Κίνηση Συρμού σε Κυκλικό Τόξο

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κίνηση Συρμού σε Κυκλικό Τόξο"

Transcript

1 Κίνηση Συρμού σε Κυκλικό Τόξο 1

2 Βσικά Στοιχεί Χάρξης ΥΠΕΡΥΨΩΣΗ

3 Κίνηση σε Κμπύλη Χωρίς Υπερύψωση F = mv r = ma όπου: m : μάζ οχήμτος (kgr) V : τχύτητ συρμού (m/sec) [ v(km / h) = v(m / sec) / 3.6 ] r : κτίν κυκλικού τόξου (m) aq : οριζόντι φυγόκεντρη επιτάχυνση (m/sec ) q max a q = 0.85 m/sec reg a q = 0.65 m/sec με κριτήριο την άνεση των επιβινόντων τυπική υπερύψωση γι λόγους οικονομίς Τότε [V (km/h), r (m), reg a q (m/sec )]: max v = r rega q ή max v =.91 r ή min r = 0.118v 3

4 Εγκάρσιο Τίνγμ C = Δa Δt όπου: C : εγκάρσιο τίνγμ (m/sec 3 ) aq : οριζόντι φυγόκεντρη επιτάχυνση (m/sec ) t : χρόνος (sec) q max C = 0.50 m/sec 3 με κριτήριο την άνεση των επιβινόντων Η τιμή του max C προσδιορίζει τις συνθήκες λληλουχίς ομόρροπων ή ντίρροπων κυκλικών τόξων ευθυγρμμιών κι κυκλικών τόξων χωρίς ν πιτείτι η πρεμβολή τόξου συνρμογής μετξύ τους 4

5 Αλληλουχί Ευθείς Κυκλικού Τόξου ΔK 9000 / V ΔK 7000 / V ΔK 4000 / V γι V 100km/h γι 100 km/h < V 160km/h γι V > 160km/h όπου: ΔK = 1000/r cir 1000/r tan = 1/r cir (x1000 γι λόγους ευκολίς) V : τχύτητ συρμού (km/h) ή min r min r min r = V = V = V / 9 / 7 / 4 γι V 100km/h γι 100 km/h < V 160km/h γι V > 160km/h σε διφορετική περίπτωση πιτείτι η πρεμβολή οριζόντιου τόξου συνρμογής 5

6 Αλληλουχί Κυκλικών Τόξων (1/) ΔK = r1 ± r r r [ (-) ομόρροπ, (+) ντίρροπ ] r 1 > r zlv = a r1r r ± r 1 όπου: zlv : επιτρεπόμενη τχύτητ συρμού (km/h) r i : κτίν κμπύλης (m) a = 3.00 γι V 100km/h a =.65 γι 100 km/h < V 160km/h a =.00 γι V > 160km/h [ (-) ομόρροπ, (+) ντίρροπ ] r 1 > r 6

7 Αλληλουχί Κυκλικών Τόξων (/) σε περίπτωση ντίρροπων τόξων ότν δεν ικνοποιούντι οι πρπάνω συνθήκες κι δεν είνι δυντή η πρεμβολή οριζόντιου τόξου συνρμογής (πχ. περίπτωση λλγών γρμμής), τότε δύντι ν πρεμβληθεί ευθύγρμμο τμήμ μήκους lz όπου: min lz = 6m, ΔK 10 κι lz 0.10 zlv lz 0.15 zlv lz 0.0 zlv γι zlv 70km/h γι 70 km/h < zlv 130km/h γι zlv > 130km/h 7

8 Κίνηση σε Κμπύλη Με Υπερύψωση Fsin F Fcos G Gsin Gcos S ότν Fcos = Gsin τότε = 0 mv r cos = mgsin όπου 0 : υπερύψωση ισορροπίς (mm) s = 1500 mm g = 9.81 (m/sec ) v : τχύτητ συρμού (km/h) r : κτίν κμπύλης (m) v 0 = g s r 0 sv = rg 0 = 11.8 v r 8

9 Ορικές Τιμές Υπερύψωσης γι Κίνηση σε Κμπύλη Fsin F Fcos G Gsin Gcos ότν Fcos = Gsin τότε = 0 mv r cos = mgsin S v 0 = g s r sv = rg υπερύψωση 0 έχει ως συνέπει την εντύπωση ότι ο συρμός κινείτι σε ευθυγρμμί εφρμογή της 0 κρίνετι σκόπιμη σε συρμούς που κινούντι με την ίδι τχύτητ 0max = 150 mm, 0min = 0 mm (ότν <0mm τότε 0) η υπολογιζόμενη υπερύψωση στρογγυλεύετι κτά 5mm προς τ πάνω (πχ mm) ότν r<75m (r-50)/1.50 σε στθμούς κι λλγές γρμμών max = 100 mm 0 0 v = 11.8 r 9

10 Έλλειμμ Υπερύψωσης Fsin F Fcos G Gsin Gcos ότν v r vorh 11.8 τότε F = Fcos Gsin a = (v cos)/r g sin a = (g/s)x( 0 vorh) 0.65m/sec, (0.85m/sec ) = a (s/g) 100mm, (130mm) S [vorh : υφιστάμενη υπερύψωση (mm)] min = 0 γιτί υπάρχουν όρι σε κι 10

11 Περίσσει Υπερύψωσης (1/) Fsin F Fcos G Gsin Gcos ότν v r vorh 11.8 τότε F = Gsin - Fcos a = g sin - (v cos)/r a = (g/s)x(vorh - 0 ) = a (s/g) S [vorh : υφιστάμενη υπερύψωση (mm)] zl = 0 + γιτί υπάρχουν όρι σε a 11

12 Περίσσει Υπερύψωσης (/) Fsin F S Fcos G Gsin Gcos Ανώττ Όρι Περίσσεις Υπερύψωσης Ημερήσιο Συνολικό φορτίο Εμπορευμτικών Αμξοστοιχιών (t) Ανώττ Όρι Περίσσεις Υπερύψωσης zl (mm) < >

13 Υπερύψωση με Μικτή Κυκλοφορί = zlv zl zlv + V - V zl minr = (11.8zlV ) /( + zl ) reg = r minr όπου : υπερύψωση που ντιστοιχεί στη minr (mm) minr : ελάχιστη κτίν (m) zlv : επιτρεπόμενη τχύτητ επιβτηγού συρμού (km/h) V : επιτρεπόμενη τχύτητ εμπορικού συρμού (km/h) zl : επιτρεπόμενη υπερύψωση εμπορικού συρμού (mm) zl : επιτρεπόμενη υπερύψωση επιβτηγού συρμού (mm) r : υπάρχουσ κτίν(m) reg : τυπική υπερύψωση (mm) 13

