ŠMYKOVÁ PEVNOSŤ ZEMÍN

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ŠMYKOVÁ PEVNOSŤ ZEMÍN"

Transcript

1 ŠMYKOVÁ PEVNOSŤ ZEMÍN Geomechanika IV.. V prevažnej väčšine aplikačných úloh mechaniky zemín úloh I.medzného stavu, kde uvažujeme medznú rovnováhu pri porušení, riešime stav napätosti medzi šmykovým napätím a šmykovou pevnosťou zeminy. Odpor zeminy proti šmykovému porušeniu predstavuje hlavný zdroj pevnosti zeminy. Pre lineárne úlohy mechaniky zemín je najčastejšie používaným kritériom Mohr-Coulombovo kritérium šmykovej pevnosti. σ1 šmyková plocha τ σ3 σf σ3 τ f = σ f.tan ϕ + c τf α σ1 m čiara šmykovej pevnosti c ϕ α τf c.cotgϕ σ3 σ σf σ1 Mohr-Coulombova šmyková pevnosť τ = σ tan ϕ + ; f f c -kde: tf je šmykový odpor zeminy na medzi porušenia pri napätí sf j a c sú parametre šmykovej pevnosti. Parameter ϕ [ ] je uhol vnútorného trenia zeminy, c [kpa] je súdržnosť zeminy, (kohézia). Pre nesúdržné zeminy má Coulombova rovnica tvar: τ = σ tan ϕ; f f Pre rôzne stavy napätosti v zeminách poznáme tieto tvary Coulombovej rovnice: pre totálnu napätosť: τu = σ.tan ϕu + cu; pre efektívnu napätosť: τef = σef.tan ϕef + cef; pre reziduálny stav: τr = σ.tan ϕr; cr = 0.

2 Parametre ϕu a cu nazývame totálnymi parametrami šmykovej pevnosti, ϕef a cef nazývame efektívnymi parametrami a ϕr a cr sú parametre reziduálne (zbytkové). 5.1 Prostá tlaková skúška Skúška zeminy v prostom tlaku je vhodnou skúškou pre testovanie pevnosti ílovitých vodou nasýtených zemín v prípadoch, kedy neuvažujeme s konsolidáciou zeminy. Výsledkom testu je hodnota pevnosti v prostom tlaku σc, alebo súdržnosti zeminy cu, pri totálnom stave napätosti za predpokladu uhlu trenia ϕu = 0. Príklad porušenia vzoriek pri tlakovej skúške: h Δh=20% vzorka pred porušením vzorka porušená krehkým šmykom krehko-plastické porušenie vzorky vzorka plasticky deformovaná 5.1 Triaxiálna šmyková skúška Triaxiálna skúška je jedna z metód pre stanovenie parametrov šmykovej pevnosti zeminy. Je vhodná pre všetky typy jemnozrnných zemín a jej výhodou je možnosť namodelovania napätosti, ktorá na zeminu bude pôsobiť. Ďalšou výhodou je možnosť merania veľkosti vznikajúcich pórových tlakov pri zaťažení. Na vzorku zeminy tvaru válca v triaxiálnej komore pôsobí trojrozmerný stav napätosti. Zvislé axiálne napätie σ1 vyvodzujeme pomocou zaťažovacieho piestu a bočné napätie σ2 = σ3 pomocou hydrostatického tlaku vody v komore. Pre stav napätosti na obr. platí vzťah: σ1 > σ 3 σ 2; V triaxiálnom prístroji rozlišujeme tieto základné typy skúšok: UU -je skúška bez konsolidačného procesu s rýchlym zaťažovaním vzorky bez odvodnenia, v ktorom navodíme totálny stav napätosti získame ϕu, cu, nazývané tiež totálne parametre. Axiálne napätie σ 1 Hydrostatické napätie σ 3 Systém napätosti triaxiálneho testu. CU -je skúška s konsolidačným procesom pred zaťažovaním bez možnosti drenovania vody. Počas skúšky môžeme merať pórový tlak u. Vyhodnotením získame parametre totálne ϕu, cu, alebo po odčítaní pórového tlaku efektívne ϕef, cef, CD - je test s konsolidačným procesom pred skúškou a odvodňo-vaním vody vytláčanej z pórov pri zaťažovaní vzorky. Výsledkom sú parametre šmykovej pevnosti efektívne ϕef, cef.

