingar fyrir

Διαβάστε περισσότερα

Veghönnunarreglur 03 Vegferill

Veghönnunarreglur 03 Vegferill 3 Veghönnunarreglur 03 01.08.2010 Flokkun gagna innan Vegagerðarinnar Flokkur Efnissvið Einkenni (litur) 1 Lög, reglugerðir, og önnur Svartur fyrirmæli stjórnvalda 2 Stjórnunarleg fyrirmæli, Gulur skipurit,

Διαβάστε περισσότερα

H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun

H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun H2S loftgæðamælingar, Hellisheiði og Nesjavöllum, 1. og 2. ársfjórðungur 2015 Bls. 1 Skýrsla nr. 15 16. júlí 2015 H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun Skýrsla um mælingar

Διαβάστε περισσότερα

H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun

H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun H 2 S loftgæðamælingar, Hellisheiði og Nesjavöllum, 1. ársfjórðungur 2016 Bls. 1 Skýrsla nr. 21 26. apríl 2016 H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun Skýrsla um mælingar

Διαβάστε περισσότερα

H 2 S loftgæðamælingar við Hellisheiðarvirkjun og Nesjavallavirkjun

H 2 S loftgæðamælingar við Hellisheiðarvirkjun og Nesjavallavirkjun H 2 S loftgæðamælingar á Hellisheiði og Nesjavöllum, 1. ársfjórðungur 2018 Bls. 1 Skýrsla nr. 42 3. maí 2018 H 2 S loftgæðamælingar við Hellisheiðarvirkjun og Nesjavallavirkjun Skýrsla um mælingar fyrir

Διαβάστε περισσότερα

H2S loftgæðamælingar í Norðlingaholti og í Hveragerði

H2S loftgæðamælingar í Norðlingaholti og í Hveragerði H2S loftgæðamælingar, Norðlingaholt, Hveragerði, 1. og 2. ársfjórðungur 2015 Bls. 1 Skýrsla nr. 14 16. júlí 2015 H2S loftgæðamælingar í Norðlingaholti og í Hveragerði Skýrsla um mælingar fyrir janúar til

Διαβάστε περισσότερα

Skrifað út ; 18:59 gk. 6. kafli, dæmi og svör með útreikningum

Skrifað út ; 18:59 gk. 6. kafli, dæmi og svör með útreikningum 6. kafli, dæmi og svör með útreikningum Skrifað út 30.3.2005; 18:59 6.1 Brennsluspritt hefur eðlismassann 0,8/cm 3. Hversu langa pípu þyrfti að nota í loftvog til að samsvara loftþrýstingi miðað við 76

Διαβάστε περισσότερα

Ályktanir um hlutföll og tengslatöflur

Ályktanir um hlutföll og tengslatöflur Ályktanir um hlutföll og tengslatöflur LAN 203G & STÆ209G Anna Helga Jónsdóttir Sigrún Helga Lund Háskóli Íslands Anna Helga og Sigrún Helga (HÍ) Ályktanir um hlutföll og tengslatöflur 1 / 27 Helstu atriði:

Διαβάστε περισσότερα

Forritunarkeppni Framhaldsskólanna 2014

Forritunarkeppni Framhaldsskólanna 2014 2014 Morpheus deild - eftir hádegi Háskólinn í Reykjavík 20. mars 2014 Verkefni 1 Á Milli Skrifið forrit sem les inn þrjár heiltölur a, b og c. Skrifið út Milli ef talan b er á milli a og c á talnalínunni.

Διαβάστε περισσότερα

Iðjuþjálfun LIE0103 Hrefna Óskarsd.

Iðjuþjálfun LIE0103 Hrefna Óskarsd. Intraplural fluid alveoli P atm = O mmhg P alv P ip = P alv = O mmhg Lung elastic recoil 4 mmhg Chest wall P ip = -4 mmhg að anda inn og út. útöndun án mikils krafts, þ.e. af ákveðnu hlutleysi, og getum

Διαβάστε περισσότερα

Greinargerð Trausti Jónsson. Sveiflur IV. Árstíðasveiflur í háloftunum yfir Keflavík

Greinargerð Trausti Jónsson. Sveiflur IV. Árstíðasveiflur í háloftunum yfir Keflavík Greinargerð 44 Trausti Jónsson Sveiflur IV Árstíðasveiflur í háloftunum yfir Keflavík VÍ-VS4 Reykjavík Mars 24 Árstíðasveifla ýmissa veðurþátta í háloftunum yfir Keflavík Inngangur Hér verður fjallað um

Διαβάστε περισσότερα

H2S loftgæðamælingar í Norðlingaholti og í Hveragerði

H2S loftgæðamælingar í Norðlingaholti og í Hveragerði H2S loftgæðamælingar, Norðlingaholti og Hveragerði, fyrir árið 2015 Bls. 1 Skýrsla nr. 18 18. janúar 2016 H2S loftgæðamælingar í Norðlingaholti og í Hveragerði Skýrsla um mælingar fyrir árið 2015 Unnið

