Συνάρτηση χρησιμότητας (utility function): u(x)
|
|
- Οὐρανός Αλεξανδρίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Συνάρτηση χρησιμότητας (utility function): u(x) είναι ένας τρόπος να δώσουμε έναν αριθμό σε κάθε δυνατό συνδυασμό κατανάλωσης, τέτοιο ώστε να δίνονται μεγαλύτεροι αριθμοί στους πλέον προτιμώμενους συνδυασμούς από ότι στους λιγότερο προτιμώμενους, δηλαδή είναι μια απεικόνιση της διάταξης των προτιμήσεων με αριθμούς (διατάσει, δεν συγκρίνει). u(x): είναι μια συνάρτηση που αντιστοιχεί ένα πραγματικό αριθμό σε κάθε συνδυασμό κατανάλωσης x. Αν ο καταναλωτής είναι αδιάφορος μεταξύ των x και x, x x τότε u(x ) = u(x ) Αν ο καταναλωτής προτιμά το x από το x, x x τότε u(x ) > u(x ) 1
2 Παράδειγμα Πώς διατάσεις τους συνδυασμούς x, x, x, x σύμφωνα με τον παρακάτω πίνακα; u(x) v(x) h(x) w(x) x x x x Απάντηση: x x x x Εφόσον μας ενδιαφέρει μόνο η διάταξη των αριθμών, δεν μπορεί να υπάρχει μοναδικός τρόπος απόδοσης της χρησιμότητας. Όλες οι συναρτήσεις στον πίνακα εκφράζουν τις ίδιες προτιμήσεις. Πχ v(x) = 2 u(x), η v(x) είναι ένας μονοτονικός μετασχηματισμός της u(x) και διατηρεί την διάταξη των αριθμών. Εάν μια συνάρτηση f είναι μονοτονικά αύξουσα και έχω συνάρτηση χρησιμότητας u(x), τότε η f(u) θα είναι θετικός μονοτονικός μετασχηματισμός της u. πχ f(x)=cu(x), c>0, f(x)=a+bu(x), a,b>0, f(x)=lnu(x) 2
3 Συναρτήσεις χρησιμότητας & καμπύλες αδιαφορίας Μια καμπύλη αδιαφορίας περιλαμβάνει τους εξίσου προτιμώμενους συνδυασμούς. Ίσες προτιμήσεις ίδιο επίπεδο χρησιμότητας. Άρα, οι συνδυασμοί πάνω σε μια καμπύλη αδιαφορίας δίνουν το ίδιο επίπεδο χρησιμότητας. 3
4 Συναρτήσεις χρησιμότητας & καμπύλες αδιαφορίας Το σύνολο όλων των καμπυλών αδιαφορίας για μια δεδομένη σχέση προτιμήσεων είναι ο χάρτης αδιαφορίας. Ένας χάρτης αδιαφορίας είναι το ισοδύναμο μιας συνάρτησης χρησιμότητας. Το ένα είναι το άλλο. 4
5 Θεώρημα αντιπροσώπευσης Ας υποθέσουμε ότι οι προτιμήσεις του καταναλωτή είναι πλήρης, αντανακλαστικές, μεταβατικές και συνεχής, τότε υπάρχει μια συνεχής συνάρτηση χρησιμότητας η οποία αντιπροσωπεύει αυτές τις προτιμήσεις. Η κυρτότητα των προτιμήσεων είναι συμβατή με μια συνάρτηση χρησιμότητας που είναι κοίλη. Η μονοτονικότητα δηλώνει ότι μια συνάρτηση είναι αύξουσα. Παράδειγμα: Cobb-Douglas συνάρτηση χρησιμότητας u x 1,x 2 x 1 a x 2 Αν α=β=1/2, τότε x u x 1,x 2 x 2 1 x 2 και οι καμπύλες αδιαφορίας δίνονται από x 2 2 k 2 x 1 k: επίπεδο χρησιμότητας k=1 k= x 1 k=3 k 1 : x 2 x 1 1 k 2 : x 2 x 4 1 k 3 : x 2 x 9 1 5
6 Παράδειγμα: u(c,f)=cf 6
7 Αγαθά, κακά και ουδέτερα Αγαθό είναι μια μονάδα εμπορεύματος, η οποία αυξάνει τη χρησιμότητα (δίνει ένα πλέον προτιμώμενο συνδυασμό). Κακό είναι μια μονάδα εμπορεύματος, η οποία μειώνει τη χρησιμότητα (δίνει έναν λιγότερο προτιμώμενο συνδυασμό). Ουδέτερο είναι μια μονάδα εμπορεύματος, η οποία δεν μεταβάλλει τη χρησιμότητα (δίνει έναν εξίσου προτιμώμενο συνδυασμό). 7
8 Αγαθά, κακά και ουδέτερα Χρησιμότητα Μονάδες νερού που είναι καλές Συνάρτηση χρησιμότητας Μονάδες νερού που είναι κακές x Νερού Γύρω από τις x μονάδες, λίγο επιπλέον νερό είναι ουδέτερο. 8
9 Τέλεια υποκατάστατα και τέλεια συμπληρωματικά αγαθά Στο (a), u x 1,x 2 x 1 x 2. Γενικά, u x 1,x 2 ax 1 x 2 με x 2 k a x και σταθερή 1 κλίση α/β. Οι καμπύλες αδιαφορίας είναι ευθείες γραμμές και παράλληλες. Στο (b), u x 1,x 2 min x 1,x 2. Γενικά, u x 1,x 2 min ax 1, x 2 Καμπύλες αδιαφορίας με σχήμα ορθής γωνίας και με κορυφές πάνω σε μια ακτίνα από την αρχή των αξόνων. 9