3 5.3 Krabicová šmyková skúška Krabicová skúška je priama skúška pre stanovenie šmykovej pevnosti zeminy s predurčenou plochou porušenia. Jej výhodou je možnosť testovania všetkych druhov zemín, aj štrkovitých, pre ktoré musí byť rozmer krabice dostatočne veľký. Princíp skúšky je zrejmý z obrázku N porézne doštičky T M 2 Δl M 1 vzorka zeminy T Obr. Krabicový šmykový prístroj. Po vložení vzorky zeminy do šmykovej krabice necháme ju konsolidovať pod napätím σc = σor,v, po dobu závislú na type zeminy, tak aby nastalo aspoň 95% konsolidačné stlačenie. U pieskov je to 60 minút až po dobu 24h pre vysokoplastické íly. Po skončení konsolidácie zaťažíme vzorku normálovým napätím konštantným počas celej skúšky. Potom konštantne rýchlym posuvom začneme ťahať spodnú čeľusť krabice. Pre určité hodnoty posuvu Δl zaznamenávame šmykovú silu odporu zeminy T. Ukončenie testu je vtedy, ak nastane výrazný pokles šmykového odporu vzorky, alebo pri dosiahnutí dráhy 10% priečneho rozmeru krabice. Pre vzorky zeminy plne nasýtené vykonávame zavlažovanie počas skúšky. Krabicová skúška je spravidla konsolidovaná a odvodnená, jej výsledkom sú získané parametre ϕef a cef. Najdôležitejším faktorom skúšky je voľba rýchlosti šmykového posuvu, ktorý musí byť primerane pomalý, aby zaniklo aktivizujúce sa pórové napätie v zemine. Norma doporučuje tieto rýchlosti šmýkania: pre zeminy vysokoplastické: 0,002 ~ 0,01 mm.min -1 pre strednoplastické 0,01 ~ 0,05 mm.min -1 pre nízkoplastické, piesčité 0,05 ~ 0,1 mm.min -1 Skúška šmykovej pevnosti sa vykonáva na troch alebo štyroch identických vzorkách, vždy s vyšším konštantným normálovým priťažením. Voľba normálových napätí je závislá od geostatickej napätosti a od oboru napätia, ktorým bude zemina v budúcnosti zaťažovaná. Vyhodnotenie skúšky je podľa Coulombovho kritéria pevnosti. Pre zistenie šmykového odporu zeminy na vytvorených plochách porušenia, vraciame čeľusť krabice do pôvodnej polohy a pokus opakujeme. Získané zbytkové hodnoty odporu zeminy nazývame reziduálne a jej parametre označujeme ϕr a cr = Stabilita svahov Pri budovaní násypov a zárezov dopravných stavieb a pri hĺbení stavebných jám často riešime problém, aké bezpečné sklony svahov máme vyprojektovať. Odpoveďou na

4 tento problém sú výsledky stabilitných vyšetrení. Výpočty stability vykonávame i vtedy, ak dôjde k porušeniu, alebo ohrozeniu stavebných konštrukcií dôsledkom zosúvania zeminy. Príčiny vzniku zosuvných procesov môžu byť viaceré, pre prírodné svahy sú to najčastejšie: vztlakové a priesakové účinky podzemnej vody; pôrové tlaky aktivované v súdržných zeminách; priťažujúce alebo zotrvačné účinky prirodznej a technickej seizmicity. Pri porušení dôjde ku strate stability v dôsledku prekročenia šmykovej pevnosti zeminy na ploche porušenia (úlohy I. medzného stavu), ktorej tvar môže byť válcový, translačný alebo obecný. a) válcová šmyková plocha b) translačný tvar plochy c) obecné tvary šmykových plôch Obr.Tvary šmykových plôch Metódy riešenia: metódy medznej rovnováhy - sú pre stabilitné výpočty najčastejšie používané. Ich predpokladom je dosiahnutie medznej rovnováhy v každom bode šmykovej plochy. Ich princípom je porovnanie šmykovej pevnosti (odporu) zeminy tf redukovanej stupňom bezpečnosti Fs s pôsobiacim šmykovým napätím t na ploche porušenia v medznej rovnováhe: τ f σ tan ϕ + c τ = ; F s F s stupeň bezpečnosti svahu Fs (factor of safety) z tohto predpokladu potom vyjadríme: τ f σ tan ϕ + c Fs = =. τ τ metódy progresívneho porušovania - predpokladajú vývoj šmykového porušenia v lokálnych miestach vplyvom zvýšenej napätosti. Po prečerpaní vrcholovej pevnosti zeminy sa porušenie rozširuje na susedné oblasti. metódy konečných (FEM) a hraničných prvkov (DEM), kde výsledkom analýz na zvolených elementoch rozdeľujúcich svah, sú hodnoty napätí a vektory premiestnení uzlových bodov. metódy fyzikálneho a matematického modelovania, ktoré nám poskytujú obraz o vzniku a vývoji porušení.