Διαβάστε περισσότερα

Almenn Efnafræði V, EFN301G ******************************************* 2. Hlutapróf haustannar 2014 Þriðjudagur 21. Október 2014

Almenn Efnafræði V, EFN301G ******************************************* 2. Hlutapróf haustannar 2014 Þriðjudagur 21. Október 2014 Háskóli Íslands Raunvísindadeild Almenn Efnafræði V, EFN301G ******************************************* 2. Hlutapróf haustannar 2014 Þriðjudagur 21. Október 2014 Kennari: Oddur Ingólfsson Prófið er 90

Διαβάστε περισσότερα

Gagnasafnsfræði Venslaalgebra og bestun fyrirspurna. Hallgrímur H. Gunnarsson

Gagnasafnsfræði Venslaalgebra og bestun fyrirspurna. Hallgrímur H. Gunnarsson Gagnasafnsfræði Venslaalgebra og bestun fyrirspurna Hallgrímur H. Gunnarsson Inngangur SQL: SQL er declarative mál, segir bara hvað á að reikna, en ekki hvernig. Það er undir gagnasafnskerfinu komið að

Διαβάστε περισσότερα

Eðlisfræði II: Riðstraumur. Kafli 11. Jón Tómas Guðmundsson 10. vika vor 2016

Eðlisfræði II: Riðstraumur. Kafli 11. Jón Tómas Guðmundsson 10. vika vor 2016 Eðlisfræði II: Riðstraumur Kafli 11 Jón Tómas Guðmundsson tumi@hi.is 10. vika vor 2016 1 Inngangur Grafið sem sýnir augnabliksgildi rafmerkis sem fall af tíma er nefnt bylgjuform merkis Gjarnan eru bylgjuform

Διαβάστε περισσότερα

Aðskilnaður breytistærða í rúmi

Aðskilnaður breytistærða í rúmi Kai 9 Aðskinaður breytistærða í rúmi 9.1 Bygjujafna í skífu 2 u = c 2 2 u, x 2 + y 2 < a 2 t 2 js: u = 0, x 2 + y 2 = a 2 us: u u t=0 = ϕ, = ψ t=0 t 9.1) Geymum upphafsskiyrðin us) beitum aðskinaði breytistærða

Διαβάστε περισσότερα

Fyrsti kafli Inngangur

Fyrsti kafli Inngangur Fyrsti kafli Inngangur Vísindi Kerfisbundin starfsemi til að afla fróðleiks og öðlast skilning á heiminum og sú þekking sem fæst í slíku starfi. Skiptist í hugvísindi, félagsvísindi og náttúruvísindi.

Διαβάστε περισσότερα

Stillingar loftræsikerfa

Stillingar loftræsikerfa Stillingar loftræsikerfa Apríl 009 Stillingar loftræsikerfa Höfundar: og Útgefandi: IÐAN fræðslusetur ehf IÐAN fræðslusetur Skúlatúni 105 Reykjavík Fyrsta útgáfa 004 Önnur útgáfa 008 Þriðja útgáfa 009

Διαβάστε περισσότερα

9 x 2 x 2 x 3 = 19 (9 + 2) 2 3 = 19

9 x 2 x 2 x 3 = 19 (9 + 2) 2 3 = 19 Verkefnablað 7.35 Horfin aðgerðartákn Settu aðgerðartákn (+,, :, ) og sviga á rétta staði þannig að svörin verði rétt. Dæmi: 9 x 2 x 2 x 3 = 19 (9 + 2) 2 3 = 19 a 9 x 8 x 3 x 2 = 7 b 16 x 9 x 5 x 5 = 10

Διαβάστε περισσότερα

Rafbók. Riðstraumsmótorar. Kennslubók

Rafbók. Riðstraumsmótorar. Kennslubók Kennslubók Þetta hefti er þýtt úr dönsku með góðfúslegu leyfi EVU í Danmörku. Íslensk þýðing: Sigurður H. Pétursson Mynd á kápu er fengin frá Guðna Þór í Rönning Umbrot: Ísleifur Árni Jakobsson Faglegur

Διαβάστε περισσότερα

Guðbjörg Pálsdóttir Guðný Helga Gunnarsdóttir NÁMSGAGNASTOFNUN

Guðbjörg Pálsdóttir Guðný Helga Gunnarsdóttir NÁMSGAGNASTOFNUN Guðbjörg Pálsdóttir Guðný Helga GunnarsdóttirNÁMSGAGNASTOFNUN Til nemenda Námsefnisflokkurinn 8 tíu er ætlaður nemendum í 8. 10. bekk. Grunnbókin 8 tíu 5 skiptist í átta meginkafla. Í hverjum kafla er

