Trofazni sustav. Uvodni pojmovi. Uvodni pojmovi. Uvodni pojmovi
|
|
- Ἡρὼ Βουρδουμπάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 tranica: X - 1 tranica: X - 2 rofazni sustav inijski i fazni naponi i struje poj zvijezda poj trokut imetrično i nesimetrično opterećenje naga trofaznog sustava Uvodni pojmovi rofazni sustav napajanja predstavlja sustav napajanja koji se sastoji od tri međusobno zavisna izvora izmjeničnog sinusoidalnog napona i izvori napajanja daju napone koji imaju: međusobno jednake amplitude (U 1 U 2 U 3 ), međusobno jednake frekvencije(f 1 f 2 f 3 ), ali koji su međusobno fazno pomaknuti za jednu trećinu periode (12 ): u(t) u (t) u (t) u (t) u(t)u sin(ωt) u(t) u (t) u (t) u (t) u(t)u sin(ωt-12 o ) t t u(t)u sin(ωt-24 o ) tranica: X - 3 tranica: X - 4 toga vrijedi: Uvodni pojmovi U U U U U U sin ( ω t) 2 π sin ω t 3 4 π sin ω t 3 odnosno (u kompleksnoj domeni): gdje je: U U 12 U 24 U U 2 Uvodni pojmovi Navedene vektore može se prikazati i odgovarajućim vektorskim dijagramom: Postoje dva osnovna načina spajanja trošila u trofaznim sustavima: spoj trokut, spoj zvijezda e
2 tranica: X - 5 tranica: X - 6 Uvodni pojmovi Uvodni pojmovi poj trokut: poj zvijezda: I I I I I 1 I I 2 I 1 U U I 1 I 1 I I U U U U I U U U U 1 2 U I U U I 3 I 3 U 3 I I samo kod simetričnog opterećenja, tj za 1 2 3!!! ( Z 3 ) U U samo kod simetričnog opterećenja, tj za 1 2 3!!! ( Z 3 ) 3 tranica: X - 7 U 173 [V] 1 [Ω] 1 zadatak Zadana je mreža prema slici Odredite pokazivanja instrumenata za sljedeće slučajeve: a) jednak teret u svim fazama uz uključenu sklopku u nul-vodu b) prekid faze uz uključenu sklopku u nul - vodu c) prekid faze uz isključenu sklopku u nul - vodu d) kratki spoj faze uz isključenu sklopku u nul - vodu Zadano je: V V ' V V tranica: X - 8 ješenje zadatka reža s uključenom sklopkom u nul-vodu izgleda kao na slici: U Naponi izvora: U I ' U I I I Napon na trošilima: ' 1 ' 1 12 V 1 12 ' obzirom da je riječ o simetričnom trošilu s nulvodom vrijedi: [ ] U '
3 tranica: X - 9 tranica: X - 1 Iz poznatih napona na trošilima moguće je odrediti struje: ' ' ' Naponi trofaznog izvora su zadani 2 Zbog spojenog nul-voda, naponi na trošilima u pojedinim fazama jednaki su naponima izvora ϕ ϕ', ' 3 truje koje teku kroz pojedine faze (,, ) su u fazi s naponima na trošilima I I I e reža s uključenom sklopkom u nul-vodu i prekid faze izgleda kao na slici: U U I ' U truje: I I I ' ' Zbog postojećeg nul-voda vrijedi: U ' Napon na trošilima: ' 1 ' 1 12 V 1 12 ' 1 6 [ ] tranica: X - 11 tranica: X Naponi trofaznog izvora su zadani 2 Zbog spojenog nul-voda, naponi na trošilima u pojedinim fazama jednaki su naponima izvora ϕ ϕ, ' ' 3 U fazi, zbog prekida, ne teče struja 4 truje koje teku kroz ostale faze (, ) su u fazi s naponima na trošilima 5 truja kroz nul-vodič jednaka je vektorskom zbroju struja u fazama i I I I e reža s isključenom sklopkom u nul-vodu i prekid faze izgleda kao na slici: reža nema nul-vod pa U vrijedi: I U U I ' ' Napon na trošilima nije jednak naponu izvora: ' ' ' Da bi se odredili naponi na trošilima potrebno je odrediti napon između zvjezdišta trofaznog trošila i izvora aj napon se određuje pomoću illman-ovog teorema : U ' I ' ' '