14 Εφρμογές (1/5) Σε σιδηροδρομική γρμμή με επιτρεπόμενη τχύτητ τ 160km/h ζητείτι ο υπολογισμός της ελάχιστης κτίνς που μπορεί ν κολουθήσει ομόρροπ κι ντίρροπ ντίστοιχ κμπύλη με κτίν r=15000m, χωρίς την νγκιότητ πρεμβολής τόξου συνρμογής κι υπερύψωσης. ισχύει r r r ± r 1 zlv a =.65 γι 100 km/h < V 160km/h = a 1 πρέπει r1>r γι ομόρροπ (-) r=940.8m γι ντίρροπ (+) r=4836.7m 14

15 Εφρμογές (/5) Σε κυκλικό τόξο κτίνς r=1700m, με υπερύψωση =100mm ν εξετστεί ν επιτρέπετι ν διέλθει επιβτηγή μξοστοιχί με τχύτητ 160km/h. ότν συρμός κινείτι σε κμπύλη κτίνς r κι υπάρχουσς υπερύψωσης vorh με τχύτητ μεγλύτερη πό v = r vorh 11.8 τότε στο επίπεδο της γρμμής εμφνίζετι δύνμη προς το εξωτερικό τ κμπύλης κι μέτρο: F = Fcos Gsin με ντίστοιχη επιτάχυνση a = (v cos)/r g sin a = v /r g vorh/s a =(160/3.6)^/ x100/1500 a = 0.51m/sec < 0.65m/sec η υπολειπόμενη υπερύψωση της vorh πό την υπερύψωση ισορροπίς είνι : = a (s/g) = 0.51(1500/9.81) = 78mm 15

16 Εφρμογές (3/5) Σε σιδηροδρομική γρμμή μεικτής κυκλοφορίς δίδετι η επιτρεπόμενη τχύτητ επιβτηγών μξοστοιχιών κθώς κι η ντίστοιχη τχύτητ των εμπορικών γι ημερήσι συνολική διέλευση φορτίων t/μέρ ως εξής : zlv = 180km/h V = 80km/h Κτά πόσο πρέπει ν μετβληθεί η ελάχιστη κτίν (min r) των κμπυλών της γρμμής προκειμένου ν είνι δυντή η διέλευση εμπορικών μξοστοιχιών με τχύτητ V =100km/h, χωρίς ν τροποποιηθεί η τιμή της επιτρεπόμενης περίσσεις υπερύψωσης; είνι: zl = 70mm (40000t/μέρ), zl = 100mm V = 80km/h V = 100km/h minr minr = zlv zl zlv + V - V = (11.8zlV ) /( = zlv zl zlv + V - V = (11.8zlV ) /( zl + zl ) zl + zl ) = 111.8mm 115mm = m = 145.9mm 150mm = 159.8m άρ ΔR= ΔR=48.95m 16

17 Εφρμογές (4/5) Κμπύλο τμήμ σιδηροδρομικής γρμμής περιλμβάνει κυκλικό τόξο κτίνς r=1600m με υπερύψωση =100mm. Από το κμπύλο τμήμ διέρχοντι εμπορευμτικές κι επιβτηγές μξοστοιχίες συνολικού φορτίου 50000t/μέρ. Ν υπολογιστούν μέγιστες τχύτητες επιβτηγών κι εμπορευμτικών συρμών. είνι: zl = 70mm (50000t/μέρ), zl = 100mm προκειμένου ν βρεθεί η μέγιστη τχύτητ σε δεδομένη χάρξη, η κτίν θεωρείτι ελάχιστη r =minr = minr = (11.8zlV ) /( + zl ) zlv=164.7km/h zlv=160km/h = zlv zl zlv + V - V zl V =6.0km/h V =60km/h 17

18 Εφρμογές (5/5) Ν υπολογιστεί η τυπική υπερύψωση γρμμής που βρίσκετι σε κμπύλη κτίνς r=1000m, προκειμένου η γρμμή ν δύντι ν φέρει συνολικά ημερήσιο φορτίο έως 60000t/μέρ κι η μέγιστη επιτρεπόμενη τχύτητ ν νέρχετι σε 160km/h ενώ ν ληφθεί V =80km/h. είνι: zl = 70mm (50000t/μέρ), zl = 100mm = zlv zl zlv + V - V zl = 16.7mm 130mm minr = (11.8zlV ) /( + zl ) όμως minr > r πρέπει ν μειωθεί η μέγιστη επιτρεπόμενη τχύτητ zlv πό τις πρπάνω σχέσεις γι minr=1000 προκύπτει zlv = minr 11.8 (zl + zl ) + V = m = 144.km/h 140km/h minr = reg = zlv zl zlv + V - V = (11.8zlV ) /( r minr zl + zl ) = 15.4mm 150mm = 95.1m = 138.8mm 140mm 18

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες ( ) Α. Δύο σώματα ίσης μάζας m κινούνται σε οριζόντιο επίπεδο όπως φαίνεται στο παρακάτω σχήμα.

Εισαγωγή στις Φυσικές Επιστήμες ( ) Α. Δύο σώματα ίσης μάζας m κινούνται σε οριζόντιο επίπεδο όπως φαίνεται στο παρακάτω σχήμα. Εισγωγή στις Φυσικές Επιστήμες (7-7-7) Μηχνική Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 Α. Δύο σώμτ ίσης μάζς m κινούντι σε οριζόντιο επίπεδο όπως φίνετι στο πρκάτω σχήμ. Α υ Β a O = Εάν γι t = το σώμ Α κινείτι με στθερή

Διαβάστε περισσότερα

Κίνηση σε Μαγνητικό πεδίο

Κίνηση σε Μαγνητικό πεδίο Κίνηση σε γνητικό πεδίο 4.1. Ακτίν κι Περίοδος στο ΟΠ. Από έν σημείο Α μέσ σε ομογενές μγνητικό πεδίο έντσης Β=2Τ, εκτοξεύοντι δύο σωμτίδι Σ 1 κι Σ 2 ίδις μάζς m=10-10 kg κι ντίθετων φορτίων, με τχύτητες

Διαβάστε περισσότερα

Ονοματεπώνυμο. Τμήμα

Ονοματεπώνυμο. Τμήμα Ηλεκτρομγνητισμός (6-7-9) Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 A. Έν σωμάτιο με φορτίο -6. n τοποθετείτι στο κέντρο ενός μη γώγιμου σφιρικού φλοιού εσωτερικής κτίνς c κι εξωτερικής 5 c. Ο σφιρικός φλοιός περιέχει

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: 15/0/015 ΘΕΜ 1 ο Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις 1-4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.

Διαβάστε περισσότερα

Επιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση

Επιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση Επιτάχυνση κι ισχύς σε κμπυλόγρμμη κίνηση Έν σημεικό σφιρίδιο Σ μάζς m=0,kg είνι δεμένο m στο άκρο βρούς κι μη Σ εκττού νήμτος μήκους =0,m, το άλλο άκρο του οποίου είνι στερεωμένο σε οριζόντι οροφή. Το

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ σε κάθε ριθµό το γράµµ που ντιστοιχεί

Διαβάστε περισσότερα

1ο Επαναληπτικό Διαγώνισμα Φυσικής Α τάξης Γενικού Λυκείου

1ο Επαναληπτικό Διαγώνισμα Φυσικής Α τάξης Γενικού Λυκείου ο Επνληπτικό Διγώνισμ Φυσικής Α τάξης Γενικού Λυκείου Θέμ Α: (Γι τις ερωτήσεις Α. έως κι Α.4 ν γράψετε στο τετράδιό σς τον ριθμό της πρότσης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πρότση.) Α. Στην ευθύγρμμη

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή

Διαβάστε περισσότερα

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο

Ορισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο Μθημτικά Β Κτ/νσης ΕΛΛΕΙΨΗ Ορισμός: Έλλειψη με εστίες Ε κι Ε λέγετι ο γεωμ τόπος των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων πό τ Ε κι Ε είνι στθερό κι μεγλύτερο του ΕΈ Το στθερό υτό άθροισμ

Διαβάστε περισσότερα

Επιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση

Επιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση Υλικό Φσικής-Χηµείς Επνληπτικά Θέµτ. Επιτάχνση κι ισχύς σε κμπλόγρμμη κίνηση Έν σηµεικό σφιρίδιο Σ µάζς m=0,kg είνι δεµένο στο ά- κρο βρούς κι µη εκττού νήµτος µήκος =0,m, το άλλο άκρο το οποίο είνι στερεωµένο

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4

Διαβάστε περισσότερα

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 8//6 ΘΕΜΑ Οδηγί: Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθμό της ερώτησης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η

Διαβάστε περισσότερα

* 4. Οµογενές στερεό σώµ στρέφετι γύρω πό στθερό άξον, υπό την επίδρση στθερής ροπής τ. Συνεπώς όλ τ υλικά σηµεί που το ποτελούν. έχουν την ίδι επιτρό

* 4. Οµογενές στερεό σώµ στρέφετι γύρω πό στθερό άξον, υπό την επίδρση στθερής ροπής τ. Συνεπώς όλ τ υλικά σηµεί που το ποτελούν. έχουν την ίδι επιτρό *! " # $ # # " % $ " " % $ " ( # " ) % $ THΛ: 270727 222594 THΛ: 919113 949422 " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Αν στο διπλνό κύκλωµ

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Α) Προβλήμτ ευθύγρμμης ομλά επιτχυνόμενης κίνησης. ) Απλής εφρμογής τύπων Ακολουθούμε τ εξής βήμτ: i) Συμβολίζουμε τ δεδομέν κι ζητούμεν με τ ντίστοιχ σύμβολ που θ χρησιμοποιούμε.

Διαβάστε περισσότερα

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό

Διαβάστε περισσότερα

Αριστοτέλειο Πνεπιστήµιο Θεσσλονίκης Πολυτεχνική Σχολή Τµήµ Πολιτικών Μηχνικών Μετπτυχικό πρόγρµµ σπουδών «Αντισεισµικός Σχεδισµός Τεχνικών Έργων» Μάθηµ: «Αντισεισµικός Σχεδισµός Θεµελιώσεων, Αντιστηρίξεων

Διαβάστε περισσότερα

mr 3 e 2λt. 1 + e d dt 2G v 1 = m 2 r o, 2 ˆr + 1 r , v 2 = m 1

mr 3 e 2λt. 1 + e d dt 2G v 1 = m 2 r o, 2 ˆr + 1 r , v 2 = m 1 Εθνικό κι Κποδιστρικό Πνεπιστήμιο Αθηνών, Τμήμ Φυσικής Εξετάσεις στη Μηχνική Ι, Τμήμ Κ Τσίγκνου & Ν Βλχάκη, 4 Σεπτεμβρίου 8 Διάρκει εξέτσης 3 ώρες, Κλή επιτυχί bonus ερωτήμτ Ονομτεπώνυμο:, ΑΜ: Ν ληφθεί

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονόμων & Τοπογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονόμων & Τοπογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Αγρονόμων & Τοπογράφων Μηχανικών ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Σιδηροδρομική Κωνσταντίνος Κεπαπτσόγλου Λέκτορας ΕΜΠ kkepap@central.ntua.gr Η ΧΑΡΑΞΗ ΤΗΣ ΓΡΑΜΜΗΣ

Διαβάστε περισσότερα

Η ΒΡΑΧΥΣΤΟΧΡΟΝΗ ΚΑΜΠΥΛΗ ΚΑΙ ΟΙ ΕΞΙΣΩΣΕΙΣ EULER LAGRANGE

Η ΒΡΑΧΥΣΤΟΧΡΟΝΗ ΚΑΜΠΥΛΗ ΚΑΙ ΟΙ ΕΞΙΣΩΣΕΙΣ EULER LAGRANGE Η ΒΡΑΧΥΣΤΟΧΡΟΝΗ ΚΑΜΠΥΛΗ ΚΑΙ ΟΙ ΕΞΙΣΩΣΕΙΣ EULER LAGRANGE Η δημοσίευση του Γιάννη Φιορεντίνου γι το πρόβλημ της βρχυστόχρονου ήτν μι πρό(σ)κληση. Διβάζοντς την εκφώνηση του προβλήμτος ποφάσισ ν δώσω μι πλήρη

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ Σγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.pmoiras.weebly.om ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ

Διαβάστε περισσότερα

Α) Να επιλέξετε την σωστή απάντηση. Αν η επίδραση του αέρα είναι αμελητέα τότε το βάρος Β του σώματος θα έχει μέτρο: F α) F β) 3F γ) 3

Α) Να επιλέξετε την σωστή απάντηση. Αν η επίδραση του αέρα είναι αμελητέα τότε το βάρος Β του σώματος θα έχει μέτρο: F α) F β) 3F γ) 3 ΑΠΑΝΤΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ο ΚΕΦΑΛΑΙΟ ο ΘΕΜΑ 376/Β. Σε έν σώμ μάζς m που ρχικά ηρεμεί σε οριζόντιο επίπεδο σκούμε κτκόρυφη στθερή δύνμη μέτρου F, οπότε το σώμ κινείτι κτκόρυφ προς τ πάνω με

Διαβάστε περισσότερα

Θέματα Εξετάσεων Φεβρουαρίου 2011:

Θέματα Εξετάσεων Φεβρουαρίου 2011: ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέμτ Εξετάσεων Φεβρουρίου : ΘΕΜΑ μονάδες Πρέπει με κυβικές b-splnes ν πρεμβάλετε, κτά σειρά, τ εξής σημεί:,,,,,,,8, 7, κι,. Ας είνι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ Φυσική Κτεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ Θέµ ο κ ΙΑΓΩΝΙΣΜΑ Α. (Βάλτε σε κύκλο το γράµµ µε τη σωστή πάντηση) Αν υξήσουµε την πόστση µετξύ δύο ετερόσηµων σηµεικών ηλεκτρικών φορτίων,. η δυνµική

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΓΩΝΙΣΜ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: (ΠΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙ: 04/0/04 ΘΕΜ Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτσεις -4 κι δίπλ το γράμμ

Διαβάστε περισσότερα

v 0x = v 0 > 0, v 0y = 0.

v 0x = v 0 > 0, v 0y = 0. Εθνικό Κποδιστρικό Πνεπιστήμιο Αθηνών, Τμήμ Φυσικής Εξετάσεις στη Μηχνική Ι, Τμήμ Κ Τσίγκνου & Ν Βλχάκη, 4 Ινουρίου 07 Διάρκει εξέτσης 3 ώρες, Κλή επιτυχί bonus ερωτήμτ) Ονομτεπώνυμο:, ΑΜ: Ν ληφθεί υπόψη

Διαβάστε περισσότερα

γραπτή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης

γραπτή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9//0 έως 09/0/ γρπτή εξέτση στ ΦΥΣΙΚΗ Γ' κτεύθυνσης Τάξη: Γ Λυκείου Τμήμ: Βθμός: Ημερομηνί: 8//00 Ύλη: Ονομτεπώνυμο: Κθηγητές: Τλντώσεις - Κύμτ Αθνσιάδης Φοίβος,

Διαβάστε περισσότερα

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση Γ. ΕΛΛΕΙΨΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) κι στθερό άθροισµ.. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες

Διαβάστε περισσότερα

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1. Λύση

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1. Λύση 39th International Physics Olympiad - Hanoi - Vietnam - 8 11 Υπολογισμός της πόστσης TG Λύση 3 3 3 Ο όγκος του νερού στην κοιλότητ είνι V = 1cm = 1 m Το μήκος του πυθμέν της κοιλότητς είνι d = L atan 6

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΒΟΛΗ -- ΕΛΛΕΙΨΗ -- ΥΠΕΡΒΟΛΗ

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΒΟΛΗ -- ΕΛΛΕΙΨΗ -- ΥΠΕΡΒΟΛΗ ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΒΟΛΗ -- ΕΛΛΕΙΨΗ -- ΥΠΕΡΒΟΛΗ II.ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ - ΥΠΕΡΒΟΛΗ Α. ΘΕΩΡΙΑ ΜΕΘΟ ΟΛΟΓΙΑ 1. Εύρεση Εξίσωσης Προλής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

12 η Εβδομάδα Ισορροπία Στερεών Σωμάτων. Ισορροπία στερεών σωμάτων

12 η Εβδομάδα Ισορροπία Στερεών Σωμάτων. Ισορροπία στερεών σωμάτων 1 η Εβδομάδ Ισορροπί Στερεών Σωμάτων Ισορροπί στερεών σωμάτων Γι ν ισορροπεί έν στερεό σώμ πρέπει κι η συνιστμένη όλων των δυνάμεων που σκούντι πάνω του ν είνι ίση με μηδέν κι η συνιστμένη όλων των ροπών

Διαβάστε περισσότερα

Κεφάλαιο 9 ο ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΟΠΩΣΗ

Κεφάλαιο 9 ο ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΟΠΩΣΗ Κεφάλιο 9 ο ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΟΠΩΣΗ ρ. Ν. Αλεξό ουλος ΚΕΦΑΛΑΙΟ 9 ο : ΚΟΠΩΣΗ ΣΥΝΟΠΤΙΚΑ ΘΕΩΡΗΤΙΚΑ ΣΤΟΙΧΕΙΑ Έχει πρτηρηθεί ότι εάν έν µετλλικό εξάρτηµ ή δοκίµιο υποβληθεί ε ενλλόµενες περιοδικές

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

Ο Ρ Ο Σ Η Μ Ο. Τυπολόγιο: Ευθύγραμμη κίνηση. Μετατόπιση: Δx x 2. Μέση διανυσματική ταχύτητα: Μέση αριθμητική ταχύτητα: υ m s.

Ο Ρ Ο Σ Η Μ Ο. Τυπολόγιο: Ευθύγραμμη κίνηση. Μετατόπιση: Δx x 2. Μέση διανυσματική ταχύτητα: Μέση αριθμητική ταχύτητα: υ m s. Τυπολόγιο: Ευθύγρμμη κίνηση Μεττόπιση: Δ () Μέση δινυσμτική τχύτητ: Δ υμ Δt t t s ολ Μέση ριθμητική τχύτητ: υ s Επιτάχυνση: s μ S t ολ Δυ Δt Ευθύγρμμη ομλή κίνηση: υ στθερό Εξισώσεις επιτάχυνσης τχύτητς

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση. Μετρικές σχέσεις στ τρίγων Α Μετρικές σχέσεις σε ορθογώνιο τρίγωνο Α Προβολή σηµείου σε ευθεί Ορθή προβολή Α ονοµάζετι το ίχνος της κάθετης που φέρνουµε

Διαβάστε περισσότερα

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για 3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΘΕΜΑ A Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΔΥΝΑΜΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΔΥΝΑΜΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΔΥΝΑΜΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ Σγγρφή Επιμέει: Πνγιώτης Φ. Μίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pira.wly. ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ

Διαβάστε περισσότερα

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2.

Ενότητα Να βρεθούν οι ευθείες οι οποίες διέρχονται από το σημείο Α(1,2) και απέχει από το σημείο Β(3,1) απόσταση d=2. Ευθεί Ενότητ 7. Απόστση σημείου πό ευθεί Εμβδόν τριγώνου Εφρμογές 7.1 Ν βρεθεί η πόστση: i) του σημείου Μ(1,3) πό την ευθεί (ε) με εξίσωση 3x-4y- 11=0, ii) του σημείου Ρ(,-3) πό την (η) με εξίσωση 5x+1y-=0.

Διαβάστε περισσότερα

F B1 F B3 F B2. Υλικό Φυσικής Χηµείας ΕΡΩΤΗΣΕΙΣ ΙΚΑΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ. 1 B K

F B1 F B3 F B2. Υλικό Φυσικής Χηµείας ΕΡΩΤΗΣΕΙΣ ΙΚΑΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ.  1 B K ΕΡΩΤΗΣΕΙΣ ΙΚΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΙΣΟΡΡΟΠΙ ΤΟΥ ΣΤΕΡΕΟΥ ΣΩΜΤΟΣ Ερώτηση 1 η 1. Μι οµογενής λεπτή δοκός ισορροπεί κθώς βρίσκετι σε επή µε τον τοίχο κι το δάπεδο του σχήµτος. Οι ντιδράσεις του δπέδου κι του τοίχου

Διαβάστε περισσότερα

5. Η χάραξη της σιδηροδροµικής γραµµής

5. Η χάραξη της σιδηροδροµικής γραµµής 5. Η χάραξη της σιδηροδροµικής γραµµής 5.1 Εισαγωγή Μια σιδηροδροµική γραµµή θεωρείται ιδανική ως προς τη γεωµετρία χάραξης όταν: Αποτελείται αποκλειστικά από ευθύγραµµα τµήµατα. Κείται, σε όλο το µήκος

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών

Διαβάστε περισσότερα

Θεωρήματα, Προτάσεις, Εφαρμογές

Θεωρήματα, Προτάσεις, Εφαρμογές Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 28 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΜΕΡΟΣ Α. Ν βρείτε το ολοκλήρωμ: (8x 3 ημx 5 + 7) dx ex (8x 3 ημx 5 e x + 7) dx = (8x3 ημx 5e x + 7)dx =

Διαβάστε περισσότερα

6 η Εργασία. θ(t) = γt 2 - βt 3

6 η Εργασία. θ(t) = γt 2 - βt 3 1 6 η Εργσί 1) Έν τύµπνο σε µι εκτυπωτική µηχνή στρέφετι κτά γωνί θ(t), που δίνετι πό τη σχέση: θ(t) = γt - βt 3 όπου γ =,5 rad/s κι β = 0,4 rad/s 3. ) Υπολογίστε τη γωνική τχύτητ κι την γωνική επιτάχυνση

Διαβάστε περισσότερα

Κυκλική κίνηση. Ονομάζεται η κίνηση η οποία πραγματοποιείται σε κυκλική τροχιά. Μελέτη της κυκλικής κίνησης. R θ S R

Κυκλική κίνηση. Ονομάζεται η κίνηση η οποία πραγματοποιείται σε κυκλική τροχιά. Μελέτη της κυκλικής κίνησης. R θ S R Κυκλική κίνηση Ονμάζετι η κίνηση η πί πρμτπιείτι σε κυκλική τρχιά. Μελέτη της κυκλικής κίνησης S Ως νστόν πό τη εμετρί ισχύσει : S S Η τχύτητ η πί εκφράζει τ πόσ ρήρ διράφει η επιβτική κτίν τη νί νμάζετι

Διαβάστε περισσότερα

Συµπληρωµατικά στοιχεία για το µάθηµα της κυκλοφοριακής τεχνικής

Συµπληρωµατικά στοιχεία για το µάθηµα της κυκλοφοριακής τεχνικής Συµπληρωµτικά στοιχεί γι το µάθηµ της κυκλοφορικής τεχνικής 1. ιευκρινήσεις στην µέθοδο νάλυσης κυκλοφορικής ικνότητς σε οδούς πολλών λωρίδων κυκλοφορίς 2. Συµπληρωµτικές Ασκήσεις Πρδείγµτ 3. 4η Άσκηση

Διαβάστε περισσότερα

* ' 4. Σώµ εκτελεί γ..τ µε συχνότητ f. H συχνότητ µε την οποί µεγιστοποιείτι η δυνµική ενέργει τλάντωσης είνι. f =2f β. f =f/2 γ. f =f δ. f =4f Β. Στη

* ' 4. Σώµ εκτελεί γ..τ µε συχνότητ f. H συχνότητ µε την οποί µεγιστοποιείτι η δυνµική ενέργει τλάντωσης είνι. f =2f β. f =f/2 γ. f =f δ. f =4f Β. Στη * '! " # $ # # " % $ " ' " % $ ' " ( # " ' ) % $ THΛ: 270727 222594 THΛ: 919113 949422 ' " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Κύκλωµ

Διαβάστε περισσότερα

Γενικές ασκήσεις σελίδας

Γενικές ασκήσεις σελίδας Γενικές σκσεις σελίδς 9 3. ίνετι η εξίσωση + λ 0 (), όπου λ R. Ν ποδείξετε ότι γι κάθε τιµ του λ, η () πριστάνει κύκλο, του οποίου ζητείτι ν ρεθεί το κέντρο κι η κτίν. (ii) Ν ποδείξετε ότι όλοι οι κύκλοι

Διαβάστε περισσότερα

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ Θέρµνση Ψύξη ΚλιµτισµόςΙΙ Ψυχροµετρί Εργστήριο Αιολικής Ενέργεις Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κτσπρκάκης Ξηρόςκιυγρός τµοσφιρικόςέρς Ξηρόςκιυγρόςτµοσφιρικός έρς Ξηρός τµοσφιρικός έρς: ο πλλγµένος πό τους

Διαβάστε περισσότερα

ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΘΕΩΡΙΣ ΣΚΗΣΗ Ο πρκάτω πίνκς περιέχει τ πρόσηµ των λγεβρικών τιµών της τχύτητς κι της επιτάχνσης. Σµπληρώστε τον πρκάτω πίνκ. >, > >, <

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΡΑΜΜΑΤΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ συγκέντρωση Μόλυνση ονομάζετι η είσοδος ενός πθογόνου μικροίου στον οργνισμό. Χρονικά, προηγείτι η είσοδος του μικροίου κι κολουθεί η ενεργοποίηση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ ΘΕΜ 1ο ΘΕΜΤ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ - 000 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση. 1. Ένς νεµιστήρς

Διαβάστε περισσότερα

Σωτήρης Χρονόπουλος ΦΡΟΝΤΙΣΤΗΡΙΟ ΠΡΟΟΠΤΙΚΗ ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ

Σωτήρης Χρονόπουλος ΦΡΟΝΤΙΣΤΗΡΙΟ ΠΡΟΟΠΤΙΚΗ ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΗΣΕΙΣ Σωτρης Χρονόπολος 1. Μι σφίρ ηρεμεί στην άκρη ενός τρπεζιού. Στη σφίρ δίνετι τχύτητ 0, όπως φίνετι στην εικόν. Ν γράψετε τις εξισώσεις πο

Διαβάστε περισσότερα

δύναμη καθίσματος στον Χρήστο δύναμη Ελένης στον Χρήστο

δύναμη καθίσματος στον Χρήστο δύναμη Ελένης στον Χρήστο ΟΜ φοιτητές, ο Χρήστος κι η λένη κάθοντι σε πρόμοιες κρέκλες γρφείου (τ πόδι της λένης είνι στον έρ). Ο Χρήστος πιέζει με τ πόδι του τ γόντ της λένης. πίλεξε το σωστό: ) ίνι μεγλύτερη η δύνμη που σκεί

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Απόδειξη θεωρήμτος σελίδ 99 στο σχολικό Α. ) Ψ β) Η συνάρτηση,

Διαβάστε περισσότερα

sin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx

sin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx I. ΟΛΟΚΛΗΡΩΜΑ.Ορισμένο ολοκλήρωμ.πράγουσ.θεμελιώδες Θεώρημ.Βσικά ολοκληρώμτ 5.Γρμμικότητ 6.Ολοκλήρωση με λλγή μετλητής ή με ντικτάστση 7.Ολοκλήρωση κτά μέρη 8.Ολοκληρώμτ ρητών 9.Ολοκληρώμτ τριγωνομετρικών.γενικευμένο

Διαβάστε περισσότερα

ΓΙΟ-ΓΙΟ ΚΑΙ ΚΟΨΙΜΟ ΝΗΜΑΤΟΣ

ΓΙΟ-ΓΙΟ ΚΑΙ ΚΟΨΙΜΟ ΝΗΜΑΤΟΣ ΓΙΟ-ΓΙΟ ΚΙ ΚΟΨΙΜΟ ΝΗΜΤΟΣ Ο ομογενής κύλινδρος(γιο-γιό) του σχήμτος έχει μάζ Μ=5kg κι κτίν R=0,m. Γύρω πό τον κύλινδρο είνι τυλιγμένο βρές κι μη εκττό νήμ, το ελεύθερο άκρο του οποίου τρβάμε προς τ πάνω

Διαβάστε περισσότερα

Σ ΣΤΑ ΘΕΜΑ. f x0. x x. x x. lim. lim f. lim x. lim f x. lim. lim f x f x 0. lim. σχήμα. 7 μ Α1. ,οπότε. 4 μ. f x0 0 0 αφού η f είναι.

Σ ΣΤΑ ΘΕΜΑ. f x0. x x. x x. lim. lim f. lim x. lim f x. lim. lim f x f x 0. lim. σχήμα. 7 μ Α1. ,οπότε. 4 μ. f x0 0 0 αφού η f είναι. ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Σ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥΥ 8 7 μ Α ΘΕΜΑ Α Α η λύση Γι έχουμε lim πργωγίσιμη στο lim lim,οπότε μ lim φού η είνι μ Επομένως, lim η λύση, δηλδή η είνι συνεχής στο lim lim μ lim lim

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

Συνηµίτονο µιας οξείας γωνίας ορθογωνίου τριγώνου λέγεται:

Συνηµίτονο µιας οξείας γωνίας ορθογωνίου τριγώνου λέγεται: Λόγος ευθυγράµµων τµηµάτων Ότν θέλουµε ν συγκρίνουµε δύο ευθύγρµµ τµήµτ, υπολογίζουµε τη διάφορ ή το λόγο των µηκών τους. Στην περίπτωση του λόγου υπολογίζουµε πόσες Φορές το έν τµήµ είνι µεγλύτερο πό

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 0 Υπερολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Oρισµός Υπερολή ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων η διφορά των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερή κι µικρότερη πο

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ Συγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.pias.weebl.c ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ ΚΩΝΙΚΕΣ ΤΜΕΣ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Ποι είνι η εξίσωση του κύκλου με κέντρο το (0,0); ρ (0,0) M(,) C Έστω έν σύστημ συντετγμένων στο επίπεδο κι C ο κύκλος με κέντρο το σημείο (0,0) κι κτίν ρ. Γνωρίζουμε πό

Διαβάστε περισσότερα

Φαινόμενο Doppler με επιταχυνόμενο παρατηρητή και όχι μόνο!

Φαινόμενο Doppler με επιταχυνόμενο παρατηρητή και όχι μόνο! Φινόμενο Doppler με επιτχυνόμενο πρτηρητ κι όχι μόνο! Έν πυροσβεστικό όχημ κινείτι με στθερ τχύτητ υ =7Km/h προς κίνητο υ μοτοσικλετιστ. υ Κάποι στιγμ = που πέχουν πόστση d=684m το πυροσβεστικό όχημ ρχίζει

Διαβάστε περισσότερα

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Εργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Εργστήριο Φυσικής Τμήμτος Πληροφορικής κι Τεχνολογίς Υπολογιστών Τ.Ε.Ι. Λμίς Νόμοι Νεύτων - Δυνάμεις Εισγωγή στην έννοι της Δύνμης Γι ν λύσουμε το πρόβλημ του πως θ κινηθεί έν σώμ ότν ξέρουμε το περιβάλλον

Διαβάστε περισσότερα

Τα προτεινόμενα θέματα είναι από τις γενικές ασκήσεις προβλήματα του Ι. Δ. Σταματόπουλου αποκλειστικά για το site (δεν κυκλοφορούν στο εμπόριο)

Τα προτεινόμενα θέματα είναι από τις γενικές ασκήσεις προβλήματα του Ι. Δ. Σταματόπουλου αποκλειστικά για το site (δεν κυκλοφορούν στο εμπόριο) Τ προτεινόμεν θέμτ είνι πό τις γενικές σκσεις προβλμτ το Ι. Δ. Στμτόπολο ποκλειστικά γι το site (δεν κκλοφορούν στο εμπόριο) Θέμ 6 ο Ομογενς σφίρ μάζς m κι κτίνς R, ισορροπεί πάνω σε κεκλιμένο επίπεδο

Διαβάστε περισσότερα

Πέµπτη, 25 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ

Πέµπτη, 25 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 006 Πέµπτη, 5 Μΐου 006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ, που ντιστοιχεί στη σωστή πάντηση.

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ

ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 008 Μρτίου 008 Θεωρητικό Μέρος Θέμ o B Λυκείου. Έν δοχείο με διβτικά τοιχώμτ περιέχει μονοτομικό ιδνικό έριο με σχετική μορική μάζ M r κι ενώ κινείτι

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β' ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΑ. Επιμέλεια : Αθανασιάδης Χαράλαμπος Μαθηματικός

ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β' ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΑ. Επιμέλεια : Αθανασιάδης Χαράλαμπος Μαθηματικός ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β' ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΑ Επιμέλει : Αθνσιάδης Χράλμπος Μθημτικός . ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤΑ Α. ΘΕΩΡΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΙΑΝΥΣΜΑΤΩΝ.

Διαβάστε περισσότερα

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Μθηµτικά Ιβ Σελίδ πό 7 Μάθηµ 7 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Θεωρί : Γρµµική Άλγεβρ : εδάφιο 6, σελ. (µέχρι Πρότση 4.6), εδάφιο 7, σελ. 5 (όχι την πόδειξη της Πρότσης 4.9). πρδείγµτ που ντιστοιχούν

Διαβάστε περισσότερα

2. ** Να βρείτε την εξίσωση του κύκλου που διέρχεται από το σηµείο (1, 0) και εφάπτεται στις ευθείες 3x + y + 6 = 0 και 3x + y - 12 = 0.

2. ** Να βρείτε την εξίσωση του κύκλου που διέρχεται από το σηµείο (1, 0) και εφάπτεται στις ευθείες 3x + y + 6 = 0 και 3x + y - 12 = 0. Ερωτήσεις νάπτυξης 1. ** Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-,

Διαβάστε περισσότερα

* ' 4. Οι κτίνες Röntgen. εκπέµποντι πό ρδιενεργούς πυρήνες που ποδιεγείροντι β. είνι ορτές γ. πράγοντι πό ηλεκτρονικά κυκλώµτ δ. πράγοντι πό επιβράδυ

* ' 4. Οι κτίνες Röntgen. εκπέµποντι πό ρδιενεργούς πυρήνες που ποδιεγείροντι β. είνι ορτές γ. πράγοντι πό ηλεκτρονικά κυκλώµτ δ. πράγοντι πό επιβράδυ * '! " # $ # # " % $ " ' " % $ ' " ( # " ' ) % $ THΛ: 270727 222594 THΛ: 919113 949422 ' " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Κύκλωµ

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo. Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι

Διαβάστε περισσότερα

Η ΑΠΟ ΕΙΞΗ ΤΗΣ ΜΕΤΑΚΙΝΗΣΗΣ ΤΟΥ ΠΕΡΙΗΛΙΟΥ ΤΟΥ ΠΛΑΝΗΤΗ ΕΡΜΗ

Η ΑΠΟ ΕΙΞΗ ΤΗΣ ΜΕΤΑΚΙΝΗΣΗΣ ΤΟΥ ΠΕΡΙΗΛΙΟΥ ΤΟΥ ΠΛΑΝΗΤΗ ΕΡΜΗ Η ΑΠΟ ΕΙΞΗ ΤΗΣ ΜΕΤΑΚΙΝΗΣΗΣ ΤΟΥ ΠΕΡΙΗΛΙΟΥ ΤΟΥ ΠΛΑΝΗΤΗ ΕΡΜΗ Α. ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΤΟΥ ΗΛΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ Όως είνι γνωστό, όλ τ ουράνι σώµτ του Ηλικού συστµτος, λντες, στεροειδείς, κοµτες κλ. κθώς

Διαβάστε περισσότερα

Η έννοια του διανύσματος

Η έννοια του διανύσματος Η έννοι του δινύσμτος Από τη γεωμετρί είμστε εξοικειωμένοι με την έννοι του ευθυγράμμου τμήμτος: δύο διφορετικά σημεί Α κι Β μις ευθείς (ε), ορίζουν το ευθύγρμμο τμήμ ΑΒ Έν ευθύγρμμο τμήμ λέγετι προσντολισμένο,

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ' ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ' ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) ΑΡΧΗ lησ ΣΕΛΙΔΑΣ - Δ' ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ' ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 15 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) ΘΕΜΑΑ Γι τις προτάσεις

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 9 Έλλειψη Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Έλλειψη ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων το άθροισµ των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερό κι µεγλύτερο

Διαβάστε περισσότερα

Συµπληρωµατικά στοιχεία για το µάθηµα της κυκλοφοριακής τεχνικής

Συµπληρωµατικά στοιχεία για το µάθηµα της κυκλοφοριακής τεχνικής Συµπληρωµτικά στοιχεί γι το µάθηµ της κυκλοφορικής τεχνικής. ιευκρινήσεις στην µέθοδο νάλυσης κυκλοφορικής ικνότητς σε οδούς πολλών λωρίδων κυκλοφορίς. Συµπληρωµτικές Ασκήσεις Πρδείγµτ. 4η Άσκηση Όλες

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ ΑΠΑΝΤΗΕΙ ΦΥΙΚΗ Ο.Π Β Λ Γ Λ 3/0/09 ΓΙΑΝΝΗ ΤΖΑΓΚΑΡΑΚΗ ΘΕΜΑ Α Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτσεις Α-Α4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστ πάντηση. Α. ε ποιο πό

Διαβάστε περισσότερα

B Λυκείου. 22 Μαρτίου Συνοπτικές λύσεις των θεµάτων. Θεωρητικό Μέρος Θέµα 1o. 1 mv 2 =nc v Τ (όπου m η µάζα του αερίου) 2. 1 mv 2 m.

B Λυκείου. 22 Μαρτίου Συνοπτικές λύσεις των θεµάτων. Θεωρητικό Μέρος Θέµα 1o. 1 mv 2 =nc v Τ (όπου m η µάζα του αερίου) 2. 1 mv 2 m. Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 008 Πνεπιστήµιο Αθηνών Εργστήριο Φυσικών Επιστηµών, Τεχνολογίς, Περιβάλλοντος Μρτίου 008 Θεωρητικό Μέρος Θέµ o Λυκείου Συνοπτικές λύσεις των θεµάτων.

Διαβάστε περισσότερα

Κεφάλαιο 11 Διαγράμματα Φάσεων

Κεφάλαιο 11 Διαγράμματα Φάσεων Κεφάλιο 11 Διγράμμτ Φάσεων Συχνά, σε πολλές διεργσίες, νμιγνύουμε δύο ή κι περισσότερ διφορετικά υλικά, κι πρέπει ν πντήσουμε στο ερώτημ: ποιά θ είνι η φύση του υλικού που θ προκύψει πό υτή την νάμιξη:

Διαβάστε περισσότερα

Η έννοια της συνάρτησης

Η έννοια της συνάρτησης Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 1

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 1 Υλικό Φσικής-Χηµείς ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΙ ΣΩΣΤΟΥ ΛΘΟΥΣ ΜΕ ΙΤΙΟΛΟΓΗΣΗ ) Στην κάτω άκρη ενός ιδνικού τήριο είνι δεµένο έν σώµ πο έχει µάζ m m κι ισορροπεί. Στην κάτω άκρη ενός άλλο οµοίο τήριο είνι

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµτ Μθηµτικών Θετικής Κτεύθυνσης Β Λυκείου 999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ ο Α. Έστω a, ) κι, ) δύο δινύσµτ του κρτεσινού επιπέδου Ο. ) Ν εκφράσετε χωρίς πόδειξη) το εσωτερικό γινόµενο των δινυσµάτων a κι συνρτήσει

Διαβάστε περισσότερα

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω Ερωτήσεις πολλπλής επιλογής 1. ** Αν η εξίσωση µε δύο γνώστους f (, ) = 0 (1) είνι εξίσωση µις γρµµής C, τότε Α. οι συντετγµένες µόνο µερικών σηµείων της C επληθεύουν την (1) Β. οι συντετγµένες των σηµείων

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ Περιέχει την ύλη που διδάσκετι στ Μθημτικά της Κτεύθυνσης στη Γ Λυκείου Στους δσκάλους μου με ευγνωμοσύνη Στους μθητές μου με ελπίδ Κάθε γνήσιο ντίτυπο έχει την ιδιόχειρη υπογρφή του συγγρφέ

Διαβάστε περισσότερα

3 Εσωτερικό γινόµενο διανυσµάτων

3 Εσωτερικό γινόµενο διανυσµάτων 3 Εσωτερικό γινόµενο δινυσµάτων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Εσωτερικό γινόµενο Ορίζουµε ως εσωτερικό γινόµενο των δινυσµάτων, τον πργµτικό ριθµό Έστω = ( x,y ) κι ( x,y ) συν,, ν 0 κι 0 = 0, ν = 0 ή

Διαβάστε περισσότερα

10. Το Φως ως Γεωμετρική Ακτίνα

10. Το Φως ως Γεωμετρική Ακτίνα 10. Το Φως ως Γεωμετρική Ακτίν Ελένη Κλδούδη Φινόμεν στ οποί εμπλέκετι ηλεκτρομγνητική κτινοβολί μεσίων συχνοτήτων που περιλμβάνει τις επιμέρους περιοχές του υπέρυθρου με συχνότητες 10 12 4.3x10 14 Hz

Διαβάστε περισσότερα

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x Ν εξετάσετε ν είνι ίσες οι συνρτήσεις f() N ποδείξετε ότι f g, ότν γι κάθε Η συνάρτηση f : f,. 4 σκήσεις έν ερώτημ - σε όλη την ύλη ln κι g ln ln ισχύει η σχέση: είνι περιττή κι ισχύει ότι 4 Ν οριστεί

Διαβάστε περισσότερα

Ε Α Ε Β. Από τα σχήματα βλέπουμε ότι ισχύει :

Ε Α Ε Β. Από τα σχήματα βλέπουμε ότι ισχύει : ΡΧΗ ΗΣ ΣΕΛΙΔΣ ΤΞΗ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΠΝΤΗΣΕΙΣ ΚΥΡΙΚΗ 4/5/4 - ΕΞΕΤΖΟΜΕΝΟ ΜΘΗΜ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΙ (9) ΘΕΜ. γ,.,. β, 4. β 5. ) Λ, β) Λ, γ) Σ, δ) Λ, ε) Σ ΘΕΜ. i) Σωστ πάντηση είνι η γ. Γι τις τχύτητες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής,

με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής, Μθημτικά κτεύθυνσης Γ Λυκείου ο Διγώνισμ διάρκεις ωρών στις Συνρτήσεις κι τ Όρι Οκτώβριος Θέμ Α Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη Σωστό ή Λάθος δίπλ στο

Διαβάστε περισσότερα

+ 4 µε x >0. x = f(x) f(t) dt. Άρα από κριτήριο παρεµβολής lim f(t) dt = 4.

+ 4 µε x >0. x = f(x) f(t) dt. Άρα από κριτήριο παρεµβολής lim f(t) dt = 4. 993 ΘΕΜΑΤΑ. ίετι η συάρτηση f() = + + µε >. ) Ν εξετάσετε τη µοοτοί της συάρτησης f. β) Ν υπολογίσετε το lim f(t) dt. + + ) Έχουµε f () = () + ( + ) ( + ) + = + (+ ) ( + ) = - 3 + + = - 3 . + +

Διαβάστε περισσότερα

16REQ

16REQ 6 η ΥΓΕΙΟΝΟΜΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΙΟΝΙΩΝ ΝΗΣΩΝ ΗΠΕΙΡΟΥ & ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΛΑΚΩΝΙΑΣ ΝΟΣΗΛΕΥΤΙΚΗ ΜΟΝΑΔΑ ΣΠΑΡΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ημερομηνί : 15-01-2016 Αρ. Πρωτοκ: Φ/Λ/17/Δ. Υ.

Διαβάστε περισσότερα