Διαβάστε περισσότερα

GeoGebruhjálp Handbók með útgáfu 3.2

GeoGebruhjálp Handbók með útgáfu 3.2 GeoGebruhjálp Handbók með útgáfu 3.2 2 Markus Hohenwarter og Judith Hohenwarter www.geogebra.org Handbók GeoGebra 3.2 Höfundar Markus Hohenwarter, markus@geogebra.org Judith Hohenwarter, judith@geogebra.org

Διαβάστε περισσότερα

Veghönnunarreglur 02 Þversnið

Veghönnunarreglur 02 Þversnið 3 Veghönnunarreglur 02 10.01.2011 Flokkun gagna innan Vegagerðarinnar Flokkur Efnissvið Einkenni (litur) 1 Lög, reglugerðir, og önnur Svartur fyrirmæli stjórnvalda 2 Stjórnunarleg fyrirmæli, Gulur skipurit,

Διαβάστε περισσότερα

H2S mælingar í Norðlingaholti og Hveragerði Skýrsla um mælingar árið 2013 Unnið fyrir Orkuveitu Reykjavíkur

H2S mælingar í Norðlingaholti og Hveragerði Skýrsla um mælingar árið 2013 Unnið fyrir Orkuveitu Reykjavíkur Bls. 1 Skýrsla nr. 2 (útgáfa 2) 12. janúar 2014 H2S mælingar í Norðlingaholti og Hveragerði Skýrsla um mælingar árið 2013 Unnið fyrir Orkuveitu Reykjavíkur Höfundur: Andrés Þórarinsson Verkfræðistofan

Διαβάστε περισσότερα

Rafmagsfræði loftræsikerfa

Rafmagsfræði loftræsikerfa Rafmagsfræði loftræsikerfa Sigurður Sigurðsson Febrúar 2003 Sigurður Sigurðsson 2 Rafmagnsfræði loftræsikerfa Höfundur: Sigurður Sigurðsson Útgefandi: IÐAN fræðslusetur ehf IÐAN fræðslusetur, Skúlatúni

Διαβάστε περισσότερα

CHEMISTRY. Bylgjueðli ljóss. Bylgjueðli ljóss. Rafeindabygging atóma. Bylgjueðli ljóss. Bylgjueðli ljóss. Bylgjueðli ljóss

CHEMISTRY. Bylgjueðli ljóss. Bylgjueðli ljóss. Rafeindabygging atóma. Bylgjueðli ljóss. Bylgjueðli ljóss. Bylgjueðli ljóss CHEMISTRY The Central Science 9th Edition Rafeindabygging atóma David P. White Allar bylgjur hafa einkennandi bylgjulengd, λ, og útslag, A. Tíðni bylgju, ν, er fjöldi heilla bylgna sem fara yfir línu á

Διαβάστε περισσότερα

Borðaskipan í þéttefni

Borðaskipan í þéttefni Eðlisfræði þéttefnis I: Borðaskipan í þéttefni Kafli 7 Jón Tómas Guðmundsson tumi@hi.is 8. vika haust 2017 1 Inngangur Sú nálgun sem gerð var með einnar rafeindar nálguninni og með því að gera ráð fyrir

Διαβάστε περισσότερα

Hugtakalisti fyrir 10. bekk. Listinn er ekki tæmandi!!!

Hugtakalisti fyrir 10. bekk. Listinn er ekki tæmandi!!! Hugtakalisti fyrir 10. bekk. Listinn er ekki tæmandi!!! Tölur o Talnamengin eru fjögur: N, Z, Q og R. o Náttúrulegar tölur (N) Allar jákvæðar heilar tölur. ATH. ekki 0. o Heilar tölur (Z) Allar heilar

Διαβάστε περισσότερα

24 sem x stendur fyrir hluta í ppm og M er mólmassi efnisins. Skrifað út ; 19:01 gk. Skrifað út ; 19:01 gk

24 sem x stendur fyrir hluta í ppm og M er mólmassi efnisins. Skrifað út ; 19:01 gk. Skrifað út ; 19:01 gk kafli, dæmi o svör með útreikninum 1 Brennsluspritt hefur eðlismassann 0,8/cm Hversu lana pípu þyrfti að nota í loftvo til að samsvara loftþrýstini miðað við cm háa kvikasilfurssúlu? Við finnum eðlismassa

Διαβάστε περισσότερα

H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun

H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun H2S loftgæðamælingar, Hellisheiði og Nesjavöllum, fyrir árið 2015 Bls. 1 Skýrsla nr. 19 18. janúar 2016 H 2 S loftgæðamælingar við Hellisheiðarvirkjun og við Nesjavallavirkjun Skýrsla um mælingar fyrir

Διαβάστε περισσότερα

9. kafli neðri útlimir Hlutverk neðri útlima Stoðkerfið: bein, vöðvar og liðamót Mjöðm Bein Vöðvar Vöðvahópar