10 Άλλες συναρτήσεις χρησιμότητας και οι καμπύλες αδιαφορίας τους Μια συνάρτηση της χρησιμότητας της μορφής U(x 1,x 2 ) = f(x 1 ) + x 2 είναι γραμμική μόνο στο x 2 και λέγεται οιονεί γραμμική. π.χ. U(x 1,x 2 ) = 2x 1 1/2 + x 2. 10
11 Οιονεί γραμμικές καμπύλες αδιαφορίας x 2 Κάθε καμπύλη αδιαφορίας είναι ένα κάθετο αντίγραφο των άλλων x 1 11
12 Άλλες συναρτήσεις χρησιμότητας και οι καμπύλες αδιαφορίας τους Μια συνάρτηση χρησιμότητας της μορφής U(x 1,x 2 ) = x 1 a x 2 b με a > 0 και b > 0 λέγεται συνάρτηση Cobb-Douglas. π.x. U(x 1,x 2 ) = x 1/2 1 x 1/2 2 (a = b = 1/2) V(x 1,x 2 ) = x 1 x 3 2 (a = 1, b = 3) 12
13 Καμπύλες αδιαφορίας Cobb-Douglas. Cobb-Douglas Indifference Curves x 2 Όλες οι καμπύλες είναι υπερβολές ασύμπτωτες στους άξονες. x 1 13
14 Οριακός Λόγος Υποκατάστασης (ΟΛΥ) Marginal Rate of Substitution (MRS) Είναι η μέγιστη ποσότητα που είναι διατεθειμένος να δώσει ο καταναλωτής από το ένα αγαθό για να πάρει μια μονάδα από το άλλο αγαθό. Δείχνει πως υποκαθιστά ο καταναλωτής το ένα αγαθό με το άλλο έτσι ώστε να μείνει στην ίδια καμπύλη αδιαφορίας. Σχέση ανταλλαγής μεταξύ C και F στο διάγραμμα. 14
15 Οριακός Λόγος Υποκατάστασης (ΟΛΥ) Η κλίση της καμπύλης αδιαφορίας μετρά τον ΟΛΥ μεταξύ C και F, ΟΛΥ=dC/dF. Παρατηρήσεις: 1. ΟΛΥ<0 (ορισμένα βιβλία ορίζουν ΟΛΥ= -dc/df) 2. Στο διάγραμμα, ο ΟΛΥ από -6 (μεταξύ Α και Β) πηγαίνει στο -4 (μεταξύ Β και D) μετά σε -2 (μεταξύ D και E) και σε -1 (μεταξύ Ε και G). Ο ΟΛΥ φθίνει σε απόλυτες τιμές λόγω κυρτότητας των προτιμήσεων. 3. Αυστηρά κοίλη u(x) => αυστηρά κυρτές καμπύλες αδιαφορίας, δηλ. d 2 C/dF 2 >0 => φθίνων ΟΛΥ (σε απόλυτα) κατά μήκος της καμπύλης αδιαφορίας. 15
16 Οριακός Λόγος Υποκατάστασης (ΟΛΥ) Γενικά: O Y ji x j x i u u Άσκηση: Υπολογίστε τον ΟΛΥ της συνάρτησης χρησιμότητας όταν u=10, για x 1 5 x 1 20 u x 1,x 2 x 1 x 2 16
17 Οριακός Λόγος Υποκατάστασης (ΟΛΥ) Τέλεια υποκατάστατα/συμπληρωματικά ΟΛΥ σταθερός και ίσος με την κλίση των καμπυλών αδιαφορίας. ΟΛΥ= ΟΛΥ= 0 17
18 Οριακή χρησιμότητα (Marginal Utility) Οριακή χρησιμότητα του αγαθού i (MUi), μετρά πόσο αυξάνει η χρησιμότητα όταν αυξάνει οριακά η κατανάλωση του αγαθού i. MU i u x 1,x 2...,x n x i Η οριακή χρησιμότητα είναι εν γένει συνάρτηση, όχι υποχρεωτικά αριθμός (η 1 η παράγωγος της u). Το μέγεθος της οριακής χρησιμότητας δεν έχει καμία συμπεριφορική σημασία, πάλι μας ενδιαφέρει η διάταξη και όχι η ποσοτική σύγκριση. Π.χ. u x 1,x 2 x 1 a x 2 1 a MU 1 u x 1 ax a 1 1 x 1 a 2 a x 2 x 1 1 a MU 2 u x 2 1 a x a 1 x a 2 1 a x 1 x 2 a 18
19 Οριακή χρησιμότητα και ΟΛΥ (MRS) Έστω συνάρτηση χρησιμότητας u x 1,x 2 Ποιος είναι ο ΟΛΥ έτσι ώστε να βρίσκομαι στην ίδια καμπύλη αδιαφορίας; du x 1,x 2 0 u dx x 1 u dx 1 x MU 1 dx 1 MU 2 dx 2 0 dx 2 MU 1 dx 1 MU 2 O Y 21 MU 1 MU 2 Ο τρόπος που ο καταναλωτής είναι διατεθειμένος να ανταλλάξει τα δύο αγαθά είναι ίσος με τον τρόπο που είναι διατεθειμένος να ανταλλάξει τη χρησιμότητά τους. Άσκηση: Υπολογίστε τον ΟΛΥ των συναρτήσεων χρησιμότητας a u x 1,x 2 v x 1,x 2 2u x 1,x 2 u x 1,x 2 x 1 c x 2 d v x 1,x 2 lnu x 1,x 2 Τι παρατηρείτε; 19
20 Οριακές χρησιμότητες και οριακός λόγος υποκατάστασης (MRS): Ένα παράδειγμα Έστω U(x 1,x 2 ) = x 1 x 2. Τότε U x 1 ( 1)( x ) x 2 2 U x 2 ( x )( 1) x 1 1 Άρα MRS d x2 U / x1 d x U / x 1 2 x x
21 Οριακές χρησιμότητες και οριακός λόγος υποκατάστασης (MRS): Ένα παράδειγμα x 2 U(x 1,x 2 ) = x 1 x 2 ; MRS x 2 x1 8 6 MRS(1,8) = - 8/1 = -8 MRS(6,6) = - 6/6 = U = 36 U = 8 x 1 21
