ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 1
|
|
- Σήθι Μιαούλης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Υλικό Φσικής-Χηµείς ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΙ ΣΩΣΤΟΥ ΛΘΟΥΣ ΜΕ ΙΤΙΟΛΟΓΗΣΗ ) Στην κάτω άκρη ενός ιδνικού τήριο είνι δεµένο έν σώµ πο έχει µάζ m m κι ισορροπεί. Στην κάτω άκρη ενός άλλο οµοίο τήριο είνι δεµένο έν άλλο σώµ πο έχει µάζ m 4m κι ισορροπεί. Τ πάνω άκρ των δο τήριων είνι δεµέν σε στθερά σηµεί. ποµκρύνοµε κάθε σώµ κτκόρφ κτά d πό τη θέση ισορροπίς το κι τ φήνοµε εθέρ ν εκτέσον πλή ρµονική τλάντωση.. Γι ποιο πό τ δο σώµτ κτνλώσµε περισσότερη ενέργει; Ν ιτιολογήσετε την πάντηση σς. Β. ν, max η µέγιστη επιτάχνση πο ποκτά το σώµ µάζς m τότε, η µέγιστη επιτάχνση πο ποκτά το σώµ µάζς m είνι:.,max β.,max γ.,max 4. Τ δύο σώµτ εκτούν τλάντωση πλάτος d, τ τήρι έχον την ίδι στθερά, άρ θ έχον κι την ίδι ενέργει τλάντωσης φού τή είνι E d. Η ενέργει της τλάντωσης είνι η ενέργει πο κτνλώσµε ώστε ν θέσοµε το σύστηµ σε τλάντωση, οπότε κι στις δύο περιπτώσεις κτνλώσµε την ίδι ενέργει. B. Γι τις µέγιστες επιτχύνσεις έχοµε: άρ σωστή πάντηση η γ.,max ωd 4m,max ω d 4 4 m ) Έν σώµ Σ πο έχει µάζ m εκτεί πλή ρµονική τλάντωση δεµένο στη µι άκρη ενός ιδνικού τήριο µε πλάτος κι ενέργει τλάντωσης Ε. ν ντικτστήσοµε το σώµ Σ µε άλλο σώµ Σ πο έχει µάζ 4m το σώµ τό εκτεί πλή ρµονική τλάντωση µε πλάτος.. η σχνότητ της τλάντωσης το Σ είνι διπλάσι πό τή το Σ. β. η ενέργει της τλάντωσης το Σ είνι διπλάσι πό την ενέργει της τλάντωσης το Σ.
2 Υλικό Φσικής-Χηµείς γ. η µέγιστη τχύτητ το Σ είνι ίση µε τη µέγιστη τχύτητ το Σ.. Γι τις σχνότητες ισχύει: f f π m f f π 4m f f. Άρ η πρότση είνι λάθος φού η σχνότητ ποδιπλσιάζετι. β. Γι τις ενέργειες ισχύει: A E E 4E (A) E 4 Άρ η πρότση είνι λάθος φού η ενέργει τετρπλσιάζετι. γ. Γι τις µέγιστες τχύτητες έχοµε: ω m ω 4m max, max, max, max, Άρ η πρότση είνι σωστή. 3) ο σώµτ Σ κι Σ πο έχον µάζες m m κι m 4m εκτούν πλή ρµονική τλάντωση µε την ίδι ενέργει κι την ίδι σχνότητ δεµέν το κθέν στην άκρη ενός ιδνικού τήριο.. γι τις µέγιστες τχύτητες πο ποκτούν τ δο σώµτ ισχύει η σχέση:.,max β. 4,max γ. Β. ν κι,max είνι οι µέγιστες τιµές των δνάµεων πο σκούντι στο κάθε σώµ τότε:,max.,max β.,max γ.,max Σε κάθε µι πό τις πρκάτω προτάσεις ν επιλέξετε κι ν ιτιολογήσετε τη σωστή πάντηση.. Ισχύει: E E m 4m,max,max
3 Υλικό Φσικής-Χηµείς Άρ σωστή πρότση είνι η. Β. Γι τις δνάµεις έχοµε:,max D A D A () λλά f f πf πf ω ω. πό την πρπάνω ερώτηση έχοµε,max ω ω Επίσης D mω D D 4m D 4 ω κι πό την () έχοµε:,max D A D A 4,max Άρ σωστή πρότση είνι η γ. 4) Έν σώµ εκτεί πλή ρµονική τλάντωση µε πλάτος d δεµένο στη κάτω άκρη ενός ιδνικού τήριο το οποίο ο άξονς είνι κτκόρφος κι η άλλη το άκρη είνι στερεωµένη σε στθερό σηµείο. Στη θέση πο το σώµ ισορροπεί η πρµόρφωση το τήριο είνι d.. στη κτώτερη θέση της τλάντωσης ο λόγος της δνµικής ενέργεις της τλάντωσης προς τη δνµική ενέργει το τήριο έχει τιµή:. τλ 9 β. τλ γ. τλ 9 Β. ο λόγος της µέγιστης προς την άχιστη δνµική ενέργει το τήριο έχει τιµή:. 9 β. γ. 9 d 3d. Στην κτώτερη θέση το τήριο έχει µέγιστη πρµόρφωση ίση µε l max d+ l max ενώ το τλντούµενο σώµ βρίσκετι στο άκρο. 3
4 Υλικό Φσικής-Χηµείς d τλ τλ 3 9 d Άρ σωστή πάντηση η β. Β. Την άχιστη δνµική ενέργει την έχει το τήριο ότν βρίσκετι στο νώτερο σηµείο της τροχιάς όπως φίνετι στο σχήµ όπο κι έχοµε την άχιστη πρµόρφωση το τηρίο. d d d l min l min Άρ: Άρ σωστή πάντηση η. 3d l max l d min 9 5) Στην πάνω άκρη ενός κτκόρφο τήριο στθεράς ισορροπεί έν σώµ Σ πο έχει µάζ m. Στην πάνω άκρη ενός άλλο κτκόρφο τήριο στθεράς 4 ισορροπεί έν άλλο σώµ Σ πο έχει την ίδι µάζ m. Πιέζοµε κάθε σώµ κτκόρφ προς τ κάτω, προσφέροντς την ίδι ποσότητ ενέργεις, κι τ φήνοµε εθέρ χωρίς ρχική τχύτητ οπότε εκτούν πλή ρµονική τλάντωση.. Εάν το πλάτος της τλάντωσης το σώµτος Σ τότε, το πλάτος της τλάντωσης το σώµτος Σ είνι:. A β. γ. A Β. Εάν η µέγιστη τχύτητ της τλάντωσης το σώµτος Σ, η µέγιστη τχύτητ της τλάντωσης το σώµτος Σ είνι:.,max β.,max γ.,max 4