5 5.4.1 Stabilita svahov na dopravných stavbách Na obrázku v schémach a) až f) sú zobrazené najčastejšie príčiny porušovania svahov na dopravných stavbách. a) priesak zrážkovej vody e) oslabenie päty svahu b) priesak podzemnej vody f) priťaženie koruny svahu c) vplyv kolísania vody v nádrži g) vplyv účinkov dopravy d) plastické vytlačovanie mäkkého podložia h) vztlakové účinky uzatvorenej priepustnej vrstvy a pórový tlak v nadložnej súdržnej zemine Obr. Prípady porušovania svahov dopravných stavieb Podľa STN "Projektovanie ciest a diaľnic" sú požadované minimálne stupne stability svahov zárezov: v súdržných zeminách pri uvažovaní vrcholovej pevnosti zeminy:... FS,min = 1,5 v súdržných zeminách pri uvažovaní reziduálnej pevnosti:...fs,min = 1,15 v zeminách nesúdržných:... FS,min = 1,2 pre porušený svah sanovaný s použitím reziduálnej šmykovej pevnosti:... FS,min = 1,1 pre skalné zárezy za predpokladu planárnych porušení:... FS,min = 1,3.

6 Pre svahy násypov budované zhutnením norma predpisuje tieto stupne stability v závislosti na únosnosti podložia: násyp zo súdržnej zeminy na únosnom podloží:... FS,min = 1,3 z nesúdržnej zeminy na únosnom podloží:... FS,min = 1,2 násyp na máloúnosnom podloží pri okamžitom zaťažení:... FS,min = 1,5 násyp na máloúnosnom podloží po ukončení konsolidácie:... FS,min = 1,3. Príklad č.41 Vypočítajte stupeň stability navrhnutého svahu zárezu dopravnej stavby, ktorý bude hĺbený v ílovitých zeminách. Úlohu riešte z použitím totálnych parametrov šmykovej pevnosti zeminy. Vstupné hodnoty: zemina v záreze: - γ = 19,5 kn.m -3 ; ϕu = 0 ; cu = 40 kpa; geometria svahu: - výška H = 8 m, sklon zárezu 1 : 2, z toho vyplýva sklon svahu β = arctan(1/2) = 26,6. predpokladáme vznik valcovej šmykovej plochy prechádzajúcej pätou svahu. 1,5H H β 1:2 2x1 1 γ ϕ U =0 c U šmyková plocha pevné podložie Obr.64 Zárez na dopravnej stavbe Riešenie: Úlohu riešime jednoduchou metódou medznej rovnováhy pomocou Taylorovho koeficientu stability. Pre prípad ju = 0 je stupeň bezpečnosti (stability) Fs rovný: cu Fs = ; Ns γ H kde Ns je Taylorov koeficient, ktorý stanovíme z grafu na obr.65. Pre uhol sklonu svahu b = 26,6 a hĺbkový pomer D = 1,5 je z grafu Ns = 0,16. Po dosadení do predošlého vzťahu: cu 40 Fs = = = 160,. N γ H 016, 195, 8 s Svah zárezu má stupeň stability Fs = 1,60. Poznámka: Vypočítaný stupeň stability je mierne nižší, ako je minimálny stupeň stability