22 Ομοθετικές Προτιμήσεις Μια συνάρτηση χρησιμότητας είναι ομοθετική αν ο MRS εξαρτάται μόνο από το λόγο των ποσοτήτων (x2/x1) και όχι από τις συνολικές ποσότητες των αγαθών. Παράδειγμα: Συνάρτηση χρησιμότητας Cobb-Douglas: u x 1,x 2 x a 1 x b 2, a,b 0 MRS - a b x 2 x 1 Γεωμετρική ερμηνεία ομοθετικών προτιμήσεων: Τα σημεία που έχουν σταθερό MRS αποτελούν μια ευθεία που διέρχεται από την αρχή των αξόνων. Έστω a=b=1, τότε MRS= - x2/x1. Για παράδειγμα, το σύνολο των σημείων που έχουν MRS=-1 βρίσκονται επί της ευθείας x2=x1. Όταν οι προτιμήσεις είναι ομοθετικές, κάθε καμπύλη αδιαφορίας είναι ένα απλό αντίγραφο των υπολοίπων. 22
23 MRS για οιονεί γραμμικές συναρτήσεις χρησιμότητας Μια οιονεί γραμμική συνάρτηση χρησιμότητας έχει τη μορφή U(x 1,x 2 ) = f(x 1 ) + x 2. Άρα U x 1 MRS f ( x1) U 1 x 2 d x2 U / x1 f ( x1). d x U / x
24 MRS για οιονεί γραμμικές συναρτήσεις χρησιμότητας MRS = - f (x 1 ) δεν εξαρτάται από το x 2 και επομένως η κλίση της καμπύλης αδιαφορίας για μια οιονεί-γραμμική συνάρτηση χρησιμότητας είναι σταθερή κατά μήκος κάθε γραμμής για την οποία το x 1 είναι σταθερό. Με τι μοιάζει ο χάρτης των καμπυλών αδιαφορίας για μια οιονεί γραμμική συνάρτηση χρησιμότητας; 24
25 MRS για οιονεί γραμμικές συναρτήσεις χρησιμότητας x 2 MRS = - f(x 1 ) MRS = -f(x 1 ) Κάθε καμπύλη είναι κάθετο αντίγραφο των άλλων. Ο MRS είναι σταθερός κατά μήκος κάθε γραμμής για την οποία το x 1 είναι σταθερό. x 1 x 1 x 1 25
26 Μονοτονικός μετασχηματισμός και MRS Ο μονοτονικός μετασχηματισμός μιας συνάρτηση χρησιμότητας, που αντιπροσωπεύει μια σχέση προτιμήσεων δημιουργεί μια άλλη συνάρτηση χρησιμότητας που αντιπροσωπεύει την ίδια σχέση προτιμήσεων. Τι θα συμβεί στον οριακό λόγο υποκατάστασης όταν κάνουμε μονοτονικό μετασχηματισμό; 26
27 Μονοτονικός μετασχηματισμός και MRS Για την U(x 1,x 2 ) = x 1 x 2 ο MRS = - x 2 /x 1. Αν πάρουμε την V = U 2 : δηλαδή. V(x 1,x 2 ) = x 12 x 22. ποιος είναι ο MRS για την V; V / x1 2x1x2 2 MRS V / x 2x x x x 2 1 Που είναι ο ίδιος MRS με εκείνο της U. 27
28 Μονοτονικός μετασχηματισμός και MRS Πιο γενικά, αν V = f(u) όπου f είναι μια αυστηρά αύξουσα συνάρτηση, τότε MRS V / x1 f U U x ( ) / V / x f '( U ) U / x U U / / x x Άρα ο MRS παραμένει αμετάβλητος από ένα θετικό μονοτονικό μετασχηματισμό
Προτιµήσεις-Υπενθύµιση
Προτιµήσεις-Υπενθύµιση Διάλεξη 4 x y: To x προτιµάται σαφώς από το y.! x ~ y: Το x και το y προτιµούνται εξίσου. Χρησιµότητα! x y: Το x προτιµάται τουλάχιστο όσο και το y.!1! 1 Προτιµήσεις-Υπενθύµιση Προτιµήσεις-Υπενθύµιση
Προτιµήσεις-Υπενθύµιση
Προτιµήσεις-Υπενθύµιση ιάλεξη 4 Χρησιµότητα x y: To x προτιµάται σαφώς από το y. x y: Το x και το y προτιµούνται εξίσου. y: Το x προτιµάται τουλάχιστο όσο και το y. x f Προτιµήσεις-Υπενθύµιση Προτιµήσεις-Υπενθύµιση
Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει
Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει το άτομο (i =,,n). - Πρόβλημα καταναλωτή: Κάθε άτομο (καταναλωτής)
Μικροοικονοµική Θεωρία
Μικροοικονοµική Θεωρία Θεωρία Χρησιµότητας και Προτιµήσεων. Καταναλωτικές Προτιµήσεις: Βασικά Αξιώµατα. Συνολική και οριακή χρησιµότητα Καµπύλη αδιαφορίας ή ισοϋψής καµπύλη χρησιµότητας. Ιστορική Αναδροµή
Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)
Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας
Θεωρία Καταναλωτή. Υποδειγματοποίηση της συμπεριφοράς του καταναλωτή. Βασική έννοια: Βελτιστοποίηση υπό περιορισμό.