5 Υλικό Φσικής-Χηµείς A. Έχοµε E E A 4A A A A Άρ σωστή η πάντηση η β. Β. Επίσης E E m m,max,max Άρ σωστή η πάντηση η. 6) Στη διάτξη το σχήµτος το σώµ ισορροπεί κι το τήριο είνι τεντωµένο κτά l. ποµκρύνοµε προς τ κάτω το σώµ πό τη θέση ισορροπίς κτά d κι τη χρονική στιγµή t 0 το φήνοµε εύθερο. Γι κάθε µι πό τις πρκάτω προτάσεις ν εξηγήσετε ν είνι σωστή ή λνθσµένη.. η περίοδος της τλάντωσης το σστήµτος είνι νάλογη µε την ποµάκρνση d. β. δύνµη επνφοράς είνι η δύνµη πο σκείτι στο σώµ πό το τήριο. γ. η ενέργει πο κτνλώσµε είνι d Ε. δ. το πλάτος της τλάντωσης είνι d + l.. Η περίοδος της τλάντωσης εξρτάτι πό τ φσικά χρκτηριστικά το σστήµτος πο m τλντώνετι σύµφων µε την σχέση Τ π, άρ η πρότση είνι λάθος. β. Η δύνµη επνφοράς είνι η σνιστµένη της δύνµης το τηρίο κι το βάρος, άρ η πρότση είνι λάθος. γ. Το d είνι το πλάτος της τλάντωσης κι η ενέργει πο ξοδέψµε γι ν θέσοµε το σύστηµ σε τλάντωσης έχει γίνει ενέργει τλάντωσης, άρ η πρότση είνι σωστή. δ. Το πλάτος της τλάντωσης είνι η ποµάκρνση d, άρ η πρότση είνι λάθος. Επιµέλει Βσίλης οκτζής 5
* ' 4. Σώµ εκτελεί γ..τ µε συχνότητ f. H συχνότητ µε την οποί µεγιστοποιείτι η δυνµική ενέργει τλάντωσης είνι. f =2f β. f =f/2 γ. f =f δ. f =4f Β. Στη
* '! " # $ # # " % $ " ' " % $ ' " ( # " ' ) % $ THΛ: 270727 222594 THΛ: 919113 949422 ' " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Κύκλωµ
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4
ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΘΕΜΑ A Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις
Διαβάστε περισσότεραΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ
ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΘΕΩΡΙΣ ΣΚΗΣΗ Ο πρκάτω πίνκς περιέχει τ πρόσηµ των λγεβρικών τιµών της τχύτητς κι της επιτάχνσης. Σµπληρώστε τον πρκάτω πίνκ. >, > >, <
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς
Διαβάστε περισσότεραΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ
ΘΕΜ 1ο ΘΕΜΤ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ - 000 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση. 1. Ένς νεµιστήρς
Διαβάστε περισσότεραΕπιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση
Υλικό Φσικής-Χηµείς Επνληπτικά Θέµτ. Επιτάχνση κι ισχύς σε κμπλόγρμμη κίνηση Έν σηµεικό σφιρίδιο Σ µάζς m=0,kg είνι δεµένο στο ά- κρο βρούς κι µη εκττού νήµτος µήκος =0,m, το άλλο άκρο το οποίο είνι στερεωµένο
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4
Διαβάστε περισσότεραΟδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΓΩΝΙΣΜ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: (ΠΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙ: 04/0/04 ΘΕΜ Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτσεις -4 κι δίπλ το γράμμ
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ
ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 6 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθµό κθεµιάς πό τις πρκάτ ερτήσεις - 4 κι δίπλ το γράµµ πο ντιστοιχεί στη σστή πάντηση Στο κύκλµ
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ σε κάθε ριθµό το γράµµ που ντιστοιχεί
Διαβάστε περισσότεραΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ
ΑΠΑΝΤΗΕΙ ΦΥΙΚΗ Ο.Π Β Λ Γ Λ 3/0/09 ΓΙΑΝΝΗ ΤΖΑΓΚΑΡΑΚΗ ΘΕΜΑ Α Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτσεις Α-Α4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστ πάντηση. Α. ε ποιο πό
Διαβάστε περισσότεραΣωτήρης Χρονόπουλος ΦΡΟΝΤΙΣΤΗΡΙΟ ΠΡΟΟΠΤΙΚΗ ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ
ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΗΣΕΙΣ Σωτρης Χρονόπολος 1. Μι σφίρ ηρεμεί στην άκρη ενός τρπεζιού. Στη σφίρ δίνετι τχύτητ 0, όπως φίνετι στην εικόν. Ν γράψετε τις εξισώσεις πο
Διαβάστε περισσότεραΚίνηση σε Μαγνητικό πεδίο
Κίνηση σε γνητικό πεδίο 4.1. Ακτίν κι Περίοδος στο ΟΠ. Από έν σημείο Α μέσ σε ομογενές μγνητικό πεδίο έντσης Β=2Τ, εκτοξεύοντι δύο σωμτίδι Σ 1 κι Σ 2 ίδις μάζς m=10-10 kg κι ντίθετων φορτίων, με τχύτητες
Διαβάστε περισσότεραΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 8//6 ΘΕΜΑ Οδηγί: Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθμό της ερώτησης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η
Διαβάστε περισσότερα1ο Επαναληπτικό Διαγώνισμα Φυσικής Α τάξης Γενικού Λυκείου
ο Επνληπτικό Διγώνισμ Φυσικής Α τάξης Γενικού Λυκείου Θέμ Α: (Γι τις ερωτήσεις Α. έως κι Α.4 ν γράψετε στο τετράδιό σς τον ριθμό της πρότσης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πρότση.) Α. Στην ευθύγρμμη
Διαβάστε περισσότεραΟδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: 15/0/015 ΘΕΜ 1 ο Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις 1-4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.