4 tranica: X - 13 tranica: X - 14 Naponi na trošilima iznose: ' ' ' ' ' ' 1 Naponi trofaznog izvora su zadani 2 udući da mreža nema nul-vod postoji razlika potencijala između zvjezdišta trošila i izvora truje u mreži: I ' I ' ' I ' ϕ ϕ ϕ U ' ' ' 3 pajanjem točaka, i sa točkom dobiju se naponi na trošilima u pojedinim fazama 4 Iz dijagrama je vidljivo da se radi o nesimetričnom trofaznom sustavu, za razliku od prethodnog slučaju sa spojenim nul-vodom 5 truja kroz trošila u fazama i je u fazi s naponima na tim trošilima I U I e tranica: X - 15 tranica: X - 16 reža s isključenom sklopkom u nul-vodu i kratkim spojem u fazi izgleda kao na slici: U U I ' U I I Naponi na trošilima u fazi i : ' ' reža nema nul-vod pa vrijedi: U ' udući da se u fazi nalazi samo naponski izvor vrijedi: ϕ ' ' ϕ ' ' truje: ' Naponi trofaznog izvora su zadani 2 Zbog kratkog spoja u fazi potencijali točaka i su isti ϕ ' ϕ 3 Napone na pojedinim trošilima u fazama i dobijemo spajanjem točke s pripadnom točkom 4 truje u fazama i su u fazi s naponima na trošilima u fazama i truja u fazi jednaka je vektorskom zbroju struja I i I ' I I I e
5 tranica: X - 17 tranica: X - 18 X X 1 [Ω] 25 [] 2 zadatak U mreži prema slici odredite linijske struje te nacrtajte vektorski dijagram azmotrite sljedeće slučajeve: a) nema nul-vodiča b) postoji nul vodič otpora c) postoji nul-vodič zanemarivog otpora Zadano: U 38 [V] ješenje zadatka reža bez nul-vodiča: U I Naponi izvora: 38 U X 22 V I 3 ' U X I [ ] X ' X adi se o nesimetričnom trošilu budući da su impedancije različitih karaktera pa vrijedi: jx jx jx jx j1 j j1 j1 ' 16 tranica: X - 19 tranica: X - 2 truje u mreži određuju se na sljedeći način: I 22 1 ( 16) ' U ' I jx jx j1 ( 16) 19 ' j j1 ( 16) 19 ' j 1 Zbog nesimetričnog trošila potencijal zvjezdišta trošila ( ) je pomaknut u odnosu na točku 2 Naponi na trošilima izgledaju kao na slici 3 truja u fazi je u fazi s naponom na trošilu truja u fazi kasni za 9 o, a u fazi prethodi za 9 o pripadnom naponu I I 5 I 5 38 e reža s nul-vodičem otpora : U I U X I ' Napon U : jx jx 1 j1 j1 ' jx jx 1 j1 j1 25 U X I I 32
6 tranica: X - 21 tranica: X - 22 truje u mreži određuju se na sljedeći način: 22 ( 32) I ' ( 32) ' 19 j78 jx j1 ( 32) ' j jx I j1 32 ' I I 78 reža s nul-vodičem zanemarivog otpora: U U X I ' U I I U ' ' 22 ' X I ' I I I I e truje u mreži: I jx ' j1 ' tranica: X - 23 tranica: X - 24 jx j1 ' I I I 16 3 zadatak rošilo je priključeno na trofaznu mrežu napona U Odredite pokazivanje mjernih instrumenata Zadano: U 22 [V] Ż [Ω] Ż Ż 1 [Ω] W 1 Z I I I I e W 2 Z