Θεωρία Καταναλωτή Υποδειγματοποίηση της συμπεριφοράς του καταναλωτή. Βασική έννοια: Βελτιστοποίηση υπό περιορισμό. Προτιμήσεις (preferences) Εισοδηματικός περιορισμός (budget constraint) Άριστη επιλογή
Διάλεξη 3. Προτιµήσεις. Ορθολογισµός στην οικονοµική. Σχέσεις προτιµήσεων
Ορθολογισµός στην οικονοµική Διάλεξη 3 Προτιµήσεις!1 Υπόθεση συµπεριφοράς: Ένας λήπτης αποφάσεων επιλέγει πάντοτε τον πλέον προτιµώµενο συνδυασµό από το σύνολο των εναλλακτικών συνδυασµών που έχει στη
Πρώτο πακέτο ασκήσεων
ΕΚΠΑ Ακαδημαϊκό έτος 208-209 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι Πρώτο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 6 Νοεμβρίου (στο μάθημα της κ. Κουραντή, του κ. Παπανδρέου
ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ
Ένθετο Κεφάλαιο ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Μικροοικονομική Ε. Σαρτζετάκης 1 Καταναλωτική συμπεριφορά Σκοπός αυτής της διάλεξης είναι να εξετάσουμε τον τρόπο με τον οποίο οι καταναλωτές
Θεωρία παραγωγού. Μικροοικονομική Θεωρία Ι / Διάλεξη 10 / Φ. Κουραντή
Θεωρία παραγωγού Σκοπεύουμε να εξάγουμε από το πρόβλημα του παραγωγού τις συναρτήσεις ζήτησης παραγωγικών συντελεστών, την συνάρτηση προσφοράς της επιχείρησης και τις συναρτήσεις κόστους και κερδών. 1
ιάλεξη 3 Προτιµήσεις ~ σηµαίνει ότι το x προτιµάται τουλάχιστο όσο και ~ f Ορθολογισµός στην οικονοµική Σχέσεις προτιµήσεων
Ορθολογισµός στην οικονοµική ιάλεξη 3 Προτιµήσεις Υπόθεση συµπεριφοράς: Ένας λήπτης αποφάσεων επιλέγει πάντοτε τον πλέον προτιµώµενο συνδυασµό από το σύνολο των εναλλακτικών συνδυασµών που έχει στη διάθεση
Θεωρία Καταναλωτή. Υποδειγματοποίηση της συμπεριφοράς του καταναλωτή. Βασική έννοια: Βελτιστοποίηση υπό περιορισμό.
Θεωρία Καταναλωτή Υποδειγματοποίηση της συμπεριφοράς του καταναλωτή. Βασική έννοια: Βελτιστοποίηση υπό περιορισμό. Προτιμήσεις (preferences) Εισοδηματικός περιορισμός (budget constraint) Άριστη επιλογή
Ιδιότητες καµπυλών ζήτησης
Ιδιότητες καµπυλών ζήτησης Διάλεξη 6 ΖΗΤΗΣΗ Συγκριτική στατική ανάλυση των συναρτήσεων της κανονικής ζήτησης είναι η µελέτη του πώς οι συναρτήσεις κανονικής ζήτησης (, 2,) και (, 2,) αλλάζουν όταν οι τιµές,
Ανάλυση συγκριτικής στατικής
Ανάλυση συγκριτικής στατικής Μεταβολή παραμέτρων και σύγκριση δυο στατικών σημείων. Εδώ θα μελετήσουμε τη μεταβολή των συναρτήσεων ζήτησης όταν παρατηρείται: x i p,i 1. μεταβολή όλων των τιμών και του
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Πρώτο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 28 Φεβρουαρίου
ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ
ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής -H πλευρά της προσφοράς στην οικονομία μελετάει τη διαδικασία παραγωγής των αγαθών και υπηρεσιών που καταναλώνονται από τα
Μικροοικονομική. Θεωρία Συμπεριφοράς Καταναλωτή
Μικροοικονομική Θεωρία Συμπεριφοράς Καταναλωτή Συνολική και οριακή ρησιμότητα Η κατανάλωση αγαθών συνεπάγεται κάποια ικανοποίηση ή ρησιμότητα για τον καταναλωτή. Συνολική ρησιμότητα (U) είναι η συνολική
Άσκηση 3: Έστω η συνάρτηση χρησιμότητας για δύο αγαθά Χ και Υ έχει τη μορφή Cobb- Douglas U (X,Y) = X o,5 Y 0,5
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Σημείωση: Κάποιες από τις παρακάτω ασκήσεις θα λυθούν στην 3 η και 4 η διάλεξη του μαθήματος (στις ημερομηνίες που αναγράφονται στο πρόγραμμα) και οι υπόλοιπες θα αποτελέσουν προσωπική
1. Η ερώτηση ίσως δέχεται διαφορετικές ερμηνείες για το τί ακριβώς εννοούμε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι 2015-16 Λύσεις Πρώτου Πακέτου Ασκήσεων 1. Η ερώτηση ίσως δέχεται διαφορετικές ερμηνείες για το τί ακριβώς εννοούμε με το