Διαβάστε περισσότεραπου έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.
. Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών
Διαβάστε περισσότεραγραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
η εξετστική ερίοδος ό 8// έως 08/0/ γρτή εξέτση στο μάθημ ΦΥΣΙΚΗ ΚΤΥΘΥΝΣΗΣ Γ ΛΥΚΙΟΥ Τάξη: Γ Λυκείου Τμήμ: Βθμός: Ονομτεώνυμο: Κθηγητές: ΤΡΙΔΗΣ ΓΙΩΡΓΟΣ ΘΜ ο Στις ρκάτω ερωτήσεις ν γράψετε στο τετράδιό σς
Διαβάστε περισσότεραγραπτή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης
ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9//0 έως 09/0/ γρπτή εξέτση στ ΦΥΣΙΚΗ Γ' κτεύθυνσης Τάξη: Γ Λυκείου Τμήμ: Βθμός: Ημερομηνί: 8//00 Ύλη: Ονομτεπώνυμο: Κθηγητές: Τλντώσεις - Κύμτ Αθνσιάδης Φοίβος,
Διαβάστε περισσότεραΓενικές εξετάσεις Φυσική Γ λυκείου θετικής - τεχνολογικής κατεύθυνσης
Γενικές εξετάσεις 009 Φσική Γ κεί θετικής - τεχνγικής κτεύθνσης Θέμ Ν γράψετε στ τετράδιό σς τν ριθμό κθεμιάς πό τις πρκάτ ερτήσεις - 4 κι δίπ τ γράμμ π ντιστιχεί στη σστή πάντηση.. Σε μι φθίνσ τάντση
Διαβάστε περισσότεραΤα προτεινόμενα θέματα είναι από τις γενικές ασκήσεις προβλήματα του Ι. Δ. Σταματόπουλου αποκλειστικά για το site (δεν κυκλοφορούν στο εμπόριο)
Τ προτεινόμεν θέμτ είνι πό τις γενικές σκσεις προβλμτ το Ι. Δ. Στμτόπολο ποκλειστικά γι το site (δεν κκλοφορούν στο εμπόριο) Θέμ 6 ο Ομογενς σφίρ μάζς m κι κτίνς R, ισορροπεί πάνω σε κεκλιμένο επίπεδο
Διαβάστε περισσότεραΑ) Να επιλέξετε την σωστή απάντηση. Αν η επίδραση του αέρα είναι αμελητέα τότε το βάρος Β του σώματος θα έχει μέτρο: F α) F β) 3F γ) 3
ΑΠΑΝΤΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ο ΚΕΦΑΛΑΙΟ ο ΘΕΜΑ 376/Β. Σε έν σώμ μάζς m που ρχικά ηρεμεί σε οριζόντιο επίπεδο σκούμε κτκόρυφη στθερή δύνμη μέτρου F, οπότε το σώμ κινείτι κτκόρυφ προς τ πάνω με
Διαβάστε περισσότεραΕ Α Ε Β. Από τα σχήματα βλέπουμε ότι ισχύει :
ΡΧΗ ΗΣ ΣΕΛΙΔΣ ΤΞΗ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΠΝΤΗΣΕΙΣ ΚΥΡΙΚΗ 4/5/4 - ΕΞΕΤΖΟΜΕΝΟ ΜΘΗΜ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΙ (9) ΘΕΜ. γ,.,. β, 4. β 5. ) Λ, β) Λ, γ) Σ, δ) Λ, ε) Σ ΘΕΜ. i) Σωστ πάντηση είνι η γ. Γι τις τχύτητες
Διαβάστε περισσότερα* 4. Οµογενές στερεό σώµ στρέφετι γύρω πό στθερό άξον, υπό την επίδρση στθερής ροπής τ. Συνεπώς όλ τ υλικά σηµεί που το ποτελούν. έχουν την ίδι επιτρό
*! " # $ # # " % $ " " % $ " ( # " ) % $ THΛ: 270727 222594 THΛ: 919113 949422 " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Αν στο διπλνό κύκλωµ
Διαβάστε περισσότεραυ = 0 Νόμοι του Newton
ξιώμτ της Ειδικής θεωρίς της σχετικότητς 1. Οι νόμοι της φσικής είνι ίδιοι γι όλ τ δρνεικά σστήμτ νφοράς 2. Η μετρούμενη τχύτητ το φωτός στο κενό είνι η ίδι νεξάρτητ της κίνησης το πρτηρητή ή της πηγής
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ Σγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.pmoiras.weebly.om ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ
Διαβάστε περισσότεραΔύο σώματα ταλαντώνονται ύστερα από μια ιδιαίτερη κρούση...
