Ε Α Ε Β. Από τα σχήματα βλέπουμε ότι ισχύει :
|
|
- Νικηφόρος Παπάγος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΡΧΗ ΗΣ ΣΕΛΙΔΣ ΤΞΗ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΠΝΤΗΣΕΙΣ ΚΥΡΙΚΗ 4/5/4 - ΕΞΕΤΖΟΜΕΝΟ ΜΘΗΜ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΙ (9) ΘΕΜ. γ,.,. β, 4. β 5. ) Λ, β) Λ, γ) Σ, δ) Λ, ε) Σ ΘΕΜ. i) Σωστ πάντηση είνι η γ. Γι τις τχύτητες των δύο σωμάτων ισχύει: = () κι = (). Ισχύει ττόχρον κι ότι = () Διιρώντς κτά μέλη τις σχέσεις () κι () με την βοθει της σχέσης () προκύπτει: Μονάδες ii) Σωστ πάντηση είνι η. Εφρμόζοντς τον Θεμελιώδη Νόμο της Μηχνικς γι το σώμ προκύπτει: Σ (4) ντίστοιχ γι το σώμ : Σ (5) Διιρώντς κτά μέλη τις σχέσεις (4) κι (5) προκύπτει: 4 Μονάδες ΤΕΛΟΣ ΗΣ ΠΟ 9 ΣΕΛΙΔΕΣ
2 ΡΧΗ ΗΣ ΣΕΛΙΔΣ. i) Σωστ πάντηση είνι η. Οι μεττοπίσεις των τοκιντων κι είνι ριθμητικά ίσες με τ εμβδά Ε κι Ε ντίστοιχ τ οποί φίνοντι στ πρκάτω σχμτ. Ε Ε πό τ σχμτ βλέπομε ότι ισχύει : Δ Δ o o ii) Σωστ πάντηση είνι η. Τη χρονικ στιγμ πο σνντώντι τ τοκίνητ κι οι μεττοπίσεις τος είνι ίσες, άρ κι τ εμβδά Ε κι Ε πο είνι ριθμητικά ίσ με τις μεττοπίσεις των τοκιντων εκείνη την χρονικ στιγμ είνι ίσ. Ε Ε ΤΕΛΟΣ ΗΣ ΠΟ 9 ΣΕΛΙΔΕΣ
3 ΡΧΗ ΗΣ ΣΕΛΙΔΣ πό τ πρπάνω σχμτ προκύπτει ότι Ε κι Ε Όμως Δ = Δ άρ Ε E = () Το τοκίνητο εκτελεί εθύγρμμη ομλά επιτχνόμενη κίνηση με επιτάχνση γι την οποί ισχύει (). Σνεπώς γι την τχύτητ το τοκιντο προκύπτει με την βοθει της σχέσης () () Μονάδες πό τις σχέσεις () κι () προκύπτει = ΘΕΜ Γ Γ. Κτά τη μεττόπιση πό τη θέση o = έως τη θέση =, στο σώμ σκούντι το βάρος το, η δύνμη επφς N πό το δάπεδο, η δύνμη μετβλητού μέτρο κι η τριβ ολίσθησης T μετξύ το οριζοντίο επιπέδο κι το σώμτος. Οι δνάμεις τές φίνοντι στο πρκάτω σχμ. ο= T N ΤΕΛΟΣ ΗΣ ΠΟ 9 ΣΕΛΙΔΕΣ
4 ΡΧΗ 4ΗΣ ΣΕΛΙΔΣ Ισχύει ότι: Σ y = Ν-w = Ν=w N= g κι T μ Ν T,4 Τ= 4Ν Ν= Ν Άρ το έργο της τριβς ολίσθησης κτά την μεττόπιση το σώμτος πό την θέση o = έως την θέση = είνι W ο T TΔσν8 W T T Δ 4 48J W T W T Γ. πό τη σχέση = - (S.I) προκύπτει ότι () (N) - Σνεπώς η γρφικ πράστση πο πριστάνει την τιμ της δύνμης πο δέχετι το σώμ σε σνάρτηση με τη θέση το φίνετι πρκάτω. Μονάδες (N) Ε Ε () - Το γρμμοσκισμένο εμβδό είνι ριθμητικά ίσο με το ζητούμενο έργο της δύνμης, άρ W Ε W 5 - W 48 J Ε ΤΕΛΟΣ 4ΗΣ ΠΟ 9 ΣΕΛΙΔΕΣ
5 ΡΧΗ 5ΗΣ ΣΕΛΙΔΣ Γ. Εφρμόζοντς το θεώρημ έργο ενέργεις κτά τη μεττόπιση το σώμτος πό τη θέση o = έως τη θέση = προκύπτει Κ τελ - Κ ρχ = W Τ + W +W N +W w Μονάδες Όμως οι διεθύνσεις της δύνμης επφς N όσο κι το βάρος είνι κάθετες στην μεττόπιση το σώμτος σνεπώς εκτελούν μηδενικό έργο δηλδ W N = κι W w = Άρ - o WT W = Γ4. Κτά την κίνηση το σώμτος κι όσο ισχύει >T είνι Σ > άρ η τχύτητ το σώμτος ξάνετι, ενώ ότν γίνετι <T είνι Σ < άρ η τχύτητ το σώμτος ελττώνετι, σνεπώς η τχύτητ λμβάνει την μέγιστη τιμ της ότν γίνετι Σ =, δηλδ ότν =T, άρ - = 4 =6 Εφρμόζοντς το θεώρημ έργο ενέργεις κτά τη μεττόπιση το σώμτος πό τη θέση o = έως τη θέση = 6 προκύπτει Κ τελ - Κ ρχ = W Τ + W a W W () T (N) Γι το έργο W της δύνμης ισχύει () 6 4 (N) 4 6 () ΤΕΛΟΣ 5ΗΣ ΠΟ 9 ΣΕΛΙΔΕΣ