E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II
E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II 1.Εισροές-Συντελεστές παραγωγής.εκροές-παραγόμενα προιόντα 3.Εξωτερικότητες 4.Εισροές-Καταναλωτικά αγαθά 5.Καμπύλες αδιαφορίας 6.Βελτιστοποίηση Σε μια παραγωγική διαδικασία
ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ
ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Κεφάλαιο 3 Οικονοµικά των Επιχειρήσεων Ε. Σαρτζετάκης 1 Καταναλωτική συµπεριφορά! Σκοπός αυτής της διάλεξης είναι να εξετάσουµε τον τρόπο µε τον οποίο οι καταναλωτές
Μικροοικονομική Ανάλυση Ι: Θεωρία Συμπεριφοράς Καταναλωτή
Μικροοικονομική Ανάλυση Ι: Θεωρία Συμπεριφοράς Καταναλωτή Ανδρέας Δριχούτης, hd Επίκουρος Καθηγητής Τμ. Αγροτικής Οικονομίας & Ανάπτυξης Γεωπονικό Πανεπιστήμιο Αθηνών Ποιες οικονομικές αρχές βρίσκονται
ΤΟΥΡΙΣΤΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΚΕΦΑΛΑΙΟ 6 ΘΕΩΡΙΑ ΠΡΟΤΙΜΗΣΕΩΝ ΚΑΙ ΕΠΙΛΟΓΩΝ ΤΟΥ ΤΟΥΡΙΣΤΑ-ΚΑΤΑΝΑΛΩΤΗ
ΤΟΥΡΙΣΤΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΚΕΦΑΛΑΙΟ 6 ΘΕΩΡΙΑ ΠΡΟΤΙΜΗΣΕΩΝ ΚΑΙ ΕΠΙΛΟΓΩΝ ΤΟΥ ΤΟΥΡΙΣΤΑ-ΚΑΤΑΝΑΛΩΤΗ ΘΕΩΡΙΑ ΠΡΟΤΙΜΗΣΕΩΝ ΚΑΙ ΕΠΙΛΟΓΩΝ ΤΟΥ ΤΟΥΡΙΣΤΑ- ΚΑΤΑΝΑΛΩΤΗ ΔΙΑΡΘΡΩΣΗ ΘΕΜΑΤΙΚΩΝ ΕΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟΥ Η θεωρία της οριακής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 10: Τεχνολογία Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τεχνολογίες Τεχνολογία είναι μια
Μεγιστοποίηση της Χρησιμότητας
Μεγιστοποίηση της Χρησιμότητας - Πρόβλημα Καταναλωτή: Επιλογή καταναλωτικού συνδυασμού x=(x, x ) υπό ένα σύνολο φυσικών, θεσμικών και οικονομικών περιορισμών κατά τρόπο ώστε να μεγιστοποιεί τη χρησιμότητά
Τεχνολογίες. Διάλεξη 10. Τεχνολογίες. Συνδυασµοί εισροών. Τεχνολογία
Τεχνολογίες Διάλεξη 0 Τεχνολογία Τεχνολογία είναι µια διαδικασία µε την οποία εισροές µετατρέπονται σε εκροές. π.χ. εργασία, ένας υπολογιστής, ένας προβολέας, ηλεκτρισµός, κ.α. Συνδυάζονται για την παραγωγή
4. Σωστό ή Λάθος (εξηγείστε): Κάποια καταναλωτικά προϊόντα είναι αγαθά επιθυμητά για κάποιες ποσότητες και κακά ανεπιθύμητα για άλλες.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2014-2015 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Πρώτο πακέτο ασκήσεων και λύσεων 1. Σωστό ή Λάθος (εξηγείστε):
1 Μερική παραγώγιση και μερική παράγωγος
Περίγραμμα διάλεξης 5 Βιβλίο Chiang και Wainwright (κεφ 74,75,76) 1 Μερική παραγώγιση και μερική παράγωγος Έστω η συνάρτηση (x) όπου x R ή εναλλακτικά γράφουμε ( 1 2 ) Το διάνυσμα x περιέχει τις ανεξάρτητες
Ποιες οικονομικές αρχές βρίσκονται πίσω από την ζήτηση Θεωρία Συμπεριφοράς του. Καταναλωτή. Θεωρία της Απόλυτης. Θεωρία της Τακτικής Ωφέλειας
Ποιες οικονομικές αρχές βρίσκονται ; πίσω από την ζήτηση Θεωρία Συμπεριφοράς του Καταναλωτή Θεωρία της Τακτικής Ωφέλειας Θεωρία της Απόλυτης Ωφέλειας Θεωρία των Επιλογών Θεωρία των επιλογών Οικουμενικό
ΑΠΑΝΤΗΤΙΚΟ ΔΕΛΤΙΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΕΜ ΕΞΑΜΗΝΟ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ, ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ: ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΑΙ ΠΟΛΙΤΙΚΗΣ ΜΑΘΗΜΑ: Μικροοικονομική Ι ΔΙΔΑΣΚΩΝ: Νίκος
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 5: Επιλογή Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οικονομικός ορθολογισμός Η βασική παραδοχή
Οικονοµικός ορθολογισµός
Οικονοµικός ορθολογισµός Διάλεξη 5 Επιλογή!1 Η βασική παραδοχή για τη συµπεριφορά του λήπτη αποφάσεων είναι ότι αυτός/αυτή επιλέγει την πλέον προτιµώµενη εναλλακτική επιλογή που του/της είναι διαθέσιµη.