Υλικό Φσικής-Χημείας Δύο σώματα ταλαντώνονται ύστερα από μια ιδιαίτερη κρούση... Το σώμα Σ το διπλανού σχήματος έχει μάζα =,9g και είναι δεμένο στο ελεύθερο άκρο ενός οριζόντιο ελατηρίο Σ θ σταθεράς =500Ν/
Διαβάστε περισσότερα39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1. Λύση
39th International Physics Olympiad - Hanoi - Vietnam - 8 11 Υπολογισμός της πόστσης TG Λύση 3 3 3 Ο όγκος του νερού στην κοιλότητ είνι V = 1cm = 1 m Το μήκος του πυθμέν της κοιλότητς είνι d = L atan 6
Διαβάστε περισσότεραΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ
Φυσική Κτεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ Θέµ ο κ ΙΑΓΩΝΙΣΜΑ Α. (Βάλτε σε κύκλο το γράµµ µε τη σωστή πάντηση) Αν υξήσουµε την πόστση µετξύ δύο ετερόσηµων σηµεικών ηλεκτρικών φορτίων,. η δυνµική
Διαβάστε περισσότεραΓΙΟ-ΓΙΟ ΚΑΙ ΚΟΨΙΜΟ ΝΗΜΑΤΟΣ
ΓΙΟ-ΓΙΟ ΚΙ ΚΟΨΙΜΟ ΝΗΜΤΟΣ Ο ομογενής κύλινδρος(γιο-γιό) του σχήμτος έχει μάζ Μ=5kg κι κτίν R=0,m. Γύρω πό τον κύλινδρο είνι τυλιγμένο βρές κι μη εκττό νήμ, το ελεύθερο άκρο του οποίου τρβάμε προς τ πάνω
Διαβάστε περισσότεραΕισαγωγή στις Φυσικές Επιστήμες ( ) Α. Δύο σώματα ίσης μάζας m κινούνται σε οριζόντιο επίπεδο όπως φαίνεται στο παρακάτω σχήμα.
Εισγωγή στις Φυσικές Επιστήμες (7-7-7) Μηχνική Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 Α. Δύο σώμτ ίσης μάζς m κινούντι σε οριζόντιο επίπεδο όπως φίνετι στο πρκάτω σχήμ. Α υ Β a O = Εάν γι t = το σώμ Α κινείτι με στθερή
Διαβάστε περισσότερατριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για
3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική
Διαβάστε περισσότερα12 η Εβδομάδα Ισορροπία Στερεών Σωμάτων. Ισορροπία στερεών σωμάτων
1 η Εβδομάδ Ισορροπί Στερεών Σωμάτων Ισορροπί στερεών σωμάτων Γι ν ισορροπεί έν στερεό σώμ πρέπει κι η συνιστμένη όλων των δυνάμεων που σκούντι πάνω του ν είνι ίση με μηδέν κι η συνιστμένη όλων των ροπών
Διαβάστε περισσότεραmr 3 e 2λt. 1 + e d dt 2G v 1 = m 2 r o, 2 ˆr + 1 r , v 2 = m 1
Εθνικό κι Κποδιστρικό Πνεπιστήμιο Αθηνών, Τμήμ Φυσικής Εξετάσεις στη Μηχνική Ι, Τμήμ Κ Τσίγκνου & Ν Βλχάκη, 4 Σεπτεμβρίου 8 Διάρκει εξέτσης 3 ώρες, Κλή επιτυχί bonus ερωτήμτ Ονομτεπώνυμο:, ΑΜ: Ν ληφθεί
Διαβάστε περισσότεραΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ Συγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ.
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ 9 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜ ο Ν ράψετε στο τετράδιό σς τον ριθµό κθεµιάς ό τις ρκάτ ερτήσεις -4 κι δί το ράµµ ο ντιστοιχεί στη σστή άντηση Σε µι θίνοσ τάντση της οοίς το άτος
Διαβάστε περισσότεραΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ
ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ Δύο ομογενείς δίσκοι, ένς μεγάλος μάζς Μ=3kg κι κτίνς =40 κι ένς μικρός μάζς m=kg κι κτίνς =10, ενώνοντι έτσι ώστε ν συμπίπτουν τ κέντρ τους. Ο δίσκος κτίνς διθέτει υλάκι
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΔΥΝΑΜΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΔΥΝΑΜΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ Σγγρφή Επιμέει: Πνγιώτης Φ. Μίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pira.wly. ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ
Διαβάστε περισσότερα3. γ Αφού οι άνθρωποι πλησιάζουν τον άξονα περιστροφής Ι 2 < Ι 1 ω1 Ι2
ΕΠΑΝΑΛΗΠΙΚΕΣ ΑΠΟΛΥΗΡΙΕΣ ΕΞΕΑΣΕΙΣ Γ ΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΕΡΑ ΙΟΥΛΙΟΥ 005 ΕΞΕΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Ο, β,, 4 δ 5 Σ β Σ Σ δ Σ ε Λ ΘΕΜΑ Ο π I ωq, ω π I ωq I I ωq π I Ι Ι β λ λ 4 δεσμοί d
Διαβάστε περισσότεραΔύο σώματα ταλαντώνονται ύστερα από μια ιδιαίτερη κρούση...
Δύο σώματα ταλαντώνονται ύστερα από μια ιδιαίτερη κρούση... Το σώμα Σ το διπλανού σχήματος έχει μάζα =,9g και είναι δεμένο στο ελεύθερο άκρο ενός οριζόντιο ελατηρίο Σ θ σταθεράς =500Ν/ το άλλο άκρο το
Διαβάστε περισσότεραΠέµπτη, 25 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 006 Πέµπτη, 5 Μΐου 006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ, που ντιστοιχεί στη σωστή πάντηση.
Διαβάστε περισσότεραέλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση
Γ. ΕΛΛΕΙΨΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) κι στθερό άθροισµ.. * Η εξίσωση x + y = µε = γ πριστάνει έλλειψη µε εστίες
Διαβάστε περισσότεραΕπιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση
Επιτάχυνση κι ισχύς σε κμπυλόγρμμη κίνηση Έν σημεικό σφιρίδιο Σ μάζς m=0,kg είνι δεμένο m στο άκρο βρούς κι μη Σ εκττού νήμτος μήκους =0,m, το άλλο άκρο του οποίου είνι στερεωμένο σε οριζόντι οροφή. Το
Διαβάστε περισσότερα* ' 4. Οι κτίνες Röntgen. εκπέµποντι πό ρδιενεργούς πυρήνες που ποδιεγείροντι β. είνι ορτές γ. πράγοντι πό ηλεκτρονικά κυκλώµτ δ. πράγοντι πό επιβράδυ
* '! " # $ # # " % $ " ' " % $ ' " ( # " ' ) % $ THΛ: 270727 222594 THΛ: 919113 949422 ' " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Κύκλωµ
Διαβάστε περισσότεραv 0x = v 0 > 0, v 0y = 0.
Εθνικό Κποδιστρικό Πνεπιστήμιο Αθηνών, Τμήμ Φυσικής Εξετάσεις στη Μηχνική Ι, Τμήμ Κ Τσίγκνου & Ν Βλχάκη, 4 Ινουρίου 07 Διάρκει εξέτσης 3 ώρες, Κλή επιτυχί bonus ερωτήμτ) Ονομτεπώνυμο:, ΑΜ: Ν ληφθεί υπόψη
Διαβάστε περισσότεραΕρωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι
Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.
Διαβάστε περισσότερα( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x
ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε
Διαβάστε περισσότεραΕυθύγραμμες Κινήσεις (Συμπυκνωμένα)
Εθύγρμμες Κινήσεις (Σμπκνωμέν) Χρήση Λελεδάκης Κωστής ( koleygr@gmailcom ) Οι σημειώσεις πεθύνοντι σε κάποιον πο θέλει ν μάθει ή ν θμηθεί τ βσικά στοιχεί των εθύγρμμων κινήσεων (χωρίς πργώγος κι ολοκληρώμτ)
Διαβάστε περισσότερα1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς:
1. Ν σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους πρκάτω ισχυρισμούς: 1. Αν γι την συνεχή στο συνάρτηση f ισχύουν: f(0) f(2) 0 κι f(0) f(5) 0 τότε η εξίσωση ( ) 0 f έχει τουλάχιστον δύο ρίζες. 2. Αν ισχύει
Διαβάστε περισσότεραΜεταίχµιο Φροντιστήριο ιαγώνισµα Φυσικής Κατεύθυνσης Γ Λυκείου 1 ΘΕΜΑ 1
εταίχµιο Φροντιστήριο ιαγώνισµα Φσικής Κατεύθνσης Γ κείο 1 ΘΕΑ 1 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα πο αντιστοιχεί στη σωστή απάντηση 1.
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ
ΠΝΕΛΛΔΙΚΕΣ ΕΞΕΤΣΕΙΣ 06 ΦΥΣΙΚΗ ΠΡΟΣΝΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΤ ΚΙ ΠΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙ: ΝΙΚΟΣ ΚΕΜΕΝΕΣ ΠΝΕΛΛΔΙΚΕΣ ΕΞΕΤΣΕΙΣ Π ΤΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡ ΜΪΟΥ 06 ΕΞΕΤΖΟΜΕΝΟ ΜΘΗΜ: ΦΥΣΙΚΗ ΠΡΟΣΝΤΟΛΙΣΜΟΥ
Διαβάστε περισσότεραΦΥΣ η Πρόοδος: 4-Νοεμβρίου-2005
ΦΥΣ. 3 η Πρόοδος: 4-Νοεμβρίο-5 Πριν ρχίσετε σμπληρώστε τ στοιχεί σς (ονομτεπώνμο κι ριμό ττότητς). Ονομτεπώνμο Αριμός ττότητς Σς δίνοντι 6 ισότιμ προβλήμτ ( βμοί το κέν) κι πρέπει ν πντήσετε σε οποιδήποτε
Διαβάστε περισσότεραΘεωρία 1 Αποδείξτε ότι η διανυσματική ακτίνα του αθροίσματος των μιγαδικών α+βi και γ+δi είναι το άθροισμα των διανυσματικών ακτίνων τους.
Θεωρί - Αποδείξεις Θεωρί Αποδείξτε ότι η δινσμτική κτίν το θροίσμτος των μιδικών κι δ είνι το άθροισμ των δινσμτικών κτίνων τος. Αν Μ κι Μ δ είνι οι εικόνες των κι δ ντιστοίχως στο μιδικό επίπεδο τότε
Διαβάστε περισσότεραΑσκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης
4. -4.5 σκήσεις σχολικού βιβλίου σελίδς 8 83 ρωτήσεις Κτνόησης. i) Πώς ονοµάζοντι οι γωνίες κι β του πρκάτω σχήµτος κι τι σχέση έχουν µετξύ τους; ii) Tι ισχύει γι τις γωνίες γ κι δ ; ε δ ε ε ε γ β ε πάντηση
Διαβάστε περισσότεραΓ Λυκείου. 6 Μαρτίου Θεωρητικό Μέρος Θέµα 1 ο
Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 1 Θεωρητικό Μέρος Θέµ 1 ο Γ Λυκείου 6 Μρτίου 1 A. Μι χορδή βιολιού µε τ δύο άκρ της στερεωµέν, τλντώνετι µε συχνότητ 1 Ηz. Στο πρκάτω σχήµ φίνοντι δύο
Διαβάστε περισσότεραF B1 F B3 F B2. Υλικό Φυσικής Χηµείας ΕΡΩΤΗΣΕΙΣ ΙΚΑΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ. 1 B K
ΕΡΩΤΗΣΕΙΣ ΙΚΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΙΣΟΡΡΟΠΙ ΤΟΥ ΣΤΕΡΕΟΥ ΣΩΜΤΟΣ Ερώτηση 1 η 1. Μι οµογενής λεπτή δοκός ισορροπεί κθώς βρίσκετι σε επή µε τον τοίχο κι το δάπεδο του σχήµτος. Οι ντιδράσεις του δπέδου κι του τοίχου
Διαβάστε περισσότεραΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση
ΔΥΝΑΜΕΙΣ ΜΕ ΕΚΘΕΤΗ ΡΗΤΟ - ΑΡΡΗΤΟ Αν >0, μ κέριος κι ν θετικός κέριος, τότε ορίζουμε: Επιπλέον, ν μ,ν θετικοί κέριοι, ορίζουμε: 0 =0. Πρδείγμτ: 4 4,, 5 5, 4 0 =0. Γενικότερ μπορούμε ν ορίσουμε δυνάμεις
Διαβάστε περισσότεραΟΡΟΣΗΜΟ. 1.1 Σώμα κάνει απλή αρμονική ταλάντωση.
ΚΕΦΑΛΑΙΟ Στις επόμενες ερωτήσεις, ποια από τις προτάσεις είναι σωστή;. Σώμα κάνει απλή αρμονική ταλάντωση.. Η επιτάχνση έχει ίδια φορά με τη φορά της απομάκρνσης. Β. Η επιτάχνση έχει φορά προς τη Θ.Ι.
Διαβάστε περισσότεραYποθέτουμε ότι αρχικά είναι φορτισμένος ο πυκνωτής με φορτίο Q ο. Mετά το κλείσιμο του κυκλώματος και σε τυχούσα χρονική στιγμή ισχύει:
0 Kεφ. TAΛANTΩΣEIΣ (prt, pges 0-4 Πράδειγμ 5. Tο κύκλωμ LC Yποθέτουμε ότι ρχικά είνι φορτισμένος ο πυκνωτής με φορτίο Q ο. Mετά το κλείσιμο του κυκλώμτος κι σε τυχούσ χρονική στιγμή ισχύει: O ς κνόνς Kirchhff
Διαβάστε περισσότεραβ. CH 3 COOK γ. NH 4 NO 3 δ. CH 3 C CH. Μονάδες Ποιο από τα παρακάτω ζεύγη ενώσεων όταν διαλυθεί σε νερό δίνει ρυθµιστικό διάλυµα.
ΘΕΜΑ ο Στις ερωτήσεις. έως.4, ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση... Το πλήθος των τοµικών τροχικών στις στιβάδες L κι Μ είνι ντίστοιχ:. 4
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ Συγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.pias.weebl.c ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ
Διαβάστε περισσότεραμε x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής,
Μθημτικά κτεύθυνσης Γ Λυκείου ο Διγώνισμ διάρκεις ωρών στις Συνρτήσεις κι τ Όρι Οκτώβριος Θέμ Α Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη Σωστό ή Λάθος δίπλ στο
Διαβάστε περισσότερα2 m g ηµφ = m Β. 2 h. t t. s Β = 1 2 (1) R (3) (4) 2 h cm. s 1. 2mg. A cm. A cm
ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τετάρτη 9 Απριλίου 05 ΘΕΜΑ ύο κύλινδροι Α κι, που έχουν ντίστοιχ µάζες m m κι m B m κι κτίνες κι B, ήνοντι τυτόχρον ελεύθεροι πό το ίδιο ύψος πλάιου επιπέδου χωρίς ρχική τχύτητ.
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 2
ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ) Ένα ιδανικό ελατήριο σταθεράς 00 N/m που έχει τον άξονα του κατακόρυφο έχει το φυσικό του µήκος και η πάνω άκρη του είναι δεµένη σε σταθερό
Διαβάστε περισσότερα2.3 ΜΕΤΑΒΟΛΕΣ ΗΜΙΤΟΝΟΥ ΣΥΝΗΜΙΤΟΝΟΥ
1.3 ΜΕΤΟΛΕΣ ΗΜΙΤΟΝΟΥ ΣΥΝΗΜΙΤΟΝΟΥ ΚΙ ΕΦΠΤΟΜΕΝΗΣ ΘΕΩΡΙ 1. Μετβολή του ηµιτόνου : Ότν µί οξεί ωνί υξάνετι, υξάνετι κι το ηµίτονο της. ηλδή ν ω > φ τότε ηµω > ηµφ. Μετβολή του συνηµιτόνου : Ότν µί οξεί ωνί
Διαβάστε περισσότεραΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015
ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 05 ΘΕΜΑ Α. Γι μι συνεχή συνάρτηση f ν γράψετε τις τρείς κτηγορίες σημείων, τ οποί εινι πιθνές θέσεις τοπικών κροτάτων. (6 Μονάδες). Ν χρκτηρίσετε τις προτάσεις
Διαβάστε περισσότερα2. Τι ονομάζουμε τροχιά ενός κινητού; Πώς διακρίνονται οι κινήσεις με κριτήριο τη μορφή της τροχιάς του κινητού;
ΕΥΘΥΓΡΑΜΜΗ 7 ΕΝΟΤΗΤΑ. ΕΥ ΘΥΓΡ ΑΜΜΗ ΕΡΩΤΗΣΕΙΣ. Ν νφέρετε ποι πό τ σώμτ πο φίνοντι στην εικόν κινούντι Α. ως προς τη Γη. Β. ως προς το τοκίνητο. Θ πρέπει ν λάβομε πόψη μς ότι η κίνηση είνι έννοι σχετικ.
Διαβάστε περισσότεραΑ5. Με καρυότυπο μπορεί να διαγνωστεί α. η β-θαλασσαιμία β. ο αλφισμός γ. το σύνδρομο Down δ. η οικογενής υπερχοληστερολαιμία.
Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 5 ΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 22/05/2015 ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμίς πό τις πρκάτω ημιτελείς
Διαβάστε περισσότεραΚριτήριο αξιολόγησης στην οριζόντια βολή- κυκλική κίνηση
Κριτήριο αξιολόγησης στην οριζόντια βολή- κκλική κίνηση (Σε όλα τα παρακάτω θέματα το γήινο βαρτικό πεδίο θεωρείται περίπο ομογενές, γιατί οι βολές γίνονται σε μικρά ύψη και μικρές γεωγραφικές αποκλίσεις.)
Διαβάστε περισσότερα1.6 ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΑΛΓΕΒΡΙΚΩΝ
1 1.6 ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΑΛΓΕΒΡΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΘΕΩΡΙΑ 1. Πργοντοποίηση : Είνι η διδικσί µε την οποί µί πράστση που είνι άθροισµ µεττρέπετι σε γινόµενο πργόντων 2. Χρησιµότητ : Απλοποιήσεις Εύρεση Ε.Κ.Π κι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΕΛΛΕΙΨΗ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΕΛΛΕΙΨΗ ΟΡΙΣΜΟΣ: Έστω Ε κι Ε δύο σημεί του επιπέδου. Έλλειψη με εστίες τ σημεί Ε κι Ε λέγετι ο γεωμετρικός τόπος των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων
Διαβάστε περισσότεραευτέρα, 25 Μαΐου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ
ΕΘΝΙΚΕΣ ΕΞΕΤΣΕΙΣ 009 ετέρ, 5 Μΐ 009 Γ ΛΥΚΕΙΟΥ ΚΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΜ o Ν γράψετε στ τετράδιό σς τν ριθμό κθεμιάς πό τις πρκάτ ερτήσεις - κι δίπλ τ γράμμ π ντιστιχεί στη σστή πάντηση.. Σε μι φθίνσ τλάντση
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015
ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕ ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 015 Θέμ 1 ο Α) Ν διτυπώσετε τ κριτήρι γι ν είνι δύο τρίγων όμοι Β) Ν διτυπώσετε κι ν ποδείξετε το ο θεώρημ διμέσων Γ) Ν
Διαβάστε περισσότερα1η Επαναληπτική συνδυαστική άσκηση στη Φυσική της Α Λυκείου.
η Επαναληπτική σνδαστική άσκηση στη Φσική της Α Λκείο. Δύο σώματα με μάζες m = 6Kg και m = 4kg είναι δεμένα στα άκρα αβαρούς και μη εκτατού νήματος το οποίο διέρχεται από το αλάκι τροχαλίας αμελητέας μάζας.
Διαβάστε περισσότεραΕπανάληψη Θεωρίας και Τυπολόγιο
ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΠΡΟΕΤΟΙΜΑΣΙΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επανάληψη Θεωρίας και Τπολόγιο ΕΞΙΣΩΣΕΙΣ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ Γενικές έννοιες Περιοδική ονομάζεται η κίνηση πο επαναλαμβάνεται κατά τον
Διαβάστε περισσότεραΕργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας
Εργστήριο Φυσικής Τμήμτος Πληροφορικής κι Τεχνολογίς Υπολογιστών Τ.Ε.Ι. Λμίς Νόμοι Νεύτων - Δυνάμεις Εισγωγή στην έννοι της Δύνμης Γι ν λύσουμε το πρόβλημ του πως θ κινηθεί έν σώμ ότν ξέρουμε το περιβάλλον
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΣΕΙΣ ΠΝΤΗΣΕΙΣ Επιµέει: Οµάδ Φσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΣΕΙΣ Σάββτο, 4 Μΐο ΛΥΚΕΙΟΥ ΕΝΙΚΗΣ ΠΙ ΕΙΣ ΦΥΣΙΚΗ ΘΕΜ Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθμό της ερώτησης κι, δίπ το γράμμ
Διαβάστε περισσότεραΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
3η εξετστική περίδς 0- - Σελίδ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείυ Τμήμ: Βθμός: Ημερμηνί: 0-04-0 Διάρκει: 3 ώρες Ύλη: Επνληπτικό σε όλη την ύλη. Κθηγητής: ΑΤΡΕΙΔΗΣ ΓΙΩΡΓΟΣ Ονμτεπώνυμ:
Διαβάστε περισσότεραΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ(ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ(ΘΕΡΙΝΑ) //08 ΟΙΚΟΝΟΜΟΥ ΓΙΩΡΓΟΣ ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ-ΤΣΙΓΚΙΣΤΡΑΣ ΒΑΓΓΕΛΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 24 ΜΑΪΟΥ 202 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ. Συγγραφή Επιµέλεια: Παναγιώτης Φ. Μοίρας. ΣΟΛΩΜΟΥ 29 - ΑΘΗΝΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ Σρφή Επιµέλει: Πνιώτης Φ. Μίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pmoias.weebl.om ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693
Διαβάστε περισσότεραΓ τάξη Γενικού Λυκείου: Διαγώνισμα Φυσικής Κατεύθυνσης-Απαντήσεις
Γ τάξη Γενικού Λκείο: Διαγώνισμα Φσικής Κατεύθνσης-Απαντήσεις Θέμα Α: -γ, -γ, -δ, -α, 5(α-Λ, β-λ, γ-σ, δ-λ, ε-σ) Θέμα B: Β. = + = ± = + + = + ± m m m m m = + + =,8J ή =,J άρα σωστή η πρόταση (γ). n Β.
Διαβάστε περισσότεραi) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 ii) ΑΒ 2 + ΑΓ 2 = 2ΑΜ 2 + 2Α 2 iii) ΑΒ 2 + ΑΓ 2 = 2ΒΓ Μ iν) ΑΒ 2 ΑΓ 2 = 2ΑΜ 2 + 2ΒΜ 2 = 2ΑΜ 2 2 = 2ΑΜ 2 + 2ΒΜ 2
1 9.5 9.6 σκήσεις σχολικού βιβλίου σελίδς 198 199 Ερωτήσεις κτνόησης 1. Στο πρκάτω σχήµ η Μ είνι διάµεσος κι ύψος. Ποι πό τις πρκάτω σχέσεις είνι σωστή. ιτιολογήστε την πάντηση σς. A i) Μ Μ ii) Μ iii)
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά;
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΗΜΕΡΗΣΙΑ ΘΕΜΑ
Διαβάστε περισσότεραE f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E.
ΘΕΜΑ Α Α i Σχολικό βιβλίο σελίδ 6 ii Σχολικό βιβλίο σελίδ 6 Α Σχολικό βιβλίο σελίδ 85 Α3 Ισχύει ότι 7 3 7 ()d ()d ()d () 3 Στο,3 είνι () οπότε το εμβδό του χωρίου Ω που ορίζετι πό την κι τις ευθείες, 3
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Διαβάστε περισσότερα2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.
. Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,
Διαβάστε περισσότεραΜελέτη συνάρτησης f(x) = α x. α f(x) είναι περιττή α 0 x. Να μελετηθεί ως προς την μονοτονία η συνάρτηση f με f(x),α 0
Z. 7. Μελέτη συνάρτησης f() = Απρίτητες γνώσεις Θεωρίς Θεωρί 4. Ν ποδείξετε ότι η συνάρτηση: f() είνι περιττή 0 Απόδειξη: Το πεδίο ορισμού της f είνι το R* R 0 Γι κάθε R*, R* κι f(-) f() ( ) Επομένως η
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΕΙΟΥ ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Γι τις ερωτήσεις 1.1-1.4 ν γράψετε στο
Διαβάστε περισσότερα3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A
3ο Επνληπτικό διγώνισμ στ Μθημτικά κτεύθυνσης της Γ Λυκείου 17-18 Θέμ A Α1 Έστω f μι συνεχής συνάρτηση σ έν διάστημ β ν ποδείξετε ότι: f t dt G β G Α Πότε μι συνάρτηση λέγετι 1-1; Α3 Πότε μι συνάρτηση
Διαβάστε περισσότεραΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 6 ο ΔΙΑΓΩΝΙΣΜΑ (Επαναληπτικό) - ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 6 ο ΔΙΑΓΩΝΙΣΜΑ (Επαναληπτικό) - ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα πο αντιστοιχεί στη
Διαβάστε περισσότεραδύναμη καθίσματος στον Χρήστο δύναμη Ελένης στον Χρήστο
ΟΜ φοιτητές, ο Χρήστος κι η λένη κάθοντι σε πρόμοιες κρέκλες γρφείου (τ πόδι της λένης είνι στον έρ). Ο Χρήστος πιέζει με τ πόδι του τ γόντ της λένης. πίλεξε το σωστό: ) ίνι μεγλύτερη η δύνμη που σκεί
Διαβάστε περισσότεραυ = 0 Νόμοι του Newton
ξιώμτ της Ειδικής θεωρίς της σχετικότητς 1. Οι νόμοι της φσικής είνι ίδιοι γι όλ τ δρνεικά σστήμτ νφοράς 2. Η μετρούμενη τχύτητ το φωτός στο κενό είνι η ίδι νεξάρτητ της κίνησης το πρτηρητή ή της πηγής
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Ι. Σε κθεμιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράμμ Α, ν ο ισχυρισμός είνι ληθής κι το γράμμ Ψ, ν ο ισχυρισμός είνι ψευδής δικιολογώντς συγχρόνως την
Διαβάστε περισσότεραγραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σπουδών
η εξεταστική περίοδος από 9/0/ έως 6// γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σποδών Τάξη: Β Λκείο Τμήμα: Βαθμός: Ημερομηνία: 09//0 Ύλη: Ονοματεπώνμο: Καθηγητής: Οριζόντια βολή Ομαλή κκλική κίνηση
Διαβάστε περισσότεραΓ. Ε. ΛΥΚΕΙΟ 2008 ΑΛΓΕΒΡΑ ΤΑΞΗ Β
Γ. Ε. ΛΥΚΕΙΟ 008 81 Γ. Ε. ΛΥΚΕΙΟ 008 8 Α. Ν ποδείξετε ότι ν συν( + β) 0, συν 0 κι συνβ 0 ισχύει: εφ + εφβ εφ( + β) = 1 εφ εφβ Β. Ν χρκτηρίσετε με Σ(σωστό) ή Λ(λάθος)κάθε μι πό τις πρκάτω προτάσεις:. Αν
Διαβάστε περισσότεραΑ. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ
Κεφάλιο o : Πργµτικοί Αριθµοί ΜΑΘΗΜΑ 6 Υποενότητ.1: Τετργωνική Ρίζ Θετικού Αριθµού Θεµτικές Ενότητες: 1. Τετργωνική ρίζ θετικού ριθµού.. Ιδιότητες της τετργωνικής ρίζς. Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 02/02/2010 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ // ΘΕΜΑ (3 μνάδες) Στ πρκάτω διάγρμμ πρυσιάζετι η μετλή της ντίστσης σε σχέση με τη θερμκρσί, ενός θερμμέτρυ ηλεκτρικής ντίστσης (TD) κι ενός θερμίστρ. Η ευθεί τυ
Διαβάστε περισσότεραΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ
ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό
Διαβάστε περισσότερα