7 Fs,min = 1,65 pri použití totálnych parametrov. Pre definitívne rozhodnutie o vhodnosti sklonu svahu 1:2 je potrebné overiť stabilitu presnejším výpočtom, za použitia efektívnych parametrov šmykovej pevnosti. Prednosti Taylorovho výpočtu sú v jeho jednoduchosti a rýchlosti, a môže poslúžiť na rýchly odhad a porovnanie z výsledkami presnejšími. Obr.65 Koeficient stability podľa Taylora. Príklad Posúďte, aká je stabilita násypu dopravnej stavby vybudovaného zo súdržnej zeminy na máloúnosnom podloží. V konštrukcii vozovky dochádza k neustálym poruchám v dôsledku poklesu nivelety. Za týmto účelom bol vykonaný podrobný prieskum predmetného územia. Príčinou porušovania násypu je prítomnosť uzatvorenej pieskovej vrstvy, v ktorej je vztlaková podzemná voda. Maximálne vztlakové výšky boli zistené meraním. V dôsledku silného pretlaku podzemnej vody do podložia násypu, spolu s priťažením od násypu sa v zemine aktivizujú pórové tlaky - výrazne znižujúce stabilitné pomery násypu. Vstupné hodnoty: zemina v násype a podloží: γ = 20,8 kn.m -3 ; ϕef = 13 ; cef = 25 kpa, vztlakové namerané výšky sú vykreslené na obrázku 66, geometria svahu: sklon 1 : 2; výška H = 11m; predpokladaná plocha porušenia má obecný tvar, zospodu ohraničený zvodnelou vrstvou piesku.

8 Profil svahu násypu M = 1: 200 Niveleta P.T. vztlaková HPV ílovitá zemina γ piesok piezometrická hladina h Ui b i li piezometrická výška 1 a i R i u.l i i a i T i W i 2 N` piezometrická hladina h i ϕ ef c ef S sat i H = 11m Stabilita svahu s pórovým tlakom

9 Riešenie: Úlohu riešime prúžkovou metódou medznej rovnováhy (tzv.pettersonovou švédskou metódou) v profile násypu na 1m pozdĺžneho smeru. Profil je konštruovaný v mierke zobrazenia 1:200. Potom rozdelíme zosuvné teleso nad šmykovou plochou na prúžky konštantnej šírky b=4m. Pre každý prúžok presne odmeriame z obrázku jeho výšku na strednici hi, sklon čiastkovej šmykovej plochy αi, jej dĺžku li a výšku hui meranú kolmo na piezometrickú úroveň. Samotnú piezometrickú hladinu získame pospájaním vztlakových výšok v jednotlivých sondách a na základe jej priebehu potom môžeme stanoviť veľkosť pórového tlaku na šmykovej ploche každého prúžku. Riešenie pre jeden zvolený prúžok: vypočítame veľkosť tiaže prúžku zeminy Wi = γ.b.hi [kn.m -1 ]; veľkosť pórového tlaku pôsobiaceho kolmo na šmykovú plochu ui = γw.hui [kn.m -2 ]; γw = 10 kn.m -3 ; tiaž Wi rozložíme do smeru normály - získame Ni a do smeru tangenty k šmykovej ploche, získame Ti. Rozklad môžeme vykonať pomocou uhlu sklonu tangenty ai vedenej k stredu čiastkovej šmykovej plochy: Ni = Wi.cosαi [kn.m -1 ]; Ti = Wi.sinαi [kn.m -1 ]; lokálny stupeň stability tohoto prúžku je definovaný ako podiel pasívnych šmykových síl zeminy ku aktívnym silám spôsobujúcich porušenie: Tf ( Ni ui li ) tan ϕef + cef li ( Wi cos αi ui li) tan ϕef + cef li Fsi, = = = T T W sin α i úlohu je možné riešiť i graficky, tak ako to je zrejmé zo zložkového obrazca na obrázku 66. Výsledné zložky síl odmeriame z grafického riešenia a dosadíme do vzťahu pre stupeň stability. Riešenie celkovej stability pre všetky prúžky vykonáme sumáciou jednotlivých zložiek v tabuľke: Prúžok hi Wi αi Wi.sin αi Wi.cos αi li hui ui Wicos αi - ui.li i [m] [kn.m -1 ] [ ] [kn.m -1 ] [kn.m -1 ] [m] [m] [kn.m -2 ] [kn.m -1 ] 1 1,4 116, ,2 105,6 4,8 5, ,6 2 2,8 232,96 0 0,0 233,0 4 5,6 56 9,0 3 4,9 407,68 0 0,0 407,7 4 6, ,7 4 6,9 574,08 0 0,0 574,1 4 7, ,1 5 8,7 723, ,2 714,9 4,3 7, ,1 6 9,4 782, ,6 719,9 4,6 7, ,7 7 8,8 732, ,6 560,9 5 5, ,9 8 4,8 399, ,9 240,3 9 1, ,3 S= 1159,1 S= 39,7 S= 1419,13 Σ( Wi cos α i ui li ) tan ϕef + cef Σli 1419, 13 tan , 7 Fs = = = 113,. Σ( Wi sin α i) 1159, 1 Stupeň stability násypu na máloúnosnom podloží je nedostačujúci, lebo je nižší než normou predpísaný stupeň FS,min = 1,5. Poznámka: Zlepšenie stability je možné vykonať zriadením konsolidačných drénov v podloží násypu - pieskové pilóty, konsolidačné drény Membradrain a pod., ktoré radiálnym a vertikálnym odvodnením eliminujú pôsobenie pórových tlakov v zemine. i i.

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0. Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

Meranie na jednofázovom transformátore

Meranie na jednofázovom transformátore Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

STATIKA STAVEBNÝCH KONŠTRUKCIÍ I Doc. Ing. Daniela Kuchárová, PhD. Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov

STATIKA STAVEBNÝCH KONŠTRUKCIÍ I Doc. Ing. Daniela Kuchárová, PhD. Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov zaťaženia Prostý nosník Konzola 31 Príklad č.14.1 Vypočítajte a vykreslite priebehy vnútorných síl na nosníku s previslými koncami,

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

Modul pružnosti betónu

Modul pružnosti betónu f cm tan α = E cm 0,4f cm ε cl E = σ ε ε cul Modul pružnosti betónu α Autori: Stanislav Unčík Patrik Ševčík Modul pružnosti betónu Autori: Stanislav Unčík Patrik Ševčík Trnava 2008 Obsah 1 Úvod...7 2 Deformácie

Διαβάστε περισσότερα

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2 Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

Riešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave

Riešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave iešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave Lineárne elektrické obvody s jednosmernými zdrojmi a rezistormi v ustálenom stave riešime (určujeme prúdy

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

YQ U PROFIL, U PROFIL

YQ U PROFIL, U PROFIL YQ U PROFIL, U PROFIL YQ U Profil s integrovanou tepelnou izoláciou Minimalizácia tepelných mostov Jednoduché stratené debnenie monolitických konštrukcií Jednoduchá a rýchla montáž Výrobok Pórobetón značky

Διαβάστε περισσότερα

M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie"

M8 Model Valcová a kužeľová nádrž v sérií bez interakcie M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie" Úlohy: 1. Zostavte matematický popis modelu M8 2. Vytvorte simulačný model v prostredí: a) Simulink zostavte blokovú schému, pomocou rozkladu

Διαβάστε περισσότερα

RIEŠENIE WHEATSONOVHO MOSTÍKA

RIEŠENIE WHEATSONOVHO MOSTÍKA SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor

Διαβάστε περισσότερα

η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa

η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa 1.4.1. Návrh priečneho rezu a pozĺžnej výstuže prierezu ateriálové charakteristiky: - betón: napr. C 0/5 f ck [Pa]; f ctm [Pa]; fck f α [Pa]; γ cc C pričom: α cc 1,00; γ C 1,50; η 1,0 pre f ck 50 Pa η

Διαβάστε περισσότερα

Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S

Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S 1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava

Διαβάστε περισσότερα

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA

URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA 54 URČENE MOMENTU ZOTRVAČNOST FYZKÁLNEHO KYVADLA Teoretický úvod: Fyzikálnym kyvadlom rozumieme teleso (napr. dosku, tyč), ktoré vykonáva periodický kmitavý pohyb okolo osi, ktorá neprechádza ťažiskom.

Διαβάστε περισσότερα

YTONG U-profil. YTONG U-profil

YTONG U-profil. YTONG U-profil Odpadá potreba zhotovovať debnenie Rýchla a jednoduchá montáž Nízka objemová hmotnosť Ideálna tepelná izolácia železobetónového jadra Minimalizovanie možnosti vzniku tepelných mostov Výborná požiarna odolnosť

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

Baumit StarTrack. Myšlienky s budúcnosťou.

Baumit StarTrack. Myšlienky s budúcnosťou. Baumit StarTrack Myšlienky s budúcnosťou. Lepiaca kotva je špeciálny systém kotvenia tepelnoizolačných systémov Baumit. Lepiace kotvy sú súčasťou tepelnoizolačných systémov Baumit open (ETA-09/0256), Baumit

Διαβάστε περισσότερα

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a ) Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým

Διαβάστε περισσότερα

STRIEDAVÝ PRÚD - PRÍKLADY

STRIEDAVÝ PRÚD - PRÍKLADY STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =

Διαβάστε περισσότερα

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003 Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium

Διαβάστε περισσότερα

Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP

Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP 7 Obsah Analýza poruchových stavov pri skrate na sekundárnej strane transformátora... Nastavenie parametrov prvkov

Διαβάστε περισσότερα

SLOVENSKO maloobchodný cenník (bez DPH)

SLOVENSKO maloobchodný cenník (bez DPH) Hofatex UD strecha / stena - exteriér Podkrytinová izolácia vhodná aj na zaklopenie drevených rámových konštrukcií; pero a drážka EN 13171, EN 622 22 580 2500 1,45 5,7 100 145,00 3,19 829 hustota cca.

Διαβάστε περισσότερα

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore. Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.

Διαβάστε περισσότερα

Riešenie rovníc s aplikáciou na elektrické obvody

Riešenie rovníc s aplikáciou na elektrické obvody Zadanie č.1 Riešenie rovníc s aplikáciou na elektrické obvody Nasledujúce uvedené poznatky z oblasti riešenia elektrických obvodov pomocou metódy slučkových prúdov a uzlových napätí je potrebné využiť

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO

PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO ŽILINSKÁ UNIVERZITA V ŽILINE Fakulta špeciálneho inžinierstva Doc. Ing. Jozef KOVAČIK, CSc. Ing. Martin BENIAČ, PhD. PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO Druhé doplnené a upravené vydanie Určené

Διαβάστε περισσότερα

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky

Διαβάστε περισσότερα

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,... Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia

Διαβάστε περισσότερα

Príručka pre dimenzovanie drevených tenkostenných nosníkov PALIS. (Stena z OSB/3 Kronoply)

Príručka pre dimenzovanie drevených tenkostenných nosníkov PALIS. (Stena z OSB/3 Kronoply) Palis s.r.o. Kokořov 24, 330 11 Třemošná, Česká republika e- mail: palis@palis.cz Príručka pre dimenzovanie drevených tenkostenných nosníkov PALIS. (Stena z OSB/3 Kronoply) Vypracoval: Ing. Roman Soyka

Διαβάστε περισσότερα

Vlastnosti regulátorov pri spätnoväzbovom riadení procesov

Vlastnosti regulátorov pri spätnoväzbovom riadení procesov Kapitola 8 Vlastnosti regulátorov pri spätnoväzbovom riadení procesov Cieľom cvičenia je sledovať vplyv P, I a D zložky PID regulátora na dynamické vlastnosti uzavretého regulačného obvodu (URO). 8. Prehľad

Διαβάστε περισσότερα

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Úloha č.:...xviii... Název: Prechodové javy v RLC obvode Vypracoval:... Viktor Babjak... stud. sk... F.. dne... 6.. 005

Διαβάστε περισσότερα

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα

KATALÓG KRUHOVÉ POTRUBIE

KATALÓG KRUHOVÉ POTRUBIE H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom

Διαβάστε περισσότερα

Kontrolné otázky z jednotiek fyzikálnych veličín

Kontrolné otázky z jednotiek fyzikálnych veličín Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia

Διαβάστε περισσότερα

Riadenie zásobníkov kvapaliny

Riadenie zásobníkov kvapaliny Kapitola 9 Riadenie zásobníkov kvapaliny Cieľom cvičenia je zvládnuť návrh (syntézu) regulátorov výpočtovými (analytickými) metódami Naslinovou metódou a metódou umiestnenia pólov. Navrhnuté regulátory

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia

Διαβάστε περισσότερα

ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI

ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI 1. Zadanie: Určiť odchýlku kolmosti a priamosti meracej prizmy prípadne vzorovej súčiastky. 2. Cieľ merania: Naučiť sa merať na špecializovaných

Διαβάστε περισσότερα

Numerické metódy Zbierka úloh

Numerické metódy Zbierka úloh Blanka Baculíková Ivan Daňo Numerické metódy Zbierka úloh Strana 1 z 37 Predhovor 3 1 Nelineárne rovnice 4 2 Sústavy lineárnych rovníc 7 3 Sústavy nelineárnych rovníc 1 4 Interpolačné polynómy 14 5 Aproximácia

Διαβάστε περισσότερα

TABUĽKY STATICKÝCH HODNÔT A ÚNOSTNOSTI

TABUĽKY STATICKÝCH HODNÔT A ÚNOSTNOSTI TABUĽKY STATICKÝCH HODNÔT A ÚNOSTNOSTI ŠKRIDPLECHU A TRAPÉZOVÝCH PLECHOV Ojednávateľ : Ľuoslav DERER Vypracoval : prof. Ing. Ján Hudák, CSc. Ing. Tatiana Hudáková Košice, 004 1 STATICKÝ VÝPOČET ÚNOSNOSTI

Διαβάστε περισσότερα

3. prednáška. Komplexné čísla

3. prednáška. Komplexné čísla 3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet

Διαβάστε περισσότερα

DIELCE PRE VSTUPNÉ ŠACHTY

DIELCE PRE VSTUPNÉ ŠACHTY DIELCE PRE VSTUPNÉ ŠACHTY Pre stavby vstupných šachiet k podzemnému vedeniu inžinierskych sietí. Pre stavby studní TBS - 1000/250-S TBS - 1000/625-SS TBS - 1000/500-S TBS - 1000/1000-S TBS - 1000/625-SK

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie, Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

DIGITÁLNY MULTIMETER AX-100

DIGITÁLNY MULTIMETER AX-100 DIGITÁLNY MULTIMETER AX-100 NÁVOD NA OBSLUHU 1. Bezpečnostné pokyny 1. Na vstup zariadenia neprivádzajte veličiny presahujúce maximálne prípustné hodnoty. 2. Ak sa chcete vyhnúť úrazom elektrickým prúdom,

Διαβάστε περισσότερα

MECHANIKA TEKUTÍN. Ideálna kvapalina je dokonale tekutá a celkom nestlačiteľná, pričom zanedbávame jej vnútornú štruktúru.

MECHANIKA TEKUTÍN. Ideálna kvapalina je dokonale tekutá a celkom nestlačiteľná, pričom zanedbávame jej vnútornú štruktúru. MECHANIKA TEKUTÍN TEKUTINY (KVAPALINY A PLYNY) ich spoločnou vlastnosťou je tekutosť, ktorá sa prejavuje tým, že kvapaliny a plynné telesá ľahko menia svoj tvar a prispôsobujú sa tvaru nádoby, v ktorej

Διαβάστε περισσότερα

Model redistribúcie krvi

Model redistribúcie krvi .xlsx/pracovný postup Cieľ: Vyhodnoťte redistribúciu krvi na začiatku cirkulačného šoku pomocou modelu založeného na analógii s elektrickým obvodom. Úlohy: 1. Simulujte redistribúciu krvi v ľudskom tele

Διαβάστε περισσότερα

O b s a h : strana č.:

O b s a h : strana č.: O b s a h : strana č.: 1. ÚVOD...1 2. ÚČEL GEOLOGICKÝCH PRÁC...2 3. POUŽITÉ PODKLADY A LITERATÚRA...2 4. STRUČNÁ CHARAKTERISTIKA SKÚMANÉHO ÚZEMIA...4 5. METODIKA A ROZSAH PRÁC...5 DOPLŇUJÚCI GEOTECHNICKÝ

Διαβάστε περισσότερα

Výška, šírka, hrúbka a pravouhlosť krídla skúška postupom podľa: EN 951: 1998 Dverové krídla. Metóda merania výšky, šírky, hrúbky a pravouhlosti

Výška, šírka, hrúbka a pravouhlosť krídla skúška postupom podľa: EN 951: 1998 Dverové krídla. Metóda merania výšky, šírky, hrúbky a pravouhlosti Protokol o skúškach č. 800/24/0145/06 Názov skúšok: Mechanicko - fyzikálne skúšky Odolnosť proti zvislému zaťaženiu krídla EN 947: 1998 Otváracie (otočné) alebo kývavé dvere. Určenie odolnosti proti zvislému

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA: 1.ÚLOHA: MOSTÍKOVÁ METÓDA a, Odmerajte odpory predložených rezistorou pomocou Wheastonovho mostíka. b, Odmerajte odpory predložených rezistorou pomocou Mostíka ICOMET. c, Odmerajte odpory predložených

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

2 Chyby a neistoty merania, zápis výsledku merania

2 Chyby a neistoty merania, zápis výsledku merania 2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné

Διαβάστε περισσότερα

MPV PO 16/2013 Stanovenie kovov v rastlinnom materiáli ZÁVEREČNÁ SPRÁVA

MPV PO 16/2013 Stanovenie kovov v rastlinnom materiáli ZÁVEREČNÁ SPRÁVA REGIONÁLNY ÚRAD VEREJNÉHO ZDRAVOTNÍCTVA so sídlom v Prešove Národné referenčné centrum pre organizovanie medzilaboratórnych porovnávacích skúšok v oblasti potravín Hollého 5, 080 0 Prešov MEDZILABORATÓRNE

Διαβάστε περισσότερα

Základy technických vied 1

Základy technických vied 1 Fakulta bezpečnostného inžinierstva Žilinskej univerzity v Žiline Katedra technických vied a informatiky Základy technických vied 1 Zhrnutie: ZÁKLADY MECHANIKY PODDAJNÝCH TELIES Téma 6: ÚVOD DO MECHANIKY

Διαβάστε περισσότερα

Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu

Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Austrotherm GrPS 70 F Austrotherm GrPS 70 F Reflex Austrotherm Resolution Fasáda Austrotherm XPS TOP P Austrotherm XPS Premium 30 SF Austrotherm

Διαβάστε περισσότερα

Zadanie pre vypracovanie technickej a cenovej ponuky pre modul technológie úpravy zemného plynu

Zadanie pre vypracovanie technickej a cenovej ponuky pre modul technológie úpravy zemného plynu Kontajnerová mobilná jednotka pre testovanie ložísk zemného plynu Zadanie pre vypracovanie technickej a cenovej ponuky pre modul technológie úpravy zemného plynu 1 Obsah Úvod... 3 1. Modul sušenia plynu...

Διαβάστε περισσότερα

Funkcie - základné pojmy

Funkcie - základné pojmy Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny

Διαβάστε περισσότερα

Monitoring mikrobiálnych pomerov pôdy na kalamitných plochách Tatier

Monitoring mikrobiálnych pomerov pôdy na kalamitných plochách Tatier Monitoring mikrobiálnych pomerov pôdy na kalamitných plochách Tatier Erika Gömöryová Technická univerzita vo Zvolene, Lesnícka fakulta T. G.Masaryka 24, SK960 53 Zvolen email: gomoryova@tuzvo.sk TANAP:

Διαβάστε περισσότερα

MERANIE NA TRANSFORMÁTORE Elektrické stroje / Externé štúdium

MERANIE NA TRANSFORMÁTORE Elektrické stroje / Externé štúdium Technicá univerzita v Košiciach FAKLTA ELEKTROTECHKY A FORMATKY Katedra eletrotechniy a mechatroniy MERAE A TRASFORMÁTORE Eletricé stroje / Externé štúdium Meno :........ Supina :...... Šolsý ro :.......

Διαβάστε περισσότερα

difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom...

difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom... (TYP M) izolačná doska určená na vonkajšiu fasádu (spoj P+D) ρ = 230 kg/m3 λ d = 0,046 W/kg.K 590 1300 40 56 42,95 10,09 590 1300 60 38 29,15 15,14 590 1300 80 28 21,48 20,18 590 1300 100 22 16,87 25,23

Διαβάστε περισσότερα

Riadenie elektrizačných sústav

Riadenie elektrizačných sústav Riaenie elektrizačných sústav Paralelné spínanie (fázovanie a kruhovanie) Pomienky paralelného spínania 1. Rovnaký sle fáz. 2. Rovnaká veľkosť efektívnych honôt napätí. 3. Rovnaká frekvencia. 4. Rovnaký

Διαβάστε περισσότερα

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ, ANALÝZA MECHANICKÝCH VLASTNOSTÍ PEROVÉHO HRIADEĽOVÉHO SPOJA ANALYSIS OF MECHANICAL PROPERTIES OF A SHAFT TONGUE JOINT Bakalárska práca Študijný program:

Διαβάστε περισσότερα

Obsah. 1.1 Základné pojmy a vzťahy Základné neurčité integrály Cvičenia Výsledky... 11

Obsah. 1.1 Základné pojmy a vzťahy Základné neurčité integrály Cvičenia Výsledky... 11 Obsah Neurčitý integrál 7. Základné pojmy a vzťahy.................................. 7.. Základné neurčité integrály............................. 9.. Cvičenia..........................................3

Διαβάστε περισσότερα

Elektrický prúd v kovoch

Elektrický prúd v kovoch Elektrický prúd v kovoch 1. Aký náboj prejde prierezom vodiča za 2 h, ak ním tečie stály prúd 20 ma? [144 C] 2. Prierezom vodorovného vodiča prejde za 1 s usmerneným pohybom 1 000 elektrónov smerom doľava.

Διαβάστε περισσότερα