7 tranica: X - 25 ješenje zadatka Watmetri su spojeni u tzv ronov spoj, kojim se mjeri radna snaga cijelog trofaznog sustava adna snaga koja se troši na trofaznom trošilu jednaka je algebarskoj sumi očitanja pojedinih watmetara Watmetri mjere sljedeće: P W1 e { * } P W 2 e { * } Da bi se odredila pokazivanja watmetra potrebno je odrediti napone i struje inijski naponi iznose: e U U U tranica: X - 26 azne struje iznose: Z Z j j1 I Korištenjem prvog Kircchhoffovog zakona za čvorove, i dobiju se linijske struje: I I I Z I I Z j j19 tranica: X - 27 tranica: X - 28 Uvrštenjem izračunatih vrijednosti napona i struja određujemo snage koju mjere watmetri: P { * } e ( 19 j11) ( 11 19) Ukupna radna snaga trošila: { } 418[ W] e j W1 P { * } e ( j22) ( 11 19) e j { } 418[ W] W 2 4 zadatak U trofaznu mrežu spojen je zadani teret Odredite linijske i fazne struje Zadano: U 22 [V] X 1 [Ω] X 5 [Ω] X 1 [Ω] 1 [Ω] X X trošila PW 1 PW 2 P [ W] udući da se radi o čisto reaktivnom trošilu može se zaključiti da će radna snaga biti jednaka X
8 tranica: X - 29 tranica: X - 3 ješenje zadatka reža se može prikazati i na sljedeći način: U X X I U I Za mrežu vrijedi: X U I U I Pretpostavimo napone izvora: ( jx ) truja I iznosi: jx truje I i I određujemo iz sustava dviju jednadžbi: jx 15 j j1 jx j4 X X X 5 jx j1 j5 X 1 inijske struje: 12 j22 28 j26 4 j tranica: X - 31 tranica: X - 32 U 346 [V] X 1 X 1 1 [Ω] X 2 X 2 5 [Ω] 5 zadatak Dva trofazna trošila spojena u zvijezdu napajaju se iz trofazne mreže linijskog napona U Između nultočki spojen je amapermetar zanemarivog otpora Odredite pokazivanje ampermetra Zadano: ješenje zadatka Zadatak rješavamo korištenjem hevenin-ovog teorema mpermetar odspajamo iz mreže, a ostatak nadomješatamo realnim naponskim izvorom Određivanje Z : X 1 X 1 X 2 X 2 X 1 X 1 X 2 a b X 2 Z Z ab ( jx jx ) ( jx jx ) Z [ Ω]
9 tranica: X - 33 tranica: X - 34 Određivanje E : X 1 X 1 X 2 Napon E iznosi: ( j j ) E ϕ ϕ a b ju ju U 2 2 E j3 j3 j E a E ab b ϕ ϕ jx jx j1 j1 1 ϕ a j j jx 1 jx 1 j1 j1 1 jx jx j5 j5 1 ϕ jx jx j5 j5 1 a b j2u j2u U b X 2 E Nadomjesna shema mreže: E Z I j j E j Z mpermetar mjeri struju od: I tranica: X - 35 tranica: X - 36 U 38 [V] P 1 33 [kw] cos ϕ zadatak Dva trofazna motora napajaju se iz istog trofaznog izvora linijskog napona U Namoti prvog motora spojeni su u trokut, a drugog u zvijezdu Prvi motor troši snagu P 1 uz cos ϕ 1, a drugi snagu P 2 uz cos ϕ 2 Odredite ukupne linijske struje Napomena: oba trošila su induktivnog karaktera Zadano: P [kw] cos ϕ 2 77 ješenje zadatka udući da se radi o simetričnim trošilima u krugu teke tri po iznosu iste linijske struje Kako bi se odredila linijska struja I definirane su struje u krugu: I I 1 I 1 I 1 I 2 truja I jednaka je: I
10 tranica: X - 37 tranica: X - 38 Po iznosu fazne struje se mogu odrediti iz snage: P 3 U cosϕ P1 33 cosϕ I 1 1 I 1 3 U 1 P 3 U cosϕ 334 ko pretpostavimo fazni pomak napona U od vrijedi: 2 U Z Z P2 cosϕ I 2 2 I 2 3 U Kako su oba trošila spojena na isti trofazni izvor, linijski naponi su tada: U U V e U [ ] azne struje prvog trošila: U Z 1 3 U Z 3 1 inijska struja I onda iznosi: I I j j3 27 I 8 28 j
Trofazno trošilo je simetrično ako su impedanse u sve tri faze međusobno potpuno jednake, tj. ako su istog karaktera i imaju isti modul.
Zadaci uz predavanja iz EK 500 god Zadatak Trofazno trošilo spojeno je u zvijezdu i priključeno na trofaznu simetričnu mrežu napona direktnog redoslijeda faza Pokazivanja sva tri idealna ampermetra priključena
Διαβάστε περισσότεραELEKTROTEHNIKA 6. TROFAZNI SUSTAV IZMJENIČNE STRUJE. Izv.prof. dr.sc. Vitomir Komen, dipl.ing. el.
EEKTROTEHNKA 6. TROAZN SSTAV ZMJENČNE STRJE zv.prof. dr.sc. Vitomir Komen, dipl.ing. el. EEKTROTEHNKA :: 6. Trofazni sustav izmjenične struje 1/4 SADRŽAJ: 6.1 vod u trofazni sustav izmjenične struje 6.
Διαβάστε περισσότεραELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE
veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n
Διαβάστε περισσότεραSnage u kolima naizmjenične struje
Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna
Διαβάστε περισσότεραFazne i linijske veličine Trokut i zvijezda spoj Snaga trofaznog sustava
7 TROFAZNI SUSTA Fazne i linijske veličine Trokut i zvijezda soj Snaga troaznog sustava Fourierova analiza 7.1. Troazni sustav Elektrorivredne tvrtke koriste troazne krugove za generiranje, rijenos i razdiobu
Διαβάστε περισσότερα- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Διαβάστε περισσότεραOtpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Διαβάστε περισσότερα, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
Διαβάστε περισσότεραIz zadatka se uočava da je doslo do tropolnog kratkog spoja na sabirnicama B, pa je zamjenska šema,
. Na slici je jednopolno prikazan trofazni EES sa svim potrebnim parametrima. U režimu rada neposredno prije nastanka KS kroz prekidač protiče struja (168-j140)A u naznačenom smjeru. Fazni stav struje
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότεραBIPOLARNI TRANZISTOR Auditorne vježbe
BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje
Διαβάστε περισσότεραFAKULTET PROMETNIH ZNANOSTI
SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost
Διαβάστε περισσότερα(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Διαβάστε περισσότερα7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότεραFunkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Διαβάστε περισσότεραRiješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Διαβάστε περισσότεραMAGNETNO SPREGNUTA KOLA
MAGNETNO SPEGNTA KOA Zadatak broj. Parametri mreže predstavljene na slici su otpornost otpornika, induktivitet zavojnica, te koeficijent manetne spree zavojnica k. Ako je na krajeve mreže -' priključen
Διαβάστε περισσότεραRAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
Διαβάστε περισσότερα18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Διαβάστε περισσότεραVJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Διαβάστε περισσότεραUnipolarni tranzistori - MOSFET
nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]
Διαβάστε περισσότερα= 6.25 Ω I B1 = 3U =529 Ω I B2 = 3U = 1905 Ω I B3G = 3U
1. Za EES dat na slici: a) odrediti bazne struje i impedanse elemenata ako je S B = 100 MVA, a naponi jednaki nominalnim vrijednostima napona pojedinih naponskih nivoa, b) Nacrtati ekvivalentne šeme direktnog,
Διαβάστε περισσότερα1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Διαβάστε περισσότεραBRODSKI ELEKTRIČNI UREĐAJI. Prof. dr Vladan Radulović
FAKULTET ZA POMORSTVO OSNOVNE STUDIJE BRODOMAŠINSTVA BRODSKI ELEKTRIČNI UREĐAJI Prof. dr Vladan Radulović ELEKTRIČNA ENERGIJA Električni sistem na brodu obuhvata: Proizvodnja Distribucija Potrošnja Sistemi
Διαβάστε περισσότεραĈetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότεραFTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότερα1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότερα='5$9.2 STRUJNI IZVOR
. STJN KGOV MŽ.. Strujni krug... zvori Skup elektrotehničkih elemenata koji su preko električnih vodiča međusobno spojeni naziva se električna mreža ili elektrotehnički sklop. električnoj mreži, kada su
Διαβάστε περισσότεραRiješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Διαβάστε περισσότεραPRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Διαβάστε περισσότεραNumerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Διαβάστε περισσότεραMatematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Διαβάστε περισσότεραIspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Διαβάστε περισσότεραπ π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Διαβάστε περισσότεραa M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Διαβάστε περισσότεραPriprema za državnu maturu
Priprema za državnu maturu E L E K T R I Č N A S T R U J A 1. Poprečnim presjekom vodiča za 0,1 s proteče 3,125 10¹⁴ elektrona. Kolika je jakost struje koja teče vodičem? A. 0,5 ma B. 5 ma C. 0,5 A D.
Διαβάστε περισσότερα2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Διαβάστε περισσότεραRjesenja dodatnog popravnog ispitnog roka iz EK1 odrzanog god. VarijantaA Zadatak broj 2
jesenja dodatnog popravnog ispitnog roka iz EK odrzanog 009008god VarijantaA Zadatak broj električnom krugu prikazanom na slici postignuta je strujna rezonancija Poznati su slijedeći podaci: (A), (A),
Διαβάστε περισσότεραINTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Διαβάστε περισσότεραAnaliza izmjeničnih nih krugova/mreža
Analiza izmjeničnih nih krugova/mreža Str: 49 Postupak analize izmjeničnih nih strujnih krugova i mreža praktički ki je potpuno analogan postupcima koji se koriste kod istosmjernih strujnih krugova Treba
Διαβάστε περισσότεραPARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
Διαβάστε περισσότερα6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
Διαβάστε περισσότεραDISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Διαβάστε περισσότεραI.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Διαβάστε περισσότερα( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Διαβάστε περισσότεραElektronički Elementi i Sklopovi
Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno
Διαβάστε περισσότεραIspitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Διαβάστε περισσότεραISTOSMJERNE STRUJE 3 ANALIZA LINEARNIH ELEKTRIČNIH MREŽA
STOSMJN STUJ ANALZA LNANH LKTČNH MŽA Saržaj preavanja. Uvo. zravna primjena Kirchhoffovih zakona. Metoa napona čvorova. Metoa konturnih struja 5. Metoa superpozicije. Theveninov teorem. Nortonov teorem
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραElektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator
Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator Dosadašnja analiza je bila koncentrirana na DC analizu, tj. smatralo se da su elementi
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότεραMATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Διαβάστε περισσότεραTrigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Διαβάστε περισσότεραnvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
Διαβάστε περισσότεραZadatke trebate rjesiti potpuno samostalno. Tek ako nesto "zapne" odnosno za kontrolu rezultata koristite ove upute.
1 OE 11/12 Zadaci za pripremu III. ciklusa laboratorijskih vjezbi PTA ZA RJESAVANJE Zadatke trebate rjesiti potpuno samostalno. Tek ako nesto "zapne" odnosno za kontrolu rezultata koristite ove upute.
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Διαβάστε περισσότεραPRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Διαβάστε περισσότεραOSNOVE ELEKTROTEHNIKE II Vježba 11.
OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone
Διαβάστε περισσότερα41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Διαβάστε περισσότεραSISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Διαβάστε περισσότεραStrukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Διαβάστε περισσότεραDijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Διαβάστε περισσότερα2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE
2. METOE RJEŠVNJ STRUJNH KRUGOV STOSMJERNE STRUJE U svrhu lakšeg snalaženja u analizi složenih strujnih krugova i električnih mreža uvode se nazivi za pojedine dijelove mreže. Onaj dio električne mreže
Διαβάστε περισσότερα2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Διαβάστε περισσότεραZadatak 161 (Igor, gimnazija) Koliki je promjer manganinske žice duge 31.4 m, kroz koju teče struja 0.8 A, ako je napon
Zadatak 6 (gor, gimnazija) Koliki je promjer manganinske žice duge. m, kroz koju teče struja 0.8, ako je napon između krajeva 80 V? (električna otpornost manganina ρ = 0. 0-6 Ω m) ješenje 6 l =. m, = 0.8,
Διαβάστε περισσότεραOM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Διαβάστε περισσότεραMetode rješavanja električnih strujnih krugova
Sveučilište J. J. Strossmayera u sijeku lektrotehnički fakultet sijek Stručni studij snove elektrotehnike Metode rješavanja električnih strujnih krugova snovni pojmovi rana električne mreže (g) dio mreže
Διαβάστε περισσότεραGrafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
Διαβάστε περισσότεραM086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Διαβάστε περισσότεραAnaliza linearnih mreža istosmjerne struje
. Analiza linearnih mreža istosmjerne struje.. Električna mreža i njezini elementi Složen strujni krug koji se sastoji od više različitih pasivnih i aktivnih elemenata zove se mreža. Pasivni elementi mreže
Διαβάστε περισσότεραVeleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Διαβάστε περισσότεραOpćenito, iznos normalne deformacije u smjeru normale n dan je izrazom:
Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b
Διαβάστε περισσότεραIstosmjerni krugovi. 1. zadatak. Na trošilu će se trošiti maksimalna snaga u slučaju kada je otpor čitavog trošila jednak unutrašnjem otporu izvora.
Strnic: X stosmjerni krugovi Prilgođenje n mksimlnu sngu. Rješvnje linernih mrež: Strnic: X. zdtk Otpor u kominciji prem slici nlzi se u posudi u kojoj vld promjenjiv tempertur. Pri temperturi ϑ = 0 C,
Διαβάστε περισσότεραRADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Διαβάστε περισσότεραMetode rješavanja izmjeničnih krugova
Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk
Διαβάστε περισσότεραZadaci za pripremu. Opis pokusa
5. EM: OSCILOSKOP 1. Nacrtajte blok shemu analognog osciloskopa i kratko je opišite. 2. Na zastoru osciloskopa dobiva se prikazana slika. Kolika je efektivna vrijednost i frekvencija priključenog napona,
Διαβάστε περισσότεραS t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Διαβάστε περισσότεραOSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić
OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότεραKaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Διαβάστε περισσότεραINTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότεραTranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa
Tranzistori s efektom polja Spoj zajedničkog uvoda U ovoj vježbi ispitujemo pojačanje signala uz pomoć FET-a u spoju zajedničkog uvoda. Shema pokusa Postupak Popis spojeva 1. Spojite pokusni uređaj na
Διαβάστε περισσότεραPeriodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
Διαβάστε περισσότεραZadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Διαβάστε περισσότεραElektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I
Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka
Διαβάστε περισσότεραEliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότερα6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
Διαβάστε περισσότεραElektronički Elementi i Sklopovi
Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Teoretski zadaci sa diodama 2. Analiza linije tereta 3. Elektronički sklopovi sa diodama 4. I i ILI vrata 5. Poluvalni ispravljač Teoretski zadaci
Διαβάστε περισσότερα1. As (Amper sekunda) upotrebljava se kao mjerna jedinica za. A) jakost električne struje B) influenciju C) elektromotornu silu D) kapacitet E) naboj
ELEKTROTEHNIKA TZ Prezime i ime GRUPA Matični br. Napomena: U tablicu upisivati slovo pod kojim smatrate da je točan odgovor. Upisivati isključivo velika štampana slova. Točan odgovor donosi jedan bod.
Διαβάστε περισσότεραPRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότερα