Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator
|
|
- Ιόλη Αλεξόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator
2 Dosadašnja analiza je bila koncentrirana na DC analizu, tj. smatralo se da su elementi električne mreže takvi da možemo koristiti određene jednostavne aproksimacije i DC analizu (bez obzira što je pobuda bila sinusoidalni ili pravokutni signal). Najednostavnija električna mreža koja se sastoji od AC i DC izvora dana je na slici:
3 Da bi se našao odziv mreže sa AC i DC izvorima možemo koristiti teorem superpozicije: Odziv bilo koje mreže koja sadrži AC i DC izvore se može naći tako što ćemo naći odziv mreže na AC pobudu i DC pobudu zasebno i onda kombinirati rezultate. Ako provodimo DC analizu sklopa sa prethodne slike tada možemo AC izvor kratko spojiti:
4 Koristeći jednostavan model silicijeve diode može se izračunati napon V R na otporu R: (1) V R = E V D = 10V 0.7V = 9.3V Struja I D koja teče kroz diodu jednaka je struji I R kroz otpor R: (2) I D = I R = 9.3V 2 kω = 4.65 ma Za AC analizu, kratko spojimo DC izvor:
5 Kod AC analize diodu zamijenimo dinamičkim otporom r d : (3) r d = 26 mv I D = 26 mv 4.65 ma = 5.59Ω Za AC analizu (kada se dioda zamijeni dinamičkim otporom) dobije se sklop na slici:
6 Budući da je AC izvor sinusoidalan pogodno je izračunati vršne vrijendosti napona na diodi i otporu R: 2 kω 2V (4) V Rpeak = 1.99V 2 kω+5.59ω (5) V Dpeak = V Speak V Rpeak = 2V 1.99V = 0.01 V = 10 mv Primjenjujući princip superpozicije za napon na otporu dobije se ukupni napon V R :
7 Primjenom principa superpozicije dobije se i napon na diodi V D :
8 Osim primjenom principa superpozicije, naponi na otporu i diodi u sklopu koji sadrži AC i DC izvore mogu se izračunati pomoću karakteristike diode i linije tereta.
9 Vršne vrijednosti napona zbroja AC i DC izvora su 12V i 8V. Za te vrijednosti napona možemo crtati linije tereta gdje su vrijednost E/R (vertikalna os) 6 ma i 4mA. Na taj način se mogu nacrtati dvije linije tereta na prethodnoj slici. Sa prethodne slike se može odrediti i struja u statičkoj radnoj točki: (6) I DQ = 4.6 ma Iz struje u statičkoj radnoj točci može se naći i dinamički otpor: (7) r d = 26 mv 4.6 ma = 5.65 Ω Vrijednost dinamičkog otpora dobivena u (7) je približno jednaka vrijednosti dinamičkog otpora dobivenog u izrazu (2).
10 Analiza sklopova sa Zenner diodama je dosta slična analizi sklopova sa običnim diodama. Prvo se mora utvrditi stanje Zenner diode (propusna polarizacija, Zennerovo područje, nepropusna polarizacija, itd...) te se zatim mora primjeniti adekvatni model. Jedno od najvažnijih područja primjene Zennerovih dioda su regulacijski sklopovi. Regulacijski sklopovi su takvi sklopovi čija je zadaća da izlazni napon bude konstantan.
11 PRIMJER 1. Treba odrediti referentne napone V D1 i V D2 za mrežu na slici. Bijela LED dioda je indikacija da je ulazni napon prisutan (power on). Također, treba izračunati struju kroz bijelu LED diodu. Kolika je absorbirana snaga na bijeloj LED diodi a kolika na Zenner diodi?
12 Rješenje: da bi se odredilo stanje dioda, prvo treba provjeriti da li je napajanje dovoljno da sve serijske povezane diode budu uključene. Pad napona na bijeloj LED diode je 4V dok je ukupni pad napona na Zenner diodama 9.3V (3.3V + 6V). Pad napona na propusno polariziranoj Si diodi je 0.7V. Vidljivo je da je napon od +40V na ulazu dovoljan da sve diode budu uključene. S obziron na električnu mrežu na slici, Zenner diode se nalaze u Zennerovom području.