Μικροοικονομική Ανάλυση Ι
Μικροοικονομική Ανάλυση Ι Θεωρία συμπεριφοράς καταναλωτή Ιδιότητες Συνάρτησης ωφέλειας Εισοδηματικός περιορισμός Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι
Κεφάλαιο 11. Συναρτήσεις με δύο συντελεστές. Συναρτήσεις παραγωγής. τεχνολογικά σύνολα
Κεφάλαιο Συναρτήσεις παραγωγής Συναρτήσεις παραγωγής Η συνάρτηση παραγωγής μιας επιχείρησης για ένα προϊόν (q) δείχνει τη μέγιστη ποσότητα του αγαθού που μπορεί να παραχθεί με εναλλακτικούς συνδυασμούς
Μικροοικονομική Ι. Ενότητα # 3: Θεωρία επιλογών καταναλωτή Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών
Μικροοικονομική Ι Ενότητα # 3: Θεωρία επιλογών καταναλωτή Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΕΚΤΟ ΕΚΤΟ ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ-ΙΣΟΡΡΟΠΙΑ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 2011-2012 ΕΠΙΧ Μικροοικονοµική
II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c
II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών
Λύσεις Πρώτου Πακέτου Ασκήσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι 2016-17 Λύσεις Πρώτου Πακέτου Ασκήσεων Άσκηση 1 1. α) Αν βάλουµε την ποσότητα του αγαθού X στον οριζόντιο και την ποσότητα
Μικροοικονομία. Ενότητα 4: Θεωρία Χρησιμότητας και Καταναλωτική Συμπεριφορά. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής
Μικροοικονομία Ενότητα 4: Θεωρία Χρησιμότητας και Καταναλωτική Συμπεριφορά Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΥΠΟΒΑΘΡΟ ΤΗΣ ΖΗΤΗΣΗΣ: Η ΘΕΩΡΙΑ ΕΠΙΛΟΓΗΣ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ
ΥΠΟΒΑΘΡΟ ΤΗΣ ΖΗΤΗΣΗΣ: Η ΘΕΩΡΙΑ ΕΠΙΛΟΓΗΣ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΕΙΣΑΓΩΓΗ Ο νόμος της ζήτησης λέει ότι η ποσότητα, που επιθυμούν να αγοράσουν οι καταναλωτές, σχετίζεται αρνητικά με την τιμή. Πίσω από το νόμο αυτό,
Παραγωγική διαδικασία. Τεχνολογία
Σκοπός: Η μελέτη της σχέσης εισροών και εκροών Συντελεστές παραγωγής (Εισροές) Παραγωγική διαδικασία Παραγόμενο Προϊόν (Εκροές) Κεφαλαιουχικά αγαθά Εργασία Γή Επιχειρηματικές ή διοικητικές ικανότητες κλπ
EIII.9 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ
EIII.9 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ.Εισοδηματικός περιορισμός.μεγιστοποίηση χρησιμότητας 3.Γραμμική χρησιμότητα 4.Λογαριθμική χρησιμότητα τύπου C-D 5.Χρησιμότητα τύπου Leontief-min 6.Μεγιστοποίηση χρησιμότητας-κανονικές
Στον πίνακα που ακολουθεί δίνονται πέντε δέσμες (Α, Β, Γ, Δ και Ε) των αγαθών Χ
Άσκηση 1 Στον πίνακα που ακολουθεί δίνονται πέντε δέσμες (Α, Β, Γ, Δ και Ε) των αγαθών Χ και Υ. Α Β Γ Δ Ε Χ 90 30 5 55 50 Υ 10 80 40 0 55 Ποιες από τις παρακάτω προτάσεις θεωρείτε ότι αντιστοιχούν σε ορθολογική
Σύνολο ασκήσεων 5. Άσκηση 1. Υπολογίστε τις μερικές παραγώγους ως προς 1 ή κτλ (συμβολισμός ή κτλ) για τις παρακάτω συναρτήσεις
Σύνολο ασκήσεων 5. Άσκηση 1 Υπολογίστε τις μερικές παραγώγους ως προς 1 ή κτλ (συμβολισμός ή κτλ) για τις παρακάτω συναρτήσεις = 1 3 Για τη συνάρτηση CES (σταθερής ελαστικότητας υποκατάστασης) = ( ) =
Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17
Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...
Σύνολο ασκήσεων 5. = = ( ) = = ( ) = p ln ( ) Για τη συνάρτηση CES (σταθερής ελαστικότητας υποκατάστασης)
Σύνολο ασκήσεων 5. Άσκηση 1 Υπολογίστε τις μερικές παραγώγους ως προς 1 ή,, (συμβολισμός ή,, ) για τις παρακάτω συναρτήσεις = 1 3 = ( 1 3 4 )= 1 1 3+5 3 +8ln( 1 )+ 4 = ( ) = +3 + +3 = ( ) = p ln ()+ +
ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν ΘΕΜΑ Α Α. Θεώρημα σχολικό βιβλίο
την αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του
ΑΣΚΗΣΗ 47 Δίνεται η συνάρτηση f(x) = και οι ευθείες (ε ): y = x και (ε ): y = x +. Να αποδείξετε ότι:. Η (ε ) είναι ασύμπτωτη της C f στο, ενώ η (ε ) είναι ασύμπτωτη της C f στο +. Για κάθε x R ισχύει
E7 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ
E7 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ.Εισοδηματικός περιορισμός.μεγιστοποίηση χρησιμότητας 3.Γραμμική χρησιμότητα 4.Λογαριθμική χρησιμότητα τύπου -D 5.Χρησιμότητα τύπου Lontif-min 6.Μεγιστοποίηση χρησιμότητας-κανονικές
ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ
ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ Άσκηση 1 Αν το επιτόκιο είναι 10%, ποια είναι η παρούσα αξία των κερδών της Monroe orporation στα επόμενα 5 χρόνια; Χρόνια στο μέλλον
Επιλογές του Καταναλωτή και Αποφάσεις Ζήτησης Εκδόσεις Κριτική
5 Επιλογές του Καταναλωτή και Αποφάσεις Ζήτησης Τέσσερα βασικά στοιχεία του υποδείγματος επιλογής του καταναλωτή Το εισόδημα του καταναλωτή. Οι τιμές των αγαθών. Οι προτιμήσεις του καταναλωτή. Η υπόθεση
Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος
Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος (Επιπτώσεις Μεταβολής της Τιμής στη Ζητούμενη Ποσότητα) () Διαγραμματική Παρουσίαση Α. Επιπτώσεις Μεταβολής της Τιμής στα Κανονικά Αγαθά M x / p (Π)
ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής παραγωγή εισροές εκροές επιχείρηση παραγωγικοί συντελεστές
ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής - Η παραγωγή είναι η δραστηριότητα μέσω της οποίας κάποια αγαθά και υπηρεσίες (εισροές) μετατρέπονται σε άλλα αγαθά και υπηρεσίες (εκροές ή προϊόντα).