9. kafli neðri útlimir Hlutverk neðri útlima Stoðkerfið: bein, vöðvar og liðamót Mjöðm Bein Vöðvar Vöðvahópar 9. kafli neðri útlimir Hlutverk neðri útlima Hlutverk neðri útlima er að halda sér uppi gegn þyngdaraflinu. Stoðkerfið: bein, vöðvar og liðamót Mjöðm Bein Mjöðmin samanstendur af lærlegg og höfði hans

Διαβάστε περισσότερα

SKALI STÆRÐFRÆÐI FYRIR UNGLINGASTIG KENNARABÓK. Grete Normann Tofteberg Janneke Tangen Ingvill Merete Stedøy-Johansen Bjørnar Alseth

SKALI STÆRÐFRÆÐI FYRIR UNGLINGASTIG KENNARABÓK. Grete Normann Tofteberg Janneke Tangen Ingvill Merete Stedøy-Johansen Bjørnar Alseth SKALI KENNARABÓK STÆRÐFRÆÐI FYRIR UNGLINGASTIG Grete Normann Tofteberg Janneke Tangen Ingvill Merete Stedøy-Johansen Bjørnar Alseth Menntamálastofnun 7377 2B Skali 2B Kennarabók Heiti á frummálinu: Maximum

Διαβάστε περισσότερα

RAF301G Merki og kerfi Miðmisserispróf, lausn

RAF301G Merki og kerfi Miðmisserispróf, lausn RAF301G Merki og kerfi Miðmisserispróf, lausn Miðvikudaginn 20. okóber 2010, kl. 08:20-09:50 Leyfileg hjálpargögn: reiknivél og ei A-blað með hverju sem er (innan marka heilbrigðrar skynsemi) á báðum hliðum.

Διαβάστε περισσότερα

Varmafræði I: 1. Lögmál varmafræðinnar

Varmafræði I: 1. Lögmál varmafræðinnar Námsmarkmið. Nemendur geri sér grein yrir hagrænu mikilvægi breytinga á orku rá einu ormi yir á annað og óhjákvæmilegs taps á orku við það Varmaræði I: 1. Lögmál varmaræðinnar Nemendur geti: Skilgreint

Διαβάστε περισσότερα

Tölfræði II Samantekt vor 2010

Tölfræði II Samantekt vor 2010 Tölfræði II Samatekt vor 00 Ályktuartölfræði Hvað er ályktuartölfræði (iferetial statistics)? Öryggisbil (cofidece iterval) Marktektarpróf Ályktuartölfræði: Hverig er öryggisbil reikað? Gerum ráð áðfyrir

Διαβάστε περισσότερα

HÖNNUN BURÐARVIRKIS IÐNAÐARHÚSS SAMANBURÐUR Á MISMUNANDI BYGGINGAREFNUM

HÖNNUN BURÐARVIRKIS IÐNAÐARHÚSS SAMANBURÐUR Á MISMUNANDI BYGGINGAREFNUM HÖNNUN BURÐARVIRKIS IÐNAÐARHÚSS SAMANBURÐUR Á MISMUNANDI BYGGINGAREFNUM Lokaverkefni í byggingartæknifræði BSc 2014 Höfundur: Kennitala: 110981-3929 Torfi G.Sigurðsson Tækni- og verkfræðideild School of

Διαβάστε περισσότερα

Stærðfræði. Lausnir. Lausnir. 8tíu. NÁMSGAGNASTOFNUN 20. apríl 2009

Stærðfræði. Lausnir. Lausnir. 8tíu. NÁMSGAGNASTOFNUN 20. apríl 2009 4 1 2 3 5 6 Lausnir Lausnir 8tíu NÁMSGAGNASTOFNUN 20. apríl 2009 Átta Lausnir 2007 Björgvin Sigurðsson, Guðbjörg Pálsdóttir og Guðný Helga Gunnarsdóttir Ritstjóri: Hafdís Finnbogadóttir Öll réttindi áskilin

Διαβάστε περισσότερα

Hæðarkerfi og hæðir Þórarinn Sigurðsson Landmælingar Íslands

Hæðarkerfi og hæðir Þórarinn Sigurðsson Landmælingar Íslands Hæðarkerfi og hæðirh Þórarinn Sigurðsson Landmælingar Íslands thorarinn@lmi.is Tilkoma hæðarkerfisinsh Nefnd til að fjalla um landmælingar lingar á Íslandi sett á fót t 1991 Sameiginlegt hæðarkerfi h fyrir

Διαβάστε περισσότερα

fyrirlestrapunktar vor 2009 Háskóli Íslands Mælingar tengdar í tíma. Kafli 7 (muna 5.5. og k. 1-4)

fyrirlestrapunktar vor 2009 Háskóli Íslands Mælingar tengdar í tíma. Kafli 7 (muna 5.5. og k. 1-4) Viðskipta- og Hagfræðideild fyrirlestrapunktar vor 2009 Háskóli Íslands Hagrannsóknir II, Helgi Tómasson Mælingar tengdar í tíma. Kafli 7 (muna 5.5. og k. 1-4) Nokkur hugtök Stationarity: Weak/Strong.

Διαβάστε περισσότερα

BLDC mótorstýring. Lokaverkefni í rafmagnstæknifræði BSc. Halldór Guðni Sigvaldason

BLDC mótorstýring. Lokaverkefni í rafmagnstæknifræði BSc. Halldór Guðni Sigvaldason BLDC mótorstýring Halldór Guðni Sigvaldason Lokaverkefni í rafmagnstæknifræði BSc 2014 Höfundur: Halldór Guðni Sigvaldason Kennitala: 201266-2979 Leiðbeinandi: Baldur Þorgilsson Tækni- og verkfræðideild

Διαβάστε περισσότερα

Grunnvatnsrannsóknir í Norðurþingi

Grunnvatnsrannsóknir í Norðurþingi LV-2010/010 Grunnvatnsrannsóknir í Norðurþingi 2007-2010 Undirtitill Ágúst 2010 EFNISYFIRLIT INNGANGUR... 5 AÐFERÐIR... 5 GAGNAÖFLUN OG SÝNATAKA... 5 NIÐURSTÖÐUR MÆLINGA... 6 Mæling aðalefna í vatnssýnum

Διαβάστε περισσότερα

Um flokkun sorps og spilliefna gilda ýmsar innlendar og alþjóðlegar reglur sem Háskóli Íslands hlítir. Í sérhverri bygg-

Um flokkun sorps og spilliefna gilda ýmsar innlendar og alþjóðlegar reglur sem Háskóli Íslands hlítir. Í sérhverri bygg- Kafli 7 Förgun Það er stefna Háskóla Íslands að fylgja þeim reglum og leiðbeiningum sem alþjóðasamfélagið setur um umhverfismál og förgun lífsýna, spilliefna og hættulegra efna. Til þess að skólinn geti

Διαβάστε περισσότερα

Vinkill. Lausnir. Ítarefni í stærðfræði fyrir 10. bekk

Vinkill. Lausnir. Ítarefni í stærðfræði fyrir 10. bekk Vinkill 7. ágúst 008 Ítarefni í stærðfræði frir 0. bekk Um efnið Efnisfirlit Þetta efni er ætlað sem ítarefni í stærðfræði frir unglingastig. Efnið getur hentað til einstaklings- eða paravinnu í skólanum

Διαβάστε περισσότερα

Vinkill 3. Ítarefni í stærðfræði fyrir 10. bekk

Vinkill 3. Ítarefni í stærðfræði fyrir 10. bekk Vinkill 3 Ítarefni í stærðfræði frir 0. bekk Um efnið Efnisfirlit Þetta efni er ætlað sem ítarefni í stærðfræði frir unglingastig. Efnið getur hentað til einstaklings- eða paravinnu í skólanum en einnig

Διαβάστε περισσότερα

Fagið 02/08 SÝKINGAR TENGDAR HEILBRIGÐIS ÞJÓNUSTU OG SMITLEIÐIR. Ásdís Elfarsdóttir Jelle, MPH, deildarstjóri sýkingavarnadeildar Landspítala

Fagið 02/08 SÝKINGAR TENGDAR HEILBRIGÐIS ÞJÓNUSTU OG SMITLEIÐIR. Ásdís Elfarsdóttir Jelle, MPH, deildarstjóri sýkingavarnadeildar Landspítala 02/08 SÝKINGAR TENGDAR HEILBRIGÐIS ÞJÓNUSTU OG SMITLEIÐIR Ásdís Elfarsdóttir Jelle, MPH, deildarstjóri sýkingavarnadeildar Landspítala Það Er margt sem getur haft áhrif á öryggi sjúklinga sem þurfa á þjónustu

Διαβάστε περισσότερα

1 Aðdragandi skammtafræðinnar

1 Aðdragandi skammtafræðinnar 1 Aðdragandi skammtafræðinnar 1.1 Inngangur Fram yfir aldamótin 1900 töldu flestir eðlisfræðingar að aflfræði Newtons og rafsegulfræði Maxwells dygðu til að gera grein fyrir gangi náttúrunnar. Á síðustu

Διαβάστε περισσότερα

Námskeið fyrir hita- og vatnsveitur Dælur og stýringar

Námskeið fyrir hita- og vatnsveitur Dælur og stýringar Námskeið fyrir hita- og vatnsveitur Dælur og stýringar Hönnun Dæluval - Stýringar Þorleikur Jóhannesson Vélaverkfræðingur Námskeið fyrir hita- og vatnsveitur 1 Efnisyfirlit Miðflóttaaflsdælur Láréttar

Διαβάστε περισσότερα

Verkefni 1: Splæsibrúun og jafnhæðarferlar

Verkefni 1: Splæsibrúun og jafnhæðarferlar Verkefni 1: Splæsibrúun og jafnhæðarferlar Friðrik Freyr Gautason og Guðbjörn Einarsson I. SPLÆSIBRÚUN FORRITUÐ Hérna er markmiðið að útfæra forrit sem leyfir notanda að smella á teikniglugga eins oft

Διαβάστε περισσότερα

S t æ r ð f r æ ð i. Kennsluleiðbeiningar. Kennsluleiðbeiningar. 8tíu NÁMSGAGNASTOFNUN. 7. september 2006

S t æ r ð f r æ ð i. Kennsluleiðbeiningar. Kennsluleiðbeiningar. 8tíu NÁMSGAGNASTOFNUN. 7. september 2006 2 3 4 5 6 S t æ r ð f r æ ð i Kennsluleiðbeiningar Kennsluleiðbeiningar 8tíu NÁMSGAGNASTOFNUN NÁMSGAGNASTOFNUN 2. útgáfa 2006 7. september 2006 Átta tíu Kennsluleiðbeiningar 2006 Guðbjörg Pálsdóttir og

Διαβάστε περισσότερα

Skýrsla nefndar um stefnumótun í íþróttum stúlkna og kvenna. í samræmi við þingsályktun sem samþykkt var á Alþingi 4. júní 1996

Skýrsla nefndar um stefnumótun í íþróttum stúlkna og kvenna. í samræmi við þingsályktun sem samþykkt var á Alþingi 4. júní 1996 Skýrsla nefndar um stefnumótun í íþróttum stúlkna og kvenna í samræmi við þingsályktun sem samþykkt var á Alþingi 4. júní 1996 Efnisyfirlit Formáli...3 Inngangur...4 Niðurstöður...5 Kynjaskipting í forystu

Διαβάστε περισσότερα

SKALI STÆRÐFRÆÐI FYRIR UNGLINGASTIG KENNARABÓK. Grete Normann Tofteberg Janneke Tangen Ingvill Merete Stedøy-Johansen Bjørnar Alseth

SKALI STÆRÐFRÆÐI FYRIR UNGLINGASTIG KENNARABÓK. Grete Normann Tofteberg Janneke Tangen Ingvill Merete Stedøy-Johansen Bjørnar Alseth SKALI KENNARABÓK STÆRÐFRÆÐI FYRIR UNGLINGASTIG Grete Normann Tofteberg Janneke Tangen Ingvill Merete Stedøy-Johansen Bjørnar Alseth Menntamálastofnun 8542 3B Skali 3B Kennarabók Heiti á frummálinu: Maximum

Διαβάστε περισσότερα

Upplýsingar um innrigerð jarðar er fundið með jarðskjálftabylgjum og loftsteinum.

Upplýsingar um innrigerð jarðar er fundið með jarðskjálftabylgjum og loftsteinum. Storkuberg 1 Kafli 1 Upphaf jarðar er talið hafa verið fyrir um 4,6*10 9 árum þá sem aðsóp (accrection). Upplýsingar um innrigerð jarðar er fundið með jarðskjálftabylgjum og loftsteinum. Loftsteinum er

Διαβάστε περισσότερα

16 kafli stjórn efnaskipta

16 kafli stjórn efnaskipta 16 kafli stjórn efnaskipta Stjórnun efnaskipta kodhydrata, próteina og fitu Þegar við erum búin að koma næringu úr meltingarveginum og út í blóðið, þarf að koma næringunni áfram yfir í þær frumur sem eiga

Διαβάστε περισσότερα

Stær fræ i. Kennsluleiðbeiningar. Kennsluleiðbeiningar. 8tíu. NÁMSGAGNASTOFNUN 15. febrúar 2007

Stær fræ i. Kennsluleiðbeiningar. Kennsluleiðbeiningar. 8tíu. NÁMSGAGNASTOFNUN 15. febrúar 2007 4 1 2 3 5 6 Kennsluleiðbeiningar Kennsluleiðbeiningar 8tíu NÁMSGAGNASTOFNUN 15. febrúar 2007 Átta tíu Stærðfræði 4 Kennsluleiðbeiningar 2007 Guðbjörg Pálsdóttir og Guðný Helga Gunnarsdóttir 2007 teikningar

Διαβάστε περισσότερα

ÞRAUTIR RÖKHUGSUN STÆRÐFRÆÐI

ÞRAUTIR RÖKHUGSUN STÆRÐFRÆÐI STÆRÐFRÆÐI ÞRAUTIR RÖKHUGSUN Á eftirfarandi síðum eru fjölbreyttar þrautir eða rökhugsunarverkefni sem ætluð eru nemendum grunnskóla. Efnið hentar einkum nemendum á mið- og unglingastigi. Það hefur verið

Διαβάστε περισσότερα

Efnasamsetning vatns úr holu ÓS-01, Ósabotnum og útfellingar vegna blöndunar við vatn frá Þorleifskoti. OS-2002/078 Desember 2002

Efnasamsetning vatns úr holu ÓS-01, Ósabotnum og útfellingar vegna blöndunar við vatn frá Þorleifskoti. OS-2002/078 Desember 2002 Verknr.: 8-610811 Magnús Ólafsson Steinunn Hauksdóttir Selfossveitur Efnasamsetning vatns úr holu ÓS-01, Ósabotnum og útfellingar vegna blöndunar við vatn frá Þorleifskoti Unnið fyrir Selfossveitur OS-2002/078

Διαβάστε περισσότερα

FYLGISEÐILL FYRIR. PHENOLEPTIL 100 mg töflur fyrir hunda

FYLGISEÐILL FYRIR. PHENOLEPTIL 100 mg töflur fyrir hunda FYLGISEÐILL FYRIR PHENOLEPTIL 100 mg töflur fyrir hunda 1. HEITI OG HEIMILISFANG MARKAÐSLEYFISHAFA OG ÞESS FRAMLEIÐANDA SEM BER ÁBYRGÐ Á LOKASAMÞYKKT, EF ANNAR Markaðsleyfishafi: Nafn: Le Vet B.V. Heimilisfang:

Διαβάστε περισσότερα

Hitaveituhandbók Samorku

Hitaveituhandbók Samorku 1 Fjarhitun hf. Gísli Geir Jónsson Oddur B. Björnsson 7. Kafli Leiðbeiningar um lagningu pípna Uppfærður í Efnisyfirlit 2 7.1. MISMUNANDI GERÐIR HITAVEITULAGNA..................... 4 7.1.1. ALMENNT...................................

Διαβάστε περισσότερα

Tölfræði II. Lausnahefti við völdum dæmum. Haustönn 2004

Tölfræði II. Lausnahefti við völdum dæmum. Haustönn 2004 Tölfræð II Lausaheft vð völdum dæmum Haustö 4 Erledur Davíðsso 5 Erledur Davíðsso Efsyfrlt Dæm Slembbreytur, líkdafræð...4 Dæm - Þéttföll...4 Dæm 3 Ýmsar drefgar...4 Dæm 4 - Vætgld...5 Dæm 5 Vægsframleðarar...5

Διαβάστε περισσότερα

Hætta af rafmagni og varnir

Hætta af rafmagni og varnir Hætta af rafmagni og varnir Leysir af hólmi bæklinginn "Námsefni úr Reglugerð um raforkuvirki" 1. Rafstraumur um líkamann Rafstraumurinn sem fer um líkamann er skaðvaldurinn og spennan að því marki sem

Διαβάστε περισσότερα

HÖNNUN Á STRENGLÖGN 11KV ÞINGVALLASVEIT

HÖNNUN Á STRENGLÖGN 11KV ÞINGVALLASVEIT HÖNNUN Á STRENGLÖGN 11KV ÞINGVALLASVEIT Ágúst Jónsson Lokaverkefni í rafiðnfræði 2016 Höfundur: Ágúst Jónsson Kennitala:290174-4659 Leiðbeinandi: Lárus Einarsson Tækni- og verkfræðideild School of Science

Διαβάστε περισσότερα

Sæmundur E. Þorsteinsson, TF3UA

Sæmundur E. Þorsteinsson, TF3UA Sæmundur E. Þorsteinsson, TF3UA Flutningslínur Á formlegri ensku heita þær Transmission Lines Líka oft kallaðar Feeder lines Fæðilínur Flutningslínur, merkjaflutningslínur Flutningslína flytur afl (merki)

Διαβάστε περισσότερα

Efnatengi og uppbygging sameindanna

Efnatengi og uppbygging sameindanna Námsmarkmið. Nemendur geti: Efnatengi og uppbygging sameindanna Notað rafeindaskipan frumefnanna til að skýra hversvegna málmar mynda frekar katjónir og málmleysingjar anjónir. Útskýrt orkubreytinguna

Διαβάστε περισσότερα

ATRIÐASKRÁ OG HEIMILDASKRÁ 211 FORMÚLUR, VAXTATÖFLUR & TÖFLUR UM REGLULEGAN SPARNAÐ

ATRIÐASKRÁ OG HEIMILDASKRÁ 211 FORMÚLUR, VAXTATÖFLUR & TÖFLUR UM REGLULEGAN SPARNAÐ ATRIÐASKRÁ OG HEIMILDASKRÁ 211 FORMÚLUR, VAXTATÖFLUR & TÖFLUR UM REGLULEGAN SPARNAÐ 212 FORMÚLUR VAXTAGREIÐSLUR, VEXTIR OG VÍXLAR Vaxtagreiðsla er endurgjald sem lántakandi greiðir fyrir peningalán Vaxtagreiðsla

Διαβάστε περισσότερα

Niðurstöður aurburðarmælinga í Jökulsá í Fljótsdal árið 2003

Niðurstöður aurburðarmælinga í Jökulsá í Fljótsdal árið 2003 Verknr.: 7-546763 Jórunn Harðardóttir Svava Björk Þorláksdóttir Niðurstöður aurburðarmælinga í Jökulsá í Fljótsdal árið 2003 Unnið fyrir Landsvirkjun OS-2004/010 Apríl 2004 ISBN 9979-68-141-1 ORKUSTOFNUN

Διαβάστε περισσότερα

Hitaveiturör Tæknilegar upplýsingar

Hitaveiturör Tæknilegar upplýsingar 1.1.-1 Hitaveiturör Tæknilegar upplýsingar 1.1.1 Stálrör SET notar aðeins stálrör frá viðurkenndum framleiðendum við framleiðslu á einangruðu lagnaefni fyrir hitaveitur. Krafist er gæðaskírteina með rörunum

Διαβάστε περισσότερα

Að setja fastan og kvikan texta í myndaglugga GeoGebru

Að setja fastan og kvikan texta í myndaglugga GeoGebru Að setja fastan og kvikan texta í myndaglugga GeoGebru Vinnublað 5 Judith og Markus Hohenwarter www.geogebra.org Íslensk þýðing: ágúst 2010 Þýðendur Freyja Hreinsdóttir Guðrún Margrét Jónsdóttir Nanna

Διαβάστε περισσότερα

ÁLFHÓLAR BURÐARÞOLSHÖNNUN STÁLGRINDARHÚSS

ÁLFHÓLAR BURÐARÞOLSHÖNNUN STÁLGRINDARHÚSS ÁLFHÓLAR BURÐARÞOLSHÖNNUN STÁLGRINDARHÚSS Jóhanna Bettý Durhuus Lokaverkefni í byggingartæknifræði BSc 011 Höfundur/höfundar: Jóhanna Bettý Durhuus Kennitala: 160584-3789 Leiðbeinandi: Jón Guðmundsson

Διαβάστε περισσότερα

Varmadælur og hlutverk þeirra á Íslandi

Varmadælur og hlutverk þeirra á Íslandi Varmadælur og hlutverk þeirra á Íslandi Oddur B. Björnsson Erindi flutt eftir aðalfund Jarðhitafélagsins 23. apríl 2003 Rit 7 / 2003 Varmadælur og hlutverk þeirra á Íslandi Bls. 2 af 34 Efnisyfirlit EFNISYFIRLIT...3

Διαβάστε περισσότερα

Fylgiseðill: Upplýsingar fyrir notanda lyfsins. Daivobet 50 míkrógrömm/0,5 mg/g smyrsli. kalsípótríól/betametasón

Fylgiseðill: Upplýsingar fyrir notanda lyfsins. Daivobet 50 míkrógrömm/0,5 mg/g smyrsli. kalsípótríól/betametasón Fylgiseðill: Upplýsingar fyrir notanda lyfsins Daivobet 50 míkrógrömm/0,5 mg/g smyrsli kalsípótríól/betametasón Lesið allan fylgiseðilinn vandlega áður en byrjað er að nota lyfið. Í honum eru mikilvægar

Διαβάστε περισσότερα

Fylgiseðill: Upplýsingar fyrir notanda lyfsins

Fylgiseðill: Upplýsingar fyrir notanda lyfsins Fylgiseðill: Upplýsingar fyrir notanda lyfsins Rabeprazol Medical Valley 10 mg magasýruþolnar töflur Rabeprazol Medical Valley 20 mg magasýruþolnar töflur rabeprazolnatríum Lesið allan fylgiseðilinn vandlega

Διαβάστε περισσότερα

Iðjuþjálfun LIE0103 Hrefna Óskarsd.

Iðjuþjálfun LIE0103 Hrefna Óskarsd. Frumur í blóði Blóð samanstendur af vökva og frumum sem fljóta í vökvanum. Blóðvökvinn er rúmlega helmingur af rúmmáli blóðsins. Þetta er gulleitur vökvi sem er að mestu leyti vatn en inniheldur líka mörg

Διαβάστε περισσότερα

Spurningar úr Raforkudreifikerfum. e. Ófeig Sigurðsson.

Spurningar úr Raforkudreifikerfum. e. Ófeig Sigurðsson. Spurningar úr Raforkudreifikerfum. e. Ófeig Sigurðsson. 1. Vinnsla og flutningur raforku 1. Hvað er raforkuver? 2. Hvaða atriði hafa áhrif á nýtni raforkukerfa? 3. Hvað er blik (kóróna) í raforkukerfi?

Διαβάστε περισσότερα