6 ΡΧΗ 6ΗΣ ΣΕΛΙΔΣ πό το γρμμοσκισμένο εμβδό το διγράμμτος προκύπτει W 4 6 W = 4 J Το έργο της τριβς ολίσθησης κτά την μεττόπιση το σώμτος πό την θέση o = έως την θέση = 6 είνι W T ο TΔσν8 W T T Δ 4 6 4J W T W T Άρ πό την σχέση () προκύπτει: a 4 4 a 6 a 6 ΘΕΜ Δ y Δ. N y φ y Γι τις σνιστώσες της δύνμης ισχύει : σνφ 6Ν κι ημφ y 8Ν y Γι το χρονικό διάστημ πό o = εως = ισχύει: Σ ΤΕΛΟΣ 6ΗΣ ΠΟ 9 ΣΕΛΙΔΕΣ
7 ΡΧΗ 7ΗΣ ΣΕΛΙΔΣ Γι την τχύτητ το σώμτος την χρονικ στιγμ προκύπτει: ο = N y N T y N = T Δ Δ Δ Δ Στο χρονικό διάστημ πό = έως = ισχύον: Σ y = Ν + y -w = Ν =w- y Ν = g y Ν = 8 Ν = Ν Άρ το μέτρο της τριβς πο δέχετι το σώμ πό το δάπεδο είνι : T =μν T =,5 T = 6Ν. Σνεπώς γι την επιτάχνση το σώμτος ισχύει: Σ T T Άρ σ τό το χρονικό διάστημ το σώμ εκτελεί εθύγρμμη ομλ κίνηση οπότε η τχύτητ το σώμτος είνι. ΤΕΛΟΣ 7ΗΣ ΠΟ 9 ΣΕΛΙΔΕΣ
8 ΡΧΗ 8ΗΣ ΣΕΛΙΔΣ πό τη χρονικ στιγμ =,πο στμτά ν επιδρά στο σώμ η δύνμη, το σώμ εκτελεί εθύγρμμη ομλά επιβρδνόμενη κίνηση μέχρι ν κινητοποιηθεί την χρονικ στιγμ. Σνεπώς θ ισχύει: Σ y = Ν -w = Ν =w Ν = g Ν = Ν Το μέτρο της τριβς πο δέχετι το σώμ πό το δάπεδο είνι T κι μ,5 T N Ν T Σ, όπο η επιβράδνση το σώμτος, άρ Τ Τ = 5 ν Δ = - η χρονικ διάρκει της επιβρδνόμενης κίνησης τότε ισχύει Δ 5Δ Δ Δ 5 6 Όμως Δ = - 5 = = 5 Δ. Τη χρονικ στιγμ 4 το σώμ κινείτι με τχύτητ προκύπτει P σνφ,6 P W P P άρ γι την ισχύ της δύνμης Μονάδες Δ4. Γι τη σνολικ θερμότητ Q πο πράγετι κτά τη διάρκει της κίνησης το σώμτος ισχύει Q W T W T όπο W T κι W T το έργο της τριβς στις μεττοπίσεις Δ κι Δ ντίστοιχ. Στο χρονικό διάστημ πό = έως = ισχύει ΤΕΛΟΣ 8ΗΣ ΠΟ 9 ΣΕΛΙΔΕΣ
9 ΡΧΗ 9ΗΣ ΣΕΛΙΔΣ Δ Δ Δ ( ) Δ ( ) Δ κι W T ο T Δ σν8 W T 6 W T 8 J ντίστοιχ στο χρονικό διάστημ πό = έως = 5 ισχύει Δ κι Δ Δ 9 Δ Δ W T ο T Δ σν8 W T 9 W T 9 J Άρ Q 8 9 Q 7J ΤΕΛΟΣ 9ΗΣ ΠΟ 9 ΣΕΛΙΔΕΣ
ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ
ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΘΕΩΡΙΣ ΣΚΗΣΗ Ο πρκάτω πίνκς περιέχει τ πρόσηµ των λγεβρικών τιµών της τχύτητς κι της επιτάχνσης. Σµπληρώστε τον πρκάτω πίνκ. >, > >, <
Διαβάστε περισσότεραπου έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.
. Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών
Διαβάστε περισσότερα2. Τι ονομάζουμε τροχιά ενός κινητού; Πώς διακρίνονται οι κινήσεις με κριτήριο τη μορφή της τροχιάς του κινητού;
ΕΥΘΥΓΡΑΜΜΗ 7 ΕΝΟΤΗΤΑ. ΕΥ ΘΥΓΡ ΑΜΜΗ ΕΡΩΤΗΣΕΙΣ. Ν νφέρετε ποι πό τ σώμτ πο φίνοντι στην εικόν κινούντι Α. ως προς τη Γη. Β. ως προς το τοκίνητο. Θ πρέπει ν λάβομε πόψη μς ότι η κίνηση είνι έννοι σχετικ.
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ
ΑΠΑΝΤΗΕΙ ΦΥΙΚΗ Ο.Π Β Λ Γ Λ 3/0/09 ΓΙΑΝΝΗ ΤΖΑΓΚΑΡΑΚΗ ΘΕΜΑ Α Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτσεις Α-Α4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστ πάντηση. Α. ε ποιο πό
Διαβάστε περισσότερα1ο Επαναληπτικό Διαγώνισμα Φυσικής Α τάξης Γενικού Λυκείου
ο Επνληπτικό Διγώνισμ Φυσικής Α τάξης Γενικού Λυκείου Θέμ Α: (Γι τις ερωτήσεις Α. έως κι Α.4 ν γράψετε στο τετράδιό σς τον ριθμό της πρότσης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πρότση.) Α. Στην ευθύγρμμη
Διαβάστε περισσότεραΕυθύγραμμες Κινήσεις (Συμπυκνωμένα)
Εθύγρμμες Κινήσεις (Σμπκνωμέν) Χρήση Λελεδάκης Κωστής ( koleygr@gmailcom ) Οι σημειώσεις πεθύνοντι σε κάποιον πο θέλει ν μάθει ή ν θμηθεί τ βσικά στοιχεί των εθύγρμμων κινήσεων (χωρίς πργώγος κι ολοκληρώμτ)
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ
ΟΜΟΣΠΟΝ Ι ΕΚΠΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ 06 ΦΣΗ ΤΞΗ: ΜΘΗΜ: ΘΕΜ. γ. β. δ 4. 5.. Σωστό β. Λάθος γ. Σωστό δ. Λάθος ε. Λάθος ΘΕΜ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηεροηνί: Τρίτη
Διαβάστε περισσότεραΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ
ΘΕΜ 1ο ΘΕΜΤ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ - 000 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση. 1. Ένς νεµιστήρς
Διαβάστε περισσότεραΟδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: 15/0/015 ΘΕΜ 1 ο Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις 1-4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς
Διαβάστε περισσότεραPhysics by Chris Simopoulos
ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Α) Προβλήμτ ευθύγρμμης ομλά επιτχυνόμενης κίνησης. ) Απλής εφρμογής τύπων Ακολουθούμε τ εξής βήμτ: i) Συμβολίζουμε τ δεδομέν κι ζητούμεν με τ ντίστοιχ σύμβολ που θ χρησιμοποιούμε.
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ Σγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.pmoiras.weebly.om ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ
Διαβάστε περισσότεραΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ
ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ Δύο ομογενείς δίσκοι, ένς μεγάλος μάζς Μ=3kg κι κτίνς =40 κι ένς μικρός μάζς m=kg κι κτίνς =10, ενώνοντι έτσι ώστε ν συμπίπτουν τ κέντρ τους. Ο δίσκος κτίνς διθέτει υλάκι
Διαβάστε περισσότεραΣωτήρης Χρονόπουλος ΦΡΟΝΤΙΣΤΗΡΙΟ ΠΡΟΟΠΤΙΚΗ ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ
ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΗΣΕΙΣ Σωτρης Χρονόπολος 1. Μι σφίρ ηρεμεί στην άκρη ενός τρπεζιού. Στη σφίρ δίνετι τχύτητ 0, όπως φίνετι στην εικόν. Ν γράψετε τις εξισώσεις πο
Διαβάστε περισσότεραΕπιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση
Υλικό Φσικής-Χηµείς Επνληπτικά Θέµτ. Επιτάχνση κι ισχύς σε κμπλόγρμμη κίνηση Έν σηµεικό σφιρίδιο Σ µάζς m=0,kg είνι δεµένο στο ά- κρο βρούς κι µη εκττού νήµτος µήκος =0,m, το άλλο άκρο το οποίο είνι στερεωµένο
Διαβάστε περισσότεραΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 8//6 ΘΕΜΑ Οδηγί: Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθμό της ερώτησης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η
Διαβάστε περισσότερα2 m g ηµφ = m Β. 2 h. t t. s Β = 1 2 (1) R (3) (4) 2 h cm. s 1. 2mg. A cm. A cm
ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τετάρτη 9 Απριλίου 05 ΘΕΜΑ ύο κύλινδροι Α κι, που έχουν ντίστοιχ µάζες m m κι m B m κι κτίνες κι B, ήνοντι τυτόχρον ελεύθεροι πό το ίδιο ύψος πλάιου επιπέδου χωρίς ρχική τχύτητ.
Διαβάστε περισσότεραΚίνηση σε Μαγνητικό πεδίο
Κίνηση σε γνητικό πεδίο 4.1. Ακτίν κι Περίοδος στο ΟΠ. Από έν σημείο Α μέσ σε ομογενές μγνητικό πεδίο έντσης Β=2Τ, εκτοξεύοντι δύο σωμτίδι Σ 1 κι Σ 2 ίδις μάζς m=10-10 kg κι ντίθετων φορτίων, με τχύτητες
Διαβάστε περισσότεραΦαινόμενο Doppler με επιταχυνόμενο παρατηρητή και όχι μόνο!
Φινόμενο Doppler με επιτχυνόμενο πρτηρητ κι όχι μόνο! Έν πυροσβεστικό όχημ κινείτι με στθερ τχύτητ υ =7Km/h προς κίνητο υ μοτοσικλετιστ. υ Κάποι στιγμ = που πέχουν πόστση d=684m το πυροσβεστικό όχημ ρχίζει
Διαβάστε περισσότεραΤα προτεινόμενα θέματα είναι από τις γενικές ασκήσεις προβλήματα του Ι. Δ. Σταματόπουλου αποκλειστικά για το site (δεν κυκλοφορούν στο εμπόριο)
Τ προτεινόμεν θέμτ είνι πό τις γενικές σκσεις προβλμτ το Ι. Δ. Στμτόπολο ποκλειστικά γι το site (δεν κκλοφορούν στο εμπόριο) Θέμ 6 ο Ομογενς σφίρ μάζς m κι κτίνς R, ισορροπεί πάνω σε κεκλιμένο επίπεδο
Διαβάστε περισσότεραΟδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΓΩΝΙΣΜ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: (ΠΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙ: 04/0/04 ΘΕΜ Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτσεις -4 κι δίπλ το γράμμ
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4
Διαβάστε περισσότεραE f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E.
ΘΕΜΑ Α Α i Σχολικό βιβλίο σελίδ 6 ii Σχολικό βιβλίο σελίδ 6 Α Σχολικό βιβλίο σελίδ 85 Α3 Ισχύει ότι 7 3 7 ()d ()d ()d () 3 Στο,3 είνι () οπότε το εμβδό του χωρίου Ω που ορίζετι πό την κι τις ευθείες, 3
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΔΥΝΑΜΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΔΥΝΑΜΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ Σγγρφή Επιμέει: Πνγιώτης Φ. Μίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pira.wly. ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ
Διαβάστε περισσότεραΕισαγωγή στις Φυσικές Επιστήμες ( ) Α. Δύο σώματα ίσης μάζας m κινούνται σε οριζόντιο επίπεδο όπως φαίνεται στο παρακάτω σχήμα.
Εισγωγή στις Φυσικές Επιστήμες (7-7-7) Μηχνική Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 Α. Δύο σώμτ ίσης μάζς m κινούντι σε οριζόντιο επίπεδο όπως φίνετι στο πρκάτω σχήμ. Α υ Β a O = Εάν γι t = το σώμ Α κινείτι με στθερή
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 15/11/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Γιάννης Τζαγκαράκης, Μαρία Αδάμη
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 5-6 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 5//5 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Γιάννης Τζαγκαράκης, Μαρία Αδάμη ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς
Διαβάστε περισσότεραf (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΓΕΝΙΚΑ ΠΕΡΙ ΕΞΙΣΩΣΕΩΝ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Έστω f (x), g(x) είνι δύο πρστάσεις µις µετβλητής x πού πίρνει τιµές στο σύνολο Α. Εξίσωση µε ένν άγνωστο λέγετι κάθε ισότητ της µορφής f (x) =
Διαβάστε περισσότεραΑ) Να επιλέξετε την σωστή απάντηση. Αν η επίδραση του αέρα είναι αμελητέα τότε το βάρος Β του σώματος θα έχει μέτρο: F α) F β) 3F γ) 3
ΑΠΑΝΤΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ο ΚΕΦΑΛΑΙΟ ο ΘΕΜΑ 376/Β. Σε έν σώμ μάζς m που ρχικά ηρεμεί σε οριζόντιο επίπεδο σκούμε κτκόρυφη στθερή δύνμη μέτρου F, οπότε το σώμ κινείτι κτκόρυφ προς τ πάνω με
Διαβάστε περισσότεραΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ
Γι μθητές Β & Γ Λυκείου ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Πολλές συνρτήσεις μπορούν ν πρστθούν γρφικά, χωρίς τη
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 1
Υλικό Φσικής-Χηµείς ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΙ ΣΩΣΤΟΥ ΛΘΟΥΣ ΜΕ ΙΤΙΟΛΟΓΗΣΗ ) Στην κάτω άκρη ενός ιδνικού τήριο είνι δεµένο έν σώµ πο έχει µάζ m m κι ισορροπεί. Στην κάτω άκρη ενός άλλο οµοίο τήριο είνι
Διαβάστε περισσότερα1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς:
1. Ν σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους πρκάτω ισχυρισμούς: 1. Αν γι την συνεχή στο συνάρτηση f ισχύουν: f(0) f(2) 0 κι f(0) f(5) 0 τότε η εξίσωση ( ) 0 f έχει τουλάχιστον δύο ρίζες. 2. Αν ισχύει
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 016 ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κριακή 4 Απριλίο 016 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 β και ζ Α γ και ζ Α3 β και ε Α4 α και ι Α5 α Σωστό β Λάθος γ
Διαβάστε περισσότερα3. γ Αφού οι άνθρωποι πλησιάζουν τον άξονα περιστροφής Ι 2 < Ι 1 ω1 Ι2
ΕΠΑΝΑΛΗΠΙΚΕΣ ΑΠΟΛΥΗΡΙΕΣ ΕΞΕΑΣΕΙΣ Γ ΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΕΡΑ ΙΟΥΛΙΟΥ 005 ΕΞΕΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Ο, β,, 4 δ 5 Σ β Σ Σ δ Σ ε Λ ΘΕΜΑ Ο π I ωq, ω π I ωq I I ωq π I Ι Ι β λ λ 4 δεσμοί d
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 Ε_3.Φλ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α. β και ζ Α. γ και ζ Α3. β και ε Α4. α και ι Α5. α. Σωστό β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κριακή 4
Διαβάστε περισσότερα* ' 4. Σώµ εκτελεί γ..τ µε συχνότητ f. H συχνότητ µε την οποί µεγιστοποιείτι η δυνµική ενέργει τλάντωσης είνι. f =2f β. f =f/2 γ. f =f δ. f =4f Β. Στη
* '! " # $ # # " % $ " ' " % $ ' " ( # " ' ) % $ THΛ: 270727 222594 THΛ: 919113 949422 ' " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Κύκλωµ
Διαβάστε περισσότεραΟ Ρ Ο Σ Η Μ Ο. Τυπολόγιο: Ευθύγραμμη κίνηση. Μετατόπιση: Δx x 2. Μέση διανυσματική ταχύτητα: Μέση αριθμητική ταχύτητα: υ m s.
Τυπολόγιο: Ευθύγρμμη κίνηση Μεττόπιση: Δ () Μέση δινυσμτική τχύτητ: Δ υμ Δt t t s ολ Μέση ριθμητική τχύτητ: υ s Επιτάχυνση: s μ S t ολ Δυ Δt Ευθύγρμμη ομλή κίνηση: υ στθερό Εξισώσεις επιτάχυνσης τχύτητς
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ
ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 6 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθµό κθεµιάς πό τις πρκάτ ερτήσεις - 4 κι δίπλ το γράµµ πο ντιστοιχεί στη σστή πάντηση Στο κύκλµ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d
Διαβάστε περισσότεραΕπιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση
Επιτάχυνση κι ισχύς σε κμπυλόγρμμη κίνηση Έν σημεικό σφιρίδιο Σ μάζς m=0,kg είνι δεμένο m στο άκρο βρούς κι μη Σ εκττού νήμτος μήκους =0,m, το άλλο άκρο του οποίου είνι στερεωμένο σε οριζόντι οροφή. Το
Διαβάστε περισσότεραΒρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»
Η συνάρτηση f() =, 0 Υπερβολή Δύο ποσά λέγοντι ντιστρόφως νάλογ, εάν μετβάλλοντι με τέτοιο τρόπο, που ότν οι τιμές του ενός πολλπλσιάζοντι με ένν ριθμό, τότε κι οι ντίστοιχες τιμές του άλλου ν διιρούντι
Διαβάστε περισσότεραΓενικές ασκήσεις σελίδας
Γενικές σκσεις σελίδς 9 3. ίνετι η εξίσωση + λ 0 (), όπου λ R. Ν ποδείξετε ότι γι κάθε τιµ του λ, η () πριστάνει κύκλο, του οποίου ζητείτι ν ρεθεί το κέντρο κι η κτίν. (ii) Ν ποδείξετε ότι όλοι οι κύκλοι
Διαβάστε περισσότερα3 η δεκάδα θεµάτων επανάληψης
1 η δεκάδ θεµάτων επνάληψης 1. Ν ποδείξετε ότι το εµβδόν κάθε τριγώνου δίνετι πό τον τύπο Ε τρ, όπου τ η ηµιπερίµετρος του τριγώνου κι ρ η κτίν του εγγεγρµµένου κύκλου Ν χρκτηρίσετε τις πρκάτω προτάσεις
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4
ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΘΕΜΑ A Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις
Διαβάστε περισσότεραΘέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999
Θέµτ Μθηµτικών Θετικής Κτεύθυνσης Β Λυκείου 999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ ο Α. Έστω a, ) κι, ) δύο δινύσµτ του κρτεσινού επιπέδου Ο. ) Ν εκφράσετε χωρίς πόδειξη) το εσωτερικό γινόµενο των δινυσµάτων a κι συνρτήσει
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 28 Απριλίου 2013 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 03 Ε_3.Φλ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ Α Ηµεροµηνία: Κριακή 8 Απριλίο 03 ιάρκεια Εξέτασης: ώρες Α. δ Α. γ Α3. β Α4. δ Α5. α Σ, β Λ, γ Σ, δ Σ, ε Λ. ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Β
Διαβάστε περισσότεραίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο
996 ΘΕΜΑΤΑ. ίνοντι οι πργµτικές συνρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο. Αν οι f κι g έχουν συνεχείς πρώτες πργώγους κι συνδέοντι µετξύ τους µε τις σχέσεις f = g, g = - f τότε ν ποδείξετε ότι:
Διαβάστε περισσότεραΗ έννοια της συνάρτησης
Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν
Διαβάστε περισσότερα2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.
. Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,
Διαβάστε περισσότεραΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ Συγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.pias.weebl.c ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ
Διαβάστε περισσότεραΓΙΟ-ΓΙΟ ΚΑΙ ΚΟΨΙΜΟ ΝΗΜΑΤΟΣ
ΓΙΟ-ΓΙΟ ΚΙ ΚΟΨΙΜΟ ΝΗΜΤΟΣ Ο ομογενής κύλινδρος(γιο-γιό) του σχήμτος έχει μάζ Μ=5kg κι κτίν R=0,m. Γύρω πό τον κύλινδρο είνι τυλιγμένο βρές κι μη εκττό νήμ, το ελεύθερο άκρο του οποίου τρβάμε προς τ πάνω
Διαβάστε περισσότεραΠέµπτη, 25 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 006 Πέµπτη, 5 Μΐου 006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ, που ντιστοιχεί στη σωστή πάντηση.
Διαβάστε περισσότεραΤα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.
1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι
Διαβάστε περισσότεραΑ. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ
Κεφάλιο o : Πργµτικοί Αριθµοί ΜΑΘΗΜΑ 6 Υποενότητ.1: Τετργωνική Ρίζ Θετικού Αριθµού Θεµτικές Ενότητες: 1. Τετργωνική ρίζ θετικού ριθµού.. Ιδιότητες της τετργωνικής ρίζς. Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. I. Να αποδείξετε ότι η γραφική παράσταση της f δεν έχει σηµεία που να βρίσκονται πάνω από τον άξονα. x x.
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ o ΘΕΜΑΤΑ Θεωρούµε τη συνάρτηση ( ) = ( + ) ( + ) µε κι. I. Ν ποδείξετε ότι η γρφική πράστση της δεν έχει σηµεί που ν ρίσκοντι πάνω πό τον άξον. II. Ν ποδείξετε ότι
Διαβάστε περισσότεραΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη.
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Δυνάμεις με ρητό ή άρρητο εκέτη. Με την οήει των ορίων κι των δυνάμεων με ρητό εκέτη ορίζετι κι η δύνμη, με > 0 κι. Ισχύουν κι σε υτή την περίπτωση
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)
θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις
Διαβάστε περισσότερα2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ
ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει
Διαβάστε περισσότεραΟνοματεπώνυμο. Τμήμα
Ηλεκτρομγνητισμός (6-7-9) Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 A. Έν σωμάτιο με φορτίο -6. n τοποθετείτι στο κέντρο ενός μη γώγιμου σφιρικού φλοιού εσωτερικής κτίνς c κι εξωτερικής 5 c. Ο σφιρικός φλοιός περιέχει
Διαβάστε περισσότεραΣτοιχεία εισαγωγής για τη Φυσική Α Λυκείου
Στοιχεί εισγωγής γι τη Φυσική Α Λυκείου Οι πρκάτω σημειώσεις δινέμοντι υπό την άδει: Creative Commons Ανφορά Δημιουργού - Μη Εμπορική Χρήση - Πρόμοι Δινομή 4.0 Διεθνές. 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ( ) ( )
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f( x ), ( ) σύνολο Α ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ g x είνι δύο πρστάσεις µις µετλητής x πού πίρνει τιµές στο Ανίσωση µε ένν άγνωστο λέγετι κάθε σχέση της µορφής f( x) g( x) f( x) g( x)
Διαβάστε περισσότερα4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ - ΑΣΚΗΣΕΙΣ. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν κάνουμε την μελέτη ή την γρφική πράστση μις συνάρτησης ΜΕΘΟΔΟΛΟΓΙΑ Ότν μς ζητούν κάνουμε την γρφική πράστση
Διαβάστε περισσότεραi. Σωστή απάντηση η (α). ii. Από την Αρχή Διατήρησης της Ορμής για την κρούση και θεωρώντας ως θετική τη φορά προς τα δεξιά, έχουμε:
ΡΧΗ ΗΣ ΣΕΛΙΔΣ Β ΤΞΗ ΛΥΚΕΙΟΥ ΣΒΒΤΟ 9/4/6 - ΕΞΕΤΖΟΜΕΝΟ ΜΘΗΜ: ΦΥΣΙΚΗ ΠΡΟΣΝΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΟΔΗΙΕΣ ΥΤΟΔΙΟΡΘΩΣΗΣ ΘΕΜ. β. β 3. δ 4. γ 5. α Σ, β Σ, γ Λ, δ Λ, ε Σ ΘΕΜ Β Β.. i. Σωστ απάντηση η
Διαβάστε περισσότεραΜΑΘΗΜΑ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ
ΜΑΘΗΜΑ 6. ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ Θεωρί Μέθοδος Ασκήσεις ΘΕΩΡΙΑ. Ορισµός. Έστω συνάρτηση y f( πργωγίσιµη στο. Ρυθµός µετβολής του y ως προς στο σηµείο λέγετι η πράγωγος f ( κι Ρυθµός µετβολής του y ως προς λέγετι
Διαβάστε περισσότεραΕρωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι
Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.
Διαβάστε περισσότεραΟρισμός: Άρα ένα σημείο Μ του επιπέδου είναι σημείο της έλλειψης, αν και μόνο αν 2. Εξίσωση έλλειψης με Εστίες στον άξονα χ χ και κέντρο την αρχή Ο
Μθημτικά Β Κτ/νσης ΕΛΛΕΙΨΗ Ορισμός: Έλλειψη με εστίες Ε κι Ε λέγετι ο γεωμ τόπος των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων πό τ Ε κι Ε είνι στθερό κι μεγλύτερο του ΕΈ Το στθερό υτό άθροισμ
Διαβάστε περισσότεραν ν = α 0 α β = ( ) β α = α ( α β)( α β)
Γ ΓΥΜΝΑΣΙΟΥ ν 0 ν = 1 = β β ν 1= ν µ = ν + µ ν ν µ 1 µ = ν = ν ( ν ) µ ν ν = ν µ β = β ( β) ν = ν βν ν > 0 τότε 2 = β = β β = β Ιδιότητες υνάµεων ν > β τότε + γ > β+ γ. ν > β κι γ > δ τότε + γ > β+ δ.
Διαβάστε περισσότεραΑ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ
Επαναληπτικά Θέµατα ΟΕΦΕ 0 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ ο. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση µόνο
Διαβάστε περισσότερα( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x
ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε
Διαβάστε περισσότεραΗ συνάρτηση F(x)= 13/3/2010 ΘΕΩΡΗΜΑ Αν f είναι συνάρτηση συνεχής σε διάστημα Δ και α είναι ένα σημείο του Δ, τότε
Μθημτικός Η συνάρτηση F()= //200 ΘΕΩΡΗΜΑ Αν f είνι συνάρτηση συνεχής σε διάστημ Δ κι είνι έν σημείο του Δ, τότε η συνάρτηση F()=, Δ είνι μι πράγουσ της f στο Δ. Δηλδή ισχύει: = f() γι κάθε Δ. (H πργώγιση
Διαβάστε περισσότεραΣυνηµίτονο µιας οξείας γωνίας ορθογωνίου τριγώνου λέγεται:
Λόγος ευθυγράµµων τµηµάτων Ότν θέλουµε ν συγκρίνουµε δύο ευθύγρµµ τµήµτ, υπολογίζουµε τη διάφορ ή το λόγο των µηκών τους. Στην περίπτωση του λόγου υπολογίζουµε πόσες Φορές το έν τµήµ είνι µεγλύτερο πό
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΒΙΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ημιτελείς προτάσεις Α1 έως Α5 κι δίπλ το γράμμ που
Διαβάστε περισσότεραΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1
ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό
Διαβάστε περισσότεραΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ
Φυσική Κτεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ Θέµ ο κ ΙΑΓΩΝΙΣΜΑ Α. (Βάλτε σε κύκλο το γράµµ µε τη σωστή πάντηση) Αν υξήσουµε την πόστση µετξύ δύο ετερόσηµων σηµεικών ηλεκτρικών φορτίων,. η δυνµική
Διαβάστε περισσότεραΑ2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3
Βθμός: /25 Τεστ Μθημτικών Εξετζόμενος-η: Προσντολισμού, Γ Λυκείου Θεωρί 1 Κθηγητής: Ιορδάνης Χτζηνικολάου Συνρτήσεις Θέμ Α Α1. Ν ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων f κι f 1 είνι συμμετρικές
Διαβάστε περισσότεραΣχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων
Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων
Διαβάστε περισσότεραΓενικές εξετάσεις Φυσική Γ λυκείου θετικής - τεχνολογικής κατεύθυνσης
Γενικές εξετάσεις 009 Φσική Γ κεί θετικής - τεχνγικής κτεύθνσης Θέμ Ν γράψετε στ τετράδιό σς τν ριθμό κθεμιάς πό τις πρκάτ ερτήσεις - 4 κι δίπ τ γράμμ π ντιστιχεί στη σστή πάντηση.. Σε μι φθίνσ τάντση
Διαβάστε περισσότερατριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για
3.0 3. σκήσεις σχολικού βιβλίου σελίδς 57-58 Ερωτήσεις Κτνόησης. Χρκτηρίστε ( Σ ) σωστή ή λάθος ( ) κάθε µί πό τις επόµενες προτάσεις i) Η εξωτερική γωνί ˆ εξ τριγώνου είνι µεγλύτερη πό την ˆ ii) Η εξωτερική
Διαβάστε περισσότεραΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα πο αντιστοιχεί στη σωστή απάντηση Η ταχύτητα διάδοσης ενός αρμονικού κύματος: α είναι πάντοτε ίση
Διαβάστε περισσότεραF B1 F B3 F B2. Υλικό Φυσικής Χηµείας ΕΡΩΤΗΣΕΙΣ ΙΚΑΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ. 1 B K
ΕΡΩΤΗΣΕΙΣ ΙΚΙΟΛΟΓΗΣΗΣ ΣΤΗΝ ΙΣΟΡΡΟΠΙ ΤΟΥ ΣΤΕΡΕΟΥ ΣΩΜΤΟΣ Ερώτηση 1 η 1. Μι οµογενής λεπτή δοκός ισορροπεί κθώς βρίσκετι σε επή µε τον τοίχο κι το δάπεδο του σχήµτος. Οι ντιδράσεις του δπέδου κι του τοίχου
Διαβάστε περισσότεραΒ Λυκείου 29 Απριλίου 2001
Ένωση Ελλήνων Φσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ Πνεπιστήμι Αθηνών Εργστήρι Φσικών Επιστημών, Τεχνλγίς, Περιβάλλντς Θεωρητικό Μέρς ΘΕΜΑ Λκεί 9 Απριλί Μι γώγιμη μετλλική σφίρ κτίνς περιβάλλετι πό πχύ
Διαβάστε περισσότεραΚυκλική κίνηση. Ονομάζεται η κίνηση η οποία πραγματοποιείται σε κυκλική τροχιά. Μελέτη της κυκλικής κίνησης. R θ S R
Κυκλική κίνηση Ονμάζετι η κίνηση η πί πρμτπιείτι σε κυκλική τρχιά. Μελέτη της κυκλικής κίνησης S Ως νστόν πό τη εμετρί ισχύσει : S S Η τχύτητ η πί εκφράζει τ πόσ ρήρ διράφει η επιβτική κτίν τη νί νμάζετι
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ σε κάθε ριθµό το γράµµ που ντιστοιχεί
Διαβάστε περισσότεραΜέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό
Μέρος Α - Kεφάλιο 7ο - Θετικοί κι Αρνητικοί Αριθμοί - 37 - Α.7.8. Δυνάμεις ρητών ριθμών με εκθέτη φυσικό ΔΡΑΣΤΗΡΙΟΤΗΤΑ Ένς υπολογιστής μολύνθηκε πό κάποιο ιό, ο οποίος είχε την ιδιότητ ν κτστρέφει τ ηλεκτρονικά
Διαβάστε περισσότεραΑριστοτέλειο Πνεπιστήµιο Θεσσλονίκης Πολυτεχνική Σχολή Τµήµ Πολιτικών Μηχνικών Μετπτυχικό πρόγρµµ σπουδών «Αντισεισµικός Σχεδισµός Τεχνικών Έργων» Μάθηµ: «Αντισεισµικός Σχεδισµός Θεµελιώσεων, Αντιστηρίξεων
Διαβάστε περισσότεραΑ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ
Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο 1. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ 1. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ 1 Ο ΚΕΦΑΛΑΙΟ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ Ο ΚΕΦΑΛΑΙΟ Μονώ νυμ - Πολυώ νυμ Λέμε λγερική πράστση κάθε πράστση που περιέχει μετλητές. π.χ., +, 5, ( + ), +. Λέμε ριθμητική τιμή ( ή πλά τιμή )
Διαβάστε περισσότεραΦΥΣΙΚΗ. Α Λυκείου 14/ 04 / 2019 ΘΕΜΑ Α.
Α Λυκείου 4/ 4 / 9 ΦΥΣΙΚΗ ΘΕΜΑ Α. Α. γ, Α. β, Α3. γ, Α4. α Α5. α) Σ, β) Σ, γ) Λ, δ) Λ, ε) Λ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (β). Εφαρμόζοντας το ο νόμο του Νεύτωνα υπολογίζουμε την επιτάχυνση του συστήματος
Διαβάστε περισσότεραΓ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω
Ερωτήσεις πολλπλής επιλογής 1. ** Αν η εξίσωση µε δύο γνώστους f (, ) = 0 (1) είνι εξίσωση µις γρµµής C, τότε Α. οι συντετγµένες µόνο µερικών σηµείων της C επληθεύουν την (1) Β. οι συντετγµένες των σηµείων
Διαβάστε περισσότεραΑκόμη μια σύνθετη κίνηση δοκού
κόμη μια σύνθετη κίνηση δοκού Β Η δοκός Β το σχήματος έχει μάζα m και μήκος. Στο άκρο της δοκού πάρχον δύο μικρές προεξοχές αμελητέας μάζας. Με την βοήθεια τν δύο προεξοχών η δοκός στηρίζεται σε δύο οριζόντια
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµ 1ο Α. Έστω µι συνεχής συνάρτηση f ορισµένη σε έν διάστηµ.
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)
θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε
Διαβάστε περισσότερααριθμών Ιδιότητες της διάταξης
Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι
Διαβάστε περισσότεραΗλώ σεις. 1 Άσκηση. 2 Άσκηση
ΠΜΣ : Σχεδισμός & κτσκευή υπογείων έργων Ακδ. Έτος: 2013-2014 ΜΑΘΗΜΑ: Μέτρ Υποστήριξης Σηράγγων Διδάσκων : Κθηγητής Α.Ι. ΣΟΦΙΑΝΟΣ Επιμέλει σκήσεων: Π. Γιούτ Ηλώ σεις 1 Άσκηση Σχεδιάστε τη μέγιστη πίεση
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ() ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α.. Α.. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνί: Κυρική 7 Απριλίου ιάρκει Εξέτσης: ώρες ΑΠΑΝΤΗΣΕΙΣ Βλέπε πόδειξη () σελ.75 σχολικού βιβλίου
Διαβάστε περισσότεραΠροτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ
Προτεινόμενα θέματα Πανεαδικών εξετάσεων Φσική Θετικής και Τεχνοογικής Κατεύθνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανεαδικών εξετάσεων στη Φσική Θετικής και Τεχνοογικής Κατεύθνσης - ο (γ), (δ), (γ),
Διαβάστε περισσότεραΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ
ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό
Διαβάστε περισσότεραΕργαστήριο Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας
Εργστήριο Φυσικής Τμήμτος Πληροφορικής κι Τεχνολογίς Υπολογιστών Τ.Ε.Ι. Λμίς Νόμοι Νεύτων - Δυνάμεις Εισγωγή στην έννοι της Δύνμης Γι ν λύσουμε το πρόβλημ του πως θ κινηθεί έν σώμ ότν ξέρουμε το περιβάλλον
Διαβάστε περισσότεραΚαρτεσιανές Συντεταγµένες
Γρφική Πράστση Συνάρτησης Κρτεσινές Συντετγµένες Κρτεσινό σύστηµ συντετγµένων ή ορθογώνιο σύστηµ ξόνων O είνι έν σύστηµ δύο κθέτων ξόνων O κι O ( 0 0) µε κοινή ρχή το σηµείο O,. O Ορθοκνονικό σύστηµ ξόνων
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΕΛΛΕΙΨΗ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΕΛΛΕΙΨΗ ΟΡΙΣΜΟΣ: Έστω Ε κι Ε δύο σημεί του επιπέδου. Έλλειψη με εστίες τ σημεί Ε κι Ε λέγετι ο γεωμετρικός τόπος των σημείων του επιπέδου των οποίων το άθροισμ των ποστάσεων
Διαβάστε περισσότερα