13 Izlazni napon V o1 kombinacije 3.3V Zenner diode i Si diode: (8) V o1 = V Z2 + V K = 3.3V + 0.7V = 4V Treba primjetiti da se napon od 4V postiže kombinacijom Si diode i 3.3V Zenner diode. Izlazni napon V o2 se može izračunati tako što se naponu V D1 pridoda napon V Z1 Zennerove diode od 6V: (9) V o2 = V o1 + V Z1 = 4V + 6V = 10V Da bi se izračunala struja kroz bijeli led treba izračunati pad napona V R na otporu R: (10) V R = 40V V o2 V LED = 40V 10V 4V = 26 V gdje je V LED = 4V pad napona na bijeloj LED diodi.
14 Struja I LED kroz bijeli LED se može izračunati iz pada napona V R na otporu R: (11) I LED = I R = V R R = 26 V 1.3 kω = 20 ma Iz (11) vidljivo je da struja I LED dovoljno velika da bijeli LED može svijetliti odgovarajućim intenzitetom. Snaga koju troši sklop na slici jednaka je produktu napona napajanja i struje napajanja I S koja teče kroz sklop: (12) P s = E I S = E I R = 40V 20 ma = 800 mw Snaga disipirana na LED diodi je: (13) P LED = V LED I LED = 4V 20 ma = 80 mw
15 Snaga P Z disipirana na 6V Zenner diodi: (14) P Z = V Z I Z = 6V 20 ma = 120 mw Snaga disipirana na 6V Zenner diodi veća je od snage disipirane na bijeloj LED diodi za 40 mw.
16 PRIMJER 2. Sklop na slici treba limitirati izlazni napon na 20V za vrijeme pozitivne poluperiode ulaznog signala te treba limitirati izlazni napon na 0V za vrijeme negativne poluperiode ulaznog signala. Treba skicirati oblik izlaznog napona (system). Pretpostavka je da system ima vrlo veliki ulazni otpor te ne mijenja funkcioniranje sklopa.
17 Rješenje: za pozitivne poluperiode ulaznog signala iznosa manjeg od 20V Zenner diodu možemo zamijeniti otvorenim krugom. Kad ulazni napon dosegne 20V tada se Zenner dioda nalazi u Zennerovom području. Daljnje povećanje napona će se odraziti samo na napon na otporu R, dok će napon na Zenner diodi ostati isti. Za negativne poluperiode signala, silicijeva dioda je reverzno polarizirana te se može zamijeniti otvorenim krugom. U tom slučaju struja ne teče kroz otpor R te je pad napona na otporu R i na Zenner diodi jednak nuli.
18 Rezultirajuća karakteristika je označena plavom bojom na slici:
19 Najednostavnija vrsta Zennerovog regulatora je kada ulazni napon smatramo fiksnim, isto kao i teret. Analiza regulatora se može provesti u dva osnovna koraka. 1. Treba odrediti stanje na Zenner diodi tako što ćemo Zenner diodu ukloniti iz mreže te ćemo izračunati napone za otvoreni krug.
20 Kada se ukloni Zenner dioda tada imamo jednostavno naponsko djelilo: Napon na teretu R L može se izračunati iz izraza: (15) V = V L = R Lv i R+R L
21 Za jednostavni Zennerov regulator može se primjetiti: (a) ako je V V Z, Zennerova dioda je uključena i može se zamijeniti odgovarajućim nadomjesnim sklopom (b) ako je V < V Z Zennerova dioda je isključena te se može nadomjestiti otvorenim krugom 2. Zennerova dioda se zamijeni odgovorajućim nadomjesnim modelom te se izračunaju odgovarajuće nepoznate veličine. Za jednostavni Zennerov regulator, ako je Zenner dioda uključena možemo nacrtati odgovarajuću nadomjesnu shemu:
22 Uporabom Kirchhoffovog zakona za struje dobije se: (16) I R = I z + I L
23 Iz jednadžbe (16) dobije se izraz za struju kroz Zenner diodu: (17) I Z = I R I L gdje je I L struja kroz teret R L te se može naći iz izraza: (18) I L = V L R L Struja kroz otpor R dobije se pomoću jednadžbe: (19) I R = V R = V i V L R R Snaga disipirana na Zenner diodi: (20) P Z = V Z I Z
24 PRIMJER 3. Za sklop sa slike treba izračunati V L, V R, I Z i P Z. Ponoviti zadatak ako je R = 3 kω. Provjeriti da li je disipirana snaga na Zenner diodi veća od maksimalne dopuštene!
25 Rješenje: po prethodno opisanoj proceduri Zennerovu diodu uklonimo iz sklopa te izračunamo napon: (21) V = R LV i R+R L = 1.2 kω 16 V 1 kω+1.2 kω = 8.73 V Budući da je napon V = 8.73 V Zennerova dioda je isključena.
26 Tražene veličine proračunamo kao: (22) V L = V = 8.73 V (23) V R = V i V L = 16V 8.73V = 7.27V (24) I Z = 0 A (25) P Z = V Z I Z = V Z 0A = 0 W U slučaju kada je otpor R = 3 kω ponovimo analiz tako što ćemo isključiti Zenner diodu iz sklopa: (27) V = R LV i R+R L = 3 kω 16 V 1 kω+3 kω = 12 V
27 Budući da je V > V Z Zennerova dioda je uključena, tj. nalazi se u Zennerovom području. Zbog toga Zennerovu diodu treba nadomjestiti naponskim izvorom:
28 U tom slučaju tražene veličine su: (28) V L = V Z = 10 V (29) V R = V i V L = 16V 10V = 6V (30) I L = V L R L = 10 V 3 kω = 3.33 ma (31) I R = V R R = 6V 1 kω = 6 ma (32) I Z = I R I L = 6 ma 3.33 ma = 2.67 ma Snaga P Z disipirana na Zenner diodi: (33) P Z = V Z I Z = 10V 2.67mA = 26.7 mw Snaga disipirana na Zenner diodi je manja od maksimalne dopuštene disipirane snage.
Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Punovalni ispravljač 2. Rezni sklopovi 3. Pritezni sklopovi
Sadržaj predavanja: 1. Punovalni ispravljač 2. Rezni sklopovi 3. Pritezni sklopovi Najčešći sklop punovalnog ispravljača se može realizirati pomoću 4 diode i otpornika: Na slici je ulazni signal sinusodialanog
Διαβάστε περισσότεραElektronički Elementi i Sklopovi
Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Teoretski zadaci sa diodama 2. Analiza linije tereta 3. Elektronički sklopovi sa diodama 4. I i ILI vrata 5. Poluvalni ispravljač Teoretski zadaci
Διαβάστε περισσότεραElektronički Elementi i Sklopovi
Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno
Διαβάστε περισσότεραFAKULTET PROMETNIH ZNANOSTI
SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost
Διαβάστε περισσότεραBIPOLARNI TRANZISTOR Auditorne vježbe
BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje
Διαβάστε περισσότεραElektronički Elementi i Sklopovi
Sadržaj predavanja: 1. Uvod u AC analizu sklopova s BJT tranzistorima 2. Energetska bilansa pojačanja BJT tranzistora u AC domeni 3. AC modeliranje sklopova sa BJT tranzistorima 4. r e model tranzistora
Διαβάστε περισσότεραnvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
Διαβάστε περισσότεραVJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Διαβάστε περισσότερα, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότεραTranzistori u digitalnoj logici
Tranzistori u digitalnoj logici Za studente koji žele znati malo detaljnije koja je funkcija tranzistora u digitalnim sklopovima, u nastavku je opisan pojednostavljen način rada tranzistora. Pri tome je
Διαβάστε περισσότεραRAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
Διαβάστε περισσότεραOSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Διαβάστε περισσότεραOtpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότεραOSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA
Διαβάστε περισσότεραUnipolarni tranzistori - MOSFET
nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]
Διαβάστε περισσότεραRiješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Διαβάστε περισσότερα7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Διαβάστε περισσότεραMehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo
Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora Sadržaj predavanja: 1. Operacijsko pojačalo Operacijsko Pojačalo Kod operacijsko pojačala izlazni napon je proporcionalan diferencijalu
Διαβάστε περισσότεραFunkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Διαβάστε περισσότεραM086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Διαβάστε περισσότεραOdržavanje Brodskih Elektroničkih Sustava
Održavanje Brodskih Elektroničkih Sustava Sadržaj predavanja: 1. Upoznavanje s osnovnim sklopovima tranzistorskih pojačala 2. Upoznavanje s osnovnim sklopovima operacijskih pojačala 3. Analogni sklopovi
Διαβάστε περισσότεραElektronički Elementi i Sklopovi
Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. LED diode 2. Sažetak predavanja o diodama 3. Teoretski zadaci sa diodama 4. Elektronički sklopovi sa diodama LED Diode LED dioda je poluvodički element
Διαβάστε περισσότεραElektronički Elementi i Sklopovi. Sadržaj predavanja: 1. MOSFET tranzistor obogaćenog tipa 2. CMOS 3. MESFET tranzistor 4. DC analiza FET tranzistora
Sadržaj predavanja: 1. MOSFET tranzistor obogaćenog tipa 2. CMOS 3. MESFET tranzistor 4. DC analiza FET tranzistora MOSFET tranzistor obogaćenog tipa Konstrukcija MOSFET tranzistora obogaćenog tipa je
Διαβάστε περισσότεραStrukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Διαβάστε περισσότερα18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Διαβάστε περισσότεραPismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Διαβάστε περισσότεραTRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Διαβάστε περισσότερα- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Διαβάστε περισσότερα1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Διαβάστε περισσότεραSnage u kolima naizmjenične struje
Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna
Διαβάστε περισσότερα( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Διαβάστε περισσότεραSTATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
Διαβάστε περισσότεραOSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić
OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti
Διαβάστε περισσότεραINTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Διαβάστε περισσότεραFAKULTET PROMETNIH ZNANOSTI
SVEČILIŠTE ZAGEB FAKLTET POMETNIH ZNANOSTI predme: Nasavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Auorizirana predavanja 2016. 1 jecaj nelinearnih karakerisika komponenaa na rad elekroničkih
Διαβάστε περισσότεραRiješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Διαβάστε περισσότεραTranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa
Tranzistori s efektom polja Spoj zajedničkog uvoda U ovoj vježbi ispitujemo pojačanje signala uz pomoć FET-a u spoju zajedničkog uvoda. Shema pokusa Postupak Popis spojeva 1. Spojite pokusni uređaj na
Διαβάστε περισσότερα( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Διαβάστε περισσότεραElektronički Elementi i Sklopovi
Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Prosječni otpor diode 2. Ekvivalentni krugovi diode 3. Kapacitet diode: - difuzijski kapacitet diode - kapacitet osiromašenog sloja diode 4. Reverzno
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραĈetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραPRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Διαβάστε περισσότεραTEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave
THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove
Διαβάστε περισσότεραTrigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Διαβάστε περισσότεραTRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Διαβάστε περισσότεραKaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Διαβάστε περισσότεραZadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V?
Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? a) b) c) d) e) Odgovor: a), c), d) Objašnjenje: [1] Ohmov zakon: U R =I R; ako je U R 0 (za neki realni, ne ekstremno
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότεραINTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Διαβάστε περισσότεραOvisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji
Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji Električna shema temeljnog spoja Električna shema fizički realiziranog uzlaznog pretvarača +E L E p V 2 P 2 3 4 6 2 1 1 10
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Διαβάστε περισσότεραOM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Διαβάστε περισσότερα( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Διαβάστε περισσότεραPOVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Διαβάστε περισσότεραSEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότεραPRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Διαβάστε περισσότεραIskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Διαβάστε περισσότεραa M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Διαβάστε περισσότεραNOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Διαβάστε περισσότερα(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Διαβάστε περισσότεραRačunarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Διαβάστε περισσότεραRAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) II deo Miloš Marjanović Bipolarni tranzistor kao prekidač BIPOLARNI TRANZISTORI ZADATAK 16. U kolu sa slike bipolarni
Διαβάστε περισσότεραKlizni otpornik. Ampermetar. Slika 2.1 Jednostavni strujni krug
1. LMNT STOSMJNOG STJNOG KGA Jednostavan strujni krug (Slika 1.1) sastoji se od sljedećih elemenata: 1 Trošilo Aktivni elementi naponski i strujni izvori Pasivni elementi trošilo (u istosmjernom strujnom
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότεραIZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Διαβάστε περισσότερα( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj
Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens
Διαβάστε περισσότεραIZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Διαβάστε περισσότεραMetode rješavanja električnih strujnih krugova
Sveučilište J. J. Strossmayera u sijeku lektrotehnički fakultet sijek Stručni studij snove elektrotehnike Metode rješavanja električnih strujnih krugova snovni pojmovi rana električne mreže (g) dio mreže
Διαβάστε περισσότεραMatematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότεραObrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Διαβάστε περισσότεραVeleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Διαβάστε περισσότεραOSNOVE ELEKTROTEHNIKE II Vježba 11.
OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone
Διαβάστε περισσότεραMatematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO
Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se
Διαβάστε περισσότερα1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Διαβάστε περισσότεραZadaci za pripremu. Opis pokusa
5. EM: OSCILOSKOP 1. Nacrtajte blok shemu analognog osciloskopa i kratko je opišite. 2. Na zastoru osciloskopa dobiva se prikazana slika. Kolika je efektivna vrijednost i frekvencija priključenog napona,
Διαβάστε περισσότεραANALOGNI ELEKTRONIČKI SKLOPOVI
ANALOGNI ELEKTRONIČKI SKLOPOVI 1. Sklopovi s diodama Poluvodičke su diode elektroničke komponente s dvjema elektrodama. Izvedba i svojstva dioda razlikuju se ovisno o njihovoj namjeni. U ovom poglavlju
Διαβάστε περισσότεραMAGNETNO SPREGNUTA KOLA
MAGNETNO SPEGNTA KOA Zadatak broj. Parametri mreže predstavljene na slici su otpornost otpornika, induktivitet zavojnica, te koeficijent manetne spree zavojnica k. Ako je na krajeve mreže -' priključen
Διαβάστε περισσότεραSEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Διαβάστε περισσότερα='5$9.2 STRUJNI IZVOR
. STJN KGOV MŽ.. Strujni krug... zvori Skup elektrotehničkih elemenata koji su preko električnih vodiča međusobno spojeni naziva se električna mreža ili elektrotehnički sklop. električnoj mreži, kada su
Διαβάστε περισσότεραkonst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
Διαβάστε περισσότεραISTOSMJERNE STRUJE 3 ANALIZA LINEARNIH ELEKTRIČNIH MREŽA
STOSMJN STUJ ANALZA LNANH LKTČNH MŽA Saržaj preavanja. Uvo. zravna primjena Kirchhoffovih zakona. Metoa napona čvorova. Metoa konturnih struja 5. Metoa superpozicije. Theveninov teorem. Nortonov teorem
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότεραNovi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Διαβάστε περισσότεραPriprema za državnu maturu
Priprema za državnu maturu E L E K T R I Č N A S T R U J A 1. Poprečnim presjekom vodiča za 0,1 s proteče 3,125 10¹⁴ elektrona. Kolika je jakost struje koja teče vodičem? A. 0,5 ma B. 5 ma C. 0,5 A D.
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότεραTrofazni sustav. Uvodni pojmovi. Uvodni pojmovi. Uvodni pojmovi
tranica: X - 1 tranica: X - 2 rofazni sustav inijski i fazni naponi i struje poj zvijezda poj trokut imetrično i nesimetrično opterećenje naga trofaznog sustava Uvodni pojmovi rofazni sustav napajanja
Διαβάστε περισσότερα2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE
2. METOE RJEŠVNJ STRUJNH KRUGOV STOSMJERNE STRUJE U svrhu lakšeg snalaženja u analizi složenih strujnih krugova i električnih mreža uvode se nazivi za pojedine dijelove mreže. Onaj dio električne mreže
Διαβάστε περισσότεραAnaliza linearnih mreža istosmjerne struje
. Analiza linearnih mreža istosmjerne struje.. Električna mreža i njezini elementi Složen strujni krug koji se sastoji od više različitih pasivnih i aktivnih elemenata zove se mreža. Pasivni elementi mreže
Διαβάστε περισσότεραKapacitivno spregnuti ispravljači
Kapacitivno spregnuti ispravljači Predrag Pejović 4. februar 22 Jednostrani ispravljač Na slici je prikazan jednostrani ispravljač sa kapacitivnom spregom i prostim kapacitivnim filtrom. U analizi ćemo
Διαβάστε περισσότερα