ΑΠΑΝΤΗΤΙΚΟ ΔΕΛΤΙΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΕΜ ΕΞΑΜΗΝΟ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ, ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ: ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΑΙ ΠΟΛΙΤΙΚΗΣ ΜΑΘΗΜΑ: Μικροοικονομική Ι ΔΙΔΑΣΚΩΝ: Νίκος
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή Εισαγωγή: Όπως γνωρίζουµε, το οικονοµικό πρόβληµα εστιάζεται στην αποτελεσµατική κατανοµή των ανεπαρκών οικονοµικών πόρων στις εναλλακτικές
ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο οριζουμε. Την καμπυλη αδιαφοριας(indifference curve,level set) της f
Page 1 of 13 covexity Ορισμος Για καθε συναρτηση ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f : S R και καθε αριθμο οριζουμε Την καμπυλη αδιαφοριας(idifferece curve,level set) της f I { xs, f( x ) } Το υπερτερο
E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι
E. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι.Κόστος.Παραγωγή 3.Χρησιµότητα 4.Ζήτηση-Προσφορά 5.Φόρος. Κόστος Θεωρούµε ότι το κόστος παραγωγής (cost) ενός προιόντος είναι συνάρτηση της ποσότητας παραγωγής (production)
Ελαχιστοποίηση του Κόστους
Ελαχιστοποίηση του Κόστους - H ανάλυση του προβλήματος ελαχιστοποίησης του κόστους παρουσιάζει τα εξής πλεονεκτήματα σε σχέση με το πρόβλημα μεγιστοποίησης των κερδών: () Επιτρέπει τη διατύπωση μιας θεωρίας
Διάλεξη 11. Γενική Ισορροπία με Παραγωγή VA 31
Διάλεξη 11 Γενική Ισορροπία με Παραγωγή VA 31 1 Οικονομίες ανταλλαγής (ξανά) Καθόλου παραγωγή, μόνο αρχικά αποθέματα, οπότε δεν υπάρχει περιγραφή του πώς οι πόροι μετατρέπονται σε αγαθά. Γενική ισορροπία:
Η θεωρία των επιλογών του καταναλωτή
Η θεωρία των επιλογών του καταναλωτή Ο εισοδηµατικός περιορισµός του καταναλωτή Λίτρα Αριθµός από πίτσες απάνες για (σε ευρώ) απάνες για πίτσα (σε ευρώ) Συνολικές δαπάνες (σε ευρώ) 1 1. 1. 5 9 1 9 1. 1
Δεύτερο πακέτο ασκήσεων
ΕΚΠΑ Ακαδημαϊκό έτος 018-019 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι Δεύτερο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 7 Δεκεμβρίου (στο μάθημα της κ. Κουραντή, του κ. Παπανδρέου
Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016
Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε
ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι
Η εξίσωση ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι αβ+ α = ορίζει πλεγμένα το ως συνάρτηση των {α,β}. Να βρεθούν η παράγωγος και η ελαστικότητα του ως προς β, στις τιμές: {α=,β =, = }. Λύση. Ο τύπος πλεγμένης παραγώγισης
Μικροοικονομική Ανάλυση Ι
Μικροοικονομική Ανάλυση Ι Θεωρία συμπεριφοράς καταναλωτή Ιδιότητες Καμπυλών Αδιαφορίας Συνάρτηση Ωφέλειας και Οριακός Λόγος υποκατάστασης Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης
Κεφάλαιο 33 Παραγωγή
HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Εκδόσεις Κριτική Κεφάλαιο 33 Παραγωγή Ύλη για τη Μίκρο ΙΙ: όλο το κεφάλαιο Οικονομίες ανταλλαγής (αναθεώρηση) Καμία παραγωγή, μόνο αποθέματα,
Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς.
ΤΙΜΗ ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ: Η ΖΗΤΗΣΗ Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς. Χρησιμότητα ενός αγαθού, για τον καταναλωτή, είναι η ικανοποίηση
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΔΕΚΑΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Ας δούμε τα γραφήματα των συναρτήσεων των τριών τελευταίων παραδειγμάτων του τελευταίου μαθήματος. Στο πρώτο παράδειγμα το γράφημα καθεμιάς f () = είναι
ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.
ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:
9 εύτερη παράγωγος κι εφαρµογές
9 εύτερη παράγωγος κι εφαρµογές Εστω ότι η y = f x είναι παραγωγίσιµη σε κάποιο διάστηµα το οποίο περιέχει τον x 0 και ότι η f x η οποία ορίζεται στο διάστηµα αυτό έχει µε την σειρά της παράγωγο στο x
Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης
Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης Συνθήκες για αποτελεσματικότητα κατά areto Συνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:
B τρόπος: μακροχρόνια περίοδος
B τρόπος: μακροχρόνια περίοδος I) min C w w, s.t. f, i i w,w, C II) ma p C Αρχικά λύνουμε το πρόβλημα ελαχιστοποίησης του κόστους (στη μακροχρόνια και βραχυχρόνια περίοδο, Θεωρία Κόστους) και μετά, έχοντας
α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.
ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ
Οικονομικά για Μη Οικονομολόγους Ενότητα 2: Θεωρία Καταναλωτή
Οικονομικά για Μη Οικονομολόγους Ενότητα 2: Θεωρία Καταναλωτή Καθηγητής: Κώστας Τσεκούρας Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Οικονομικών Επιστημών Σκοποί ενότητας Στην ενότητα αυτή παρουσιάζονται
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ, τότε
Notes. Notes. Notes. Notes
Θεωρία Καταναλωτή-Προτιμήσεις Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Οκτωβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιμήσεις 3 Οκτωβρίου 2012 1 / 19 Προτιμήσεις καταναλωτών Θέλουμε
ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ-ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο α οριζουμε
page 1 of 12 ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ-ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Ορισμος Για καθε συναρτηση f : S R και καθε αριθμο α οριζουμε Την καμπυλη αδιαφοριας(idifferece curve, level set) της f I = { x Sfx, ( ) = α} α Το υπερτερο
Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός.
Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης υνθήκες για αποτελεσματικότητα κατά areto υνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:
Θεωρία επιλογών του καταναλωτή
Καθηγήτρια: Β. ΠΕΚΚΑ- ΟΙΚΟΝΟΜΟΥ Υποψήφια Διδάκτωρ: Σ. ΤΑΚΑΟΓΛΟΥ Θεωρία επιλογών του καταναλωτή Θα Εξετάσαμε: Χρησιμότητα Συνολική και Οριακή Χρησιμότητα Ισορροπία Καταναλωτή και Νόμος Ζήτησης Εισοδηματικός
Θεωρία επιλογών του καταναλωτή
Καθηγήτρια: Β. ΠΕΚΚΑ- ΟΙΚΟΝΟΜΟΥ Υποψήφια Διδάκτωρ: Σ. ΤΑΚΑΟΓΛΟΥ Θεωρία επιλογών του καταναλωτή Θα Εξετάσαμε: Χρησιμότητα Συνολική και Οριακή Χρησιμότητα Ισορροπία Καταναλωτή και Νόμος Ζήτησης Εισοδηματικός
Notes. Notes. Notes. Notes. p x. x x
Θεωρία ζήτησης Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 9 Οκτωβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία ζήτησης 9 Οκτωβρίου 2012 1 / 40 Ζήτηση ενός αγαθού ως συνάρτηση της τιμής Δεδομένου ότι ένας
) = 2lnx lnx 2
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Σεπτέµβριος 8 Τµήµα Οικονοµικών Επιστηµών Μάθηµα: Μικροοικονοµική Ι ιδάσκοντες: Β. Ράπανος-Ι Χειάς Εξέταση στη Μικροοικονοµική Ι Στην εξέταση αυτή δίνονται δύο σύνοα το Α και το Β.
6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ακριβώς ένα στοιχείο
Διάλεξη 5- Σημειώσεις
Διάλεξη 5- Σημειώσεις 1 Κοίλες (concave) και κυρτές (convex) συναρτήσεις Σημείωση: Μόνο για συναρτήσεις που είναι συνεχείς σε ένα (κυρτό) διάστημα R και παραγωγίσιμες τουλάχιστον δύο φορές στο εσωτερικό
Notes. Notes. Notes. Notes. A B C x y z y z x z x y
Κοινωνική επιλογή και Ευημερία Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Δεκεμβρίου 01 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Κοινωνική επιλογή και Ευημερία 3 Δεκεμβρίου 01 1 / 50 Κοινωνική επιλογή. Κοινωνική επιλογή.
Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 3 η. Αποτελεσματικότητα και Ευημερία
Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 3 η Αποτελεσματικότητα και Ευημερία Ζητήματα που θα εξεταστούν: Πότε και πως επιτυγχάνεται η οικονομική αποτελεσματικότητα Θεωρήματα των οικονομικών της
6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51.
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 6 η ΕΚΑ Α 5. ίνεται η συνάρτηση ln, αν > 0 f () 0, αν 0 Να αποδείξετε ότι η f είναι συνεχής στο 0 i Να µελετήσετε την f ως προς την µονοτονία και τα ακρότατα και να βρείτε το σύνολο τιµών
25. Μία τυπική επιχείρηση που λειτουργεί σε καθεστώς τέλειου ανταγωνισμού, στη μακροχρόνια θέση ισορροπίας της: α. πραγματοποιεί θετικά οικονομικά κέρδη. β. πραγματοποιεί μηδενικά οικονομικά κέρδη. γ.
ΑΝΤΑΛΛΑΓΗ. Οι συναρτήσεις χρησιμότητας των ατόμων Α και Β είναι αντίστοιχα. και. και το αρχικό απόθεμα και.
ΑΝΤΑΛΛΑΓΗ Άσκηση 5 Οι συναρτήσεις χρησιμότητας των ατόμων Α και Β είναι αντίστοιχα u ( x, x ) = x + x 1 2 1 2 και u ( x, x ) = x + x 1 2 1 2 Ω = (2,0) Ω = (0,1) και το αρχικό απόθεμα και. Να προσδιοριστεί
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 99 Α. α) Ψ β) Η συνάρτηση
Άριστες κατά Pareto Κατανομές
Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή
ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης
ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης ευτέρα, Ιουνίου 4 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()
ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ
ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,
ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ
ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Ο Α1. Έστω η συνάρτηση f ( x,,1. Nα αποδείξετε ότι η f είναι παραγωγίσιμη στο. v v 1 και ισχύει : x vx A2. Να διατυπώσετε και να ερμηνεύσετε γεωμετρικά το Θεώρημα Bolzano.
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /4/8 ΕΩΣ 4/4/8 ΤΑΞΗ: ΜΑΘΗΜΑ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Απριλίου 8 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση ορισμένη σε ένα διάστημα Δ Αν o
από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης.
ΕΛΑΣΤΙΚΟΤΗΤΑ ΖΗΤΗΣΗΣ Ορισμός: Η ελαστικότητα ζήτησης, ενός αγαθού ως προς την τιμή του δίνεται από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία μεταβολή της τιμής του. Δηλαδή %
Notes. Notes. Notes. Notes. C = p x x 1 + p y y 1. pxx + pyy = 160
Ελαχιστοποίηση κόστους Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 9 Οκτωβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Ελαχιστοποίηση κόστους 9 Οκτωβρίου 2012 1 / 36 Κόστος Το πρόβλημα εύρεσης ενός άριστου καλαθιού
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο