Επιχειρησιακή Έρευνα I
|
|
- Βίων Σπυρόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis
2 Παραδείγματα Μοντελοποίησης
3 Παράδειγμα 1 Οι φοιτητές του ΤΜΟΔ ως γνωστό- έχουν πολύ πιο απαιτητικό πρόγραμμα σπουδών από τους φοιτητές των υπολοίπων τμημάτων της Χίου. Ωστόσο, χρειάζονται εξίσου χρόνο για διασκέδαση και αθλητισμό. Εάν: Ο συνολικός διαθέσιμος χρόνος της ημέρας ενός φοιτητή για μελέτη και διασκέδαση είναι έως 10 ώρες (αν εξαιρέσουμε ύπνο, ξεκούραση, φαγητό κλπ.) Ο χρόνος για διασκέδαση και αθλητισμό είναι 2 φορές πιο ευχάριστος από το χρόνο μελέτης Ο χρόνος μελέτης δεν μπορεί να είναι μικρότερος από τον χρόνο για διασκέδαση και αθλητισμό Λόγω απαιτητικού προγράμματος και εργασιών, ο χρόνος για διασκέδαση και αθλητισμό δεν μπορεί να είναι περισσότερο από 4 ώρες την ημέρα. Πόσο χρόνο θα πρέπει να αφιερώσει ο φοιτητής του ΤΜΟΔ σε μελέτη και πόσο για διασκέδαση και αθλητισμό για να είναι ευτυχισμένος και να είναι εντάξει με τις υποχρεώσεις του στη σχολή; Λύστε το γραφικά ή με simplex. 3
4 Παράδειγμα 1 Η μεταβλητές απόφασης είναι δύο: x 1 για το χρόνο για διασκέδαση και αθλητισμό και x 2 για το χρόνο μελέτης Μεγιστοποίηση της ποιότητας ζωής: Υπό περιορισμούς: Max Z = 2x 1 + x 2 x 1 + x 2 < = 10 x 2 >= x 1 x 2 x 1 >= 0 x 1 x 2 <= 0 x 1 < = 4 x 1, x 2 >= 0 4
5 Παράδειγμα 2 Μια εταιρεία θέλει να διαφημιστεί σε ραδιόφωνο και τηλεόραση και έχει προϋπολογισμό ευρώ ανά μήνα. Εάν: Κάθε λεπτό ραδιοφωνικής διαφήμισης κοστίζει 15 ευρώ Κάθε λεπτό τηλεοπτικής διαφήμισης κοστίζει 300 ευρώ Η εταιρεία θέλει να διαφημιστεί σε ραδιόφωνο τουλάχιστον διπλάσιο χρόνο από ότι στην τηλεόραση Ο ραδιοφωνικός σταθμός έχει διαθέσιμα έως 400 λεπτά διαφημιστικό χρόνο ανά μήνα Βάσει μελετών, η τηλεοπτική διαφήμιση είναι 25 φορές πιο αποτελεσματική από ότι η ραδιοφωνική Πόσο χρόνο θα πρέπει να διαφημιστεί η εταιρεία στο ραδιόφωνο και πόσο στην τηλεόραση για να πετύχει η εταιρεία το βέλτιστο διαφημιστικό αποτέλεσμα; Λύστε το γραφικά ή με simplex. 5
6 Παράδειγμα 2 Η μεταβλητές απόφασης είναι δύο: x 1 για το χρόνο ραδιοφωνικής διαφήμισης και x 2 για το χρόνο τηλεοπτικής διαφήμισης. Μεγιστοποίηση της διαφημιστικής απόδοσης: Υπό περιορισμούς: Max Z = x x 2 15x x 2 < = x 1 >= 2x 1 x 1 2x 2 >= 0 -x 1 + 2x 2 <= 0 x 1 < = 400 x 1, x 2 >= 0 6
7 Παράδειγμα 3 Μια μεταφορική εταιρεία προσλαμβάνει εποχικούς οδηγούς με συμβάσεις εργασίας 5 συνεχόμενων ημερών για την κάλυψη του μεταφορικού έργου. Για κάθε ημέρα της εβδομάδας, η ελάχιστη ζήτηση της εταιρείας για οδηγούς είναι τουλάχιστον 20 (για την Δευτέρα), 14 (Τρίτη), 10, 15, 18, 10 και 12 (Κυριακή). Μοντελοποιήστε το πρόβλημα και βρείτε το βέλτιστο πρόγραμμα προσλήψεων ανά ημέρα για την κάλυψη των αναγκών και την ελαχιστοποίηση του μεταφορικού κόστους (κόστος οδηγών). Λύστε το πρόβλημα με simplex (solver). 7
8 Παράδειγμα 3 Η μεταβλητές απόφασης είναι επτά: x 1 για τον αριθμό προσλήψεων την Δευτέρα, x 2 για τον αριθμό προσλήψεων την Τρίτη κοκ. Minimize Z = x1+x2+x3+x4+x5+x6+x7 Υπό περιορισμούς: x1+x4+x5+x6+x7 >= 20 x1+x2+x5+x6+x7 >= 14 x1+x2+x3+x6+x7 >= 10 x1+x2+x3+x4+x7 >= 15 x1+x2+x3+x4+x5 >= 18 x2+x3+x4+x5+x6 >= 10 x3+x4+x5+x6+x7 > = 12 x 1 x 2 x 3 x 4 x 5 x 6 x 7 Δευ >=20 Τρι >=14 Τετ >=10 Πεμ >=15 Παρ >=18 Σαβ >=10 Κυρ >=12 Λύση: x1=8, x2=x3=0, x4=6, x5=4, x6=1, x7=1 με Z=20 οδηγούς 8
9 Παράδειγμα 4 Μια εταιρεία θέλει να κατασκευάσει ένα διυλιστήριο που θα παράγει 4 προϊόντα από αργό πετρέλαιο: Πετρέλαιο κίνησης, βενζίνη, λιπαντικά και καύσιμο αεροπλάνων Η ελάχιστη ημερήσια ζήτηση της αγοράς για τα προϊόντα αυτά είναι 14000, 30000, και 8000 βαρέλια αντίστοιχα Οι χώρες προμηθευτές της εταιρείας είναι το Ιράκ και το Dubai και λόγω πολιτικών περιορισμών το διυλιστήριο πρέπει να παραλάβει κατ ελάχιστο το 40% του αργού πετρελαίου του από το Ιράκ και το υπόλοιπο από το Dubai Λόγω ποιοτικής διαφοράς του αργού από χώρα σε χώρα, ένα βαρέλι αργού από το Ιράκ αποφέρει 0,2 βαρέλια πετρέλαιο κίνησης, 0,25 βαρέλια βενζίνης, 0,1 βαρέλια λιπαντικού και 0.15 βαρέλια καύσιμο αεροπλάνων Κάθε βαρέλι αργού από το Dubai αποφέρει 0,1 βαρέλια πετρέλαιο κίνησης, 0,6 βαρέλια βενζίνης, 0,15 βαρέλια λιπαντικού και 0.1 βαρέλια καύσιμο αεροπλάνων Ποια πρέπει να είναι η ελάχιστη ημερήσια ποσότητα αργού που θα διυλίζει το διυλιστήριο για να καλύψει τις ανάγκες τις αγοράς; 9
10 Παράδειγμα 4 Η μεταβλητές απόφασης είναι δύο: x 1 για την ημερήσια ποσότητα σε αργό από το Ιράκ και x 2 για την ποσότητα σε αργό από το Dubai. Ελαχιστοποίηση της ημερήσια ποσότητας σε αργό από Ιράκ και Dubai: Min Z = x 1 + x 2 Υπό περιορισμούς: x 1 >= 0.4*(x 1 + x 2 ) 0.6*x 1 0.4x 2 >= 0-0.6*x x 2 <= 0 0.2x x 2 >= x x 2 >= x x 2 >= x x 2 >= 8 x 1, x 2 >= 0 Λύση: x 1 = 55, x 2 = 30 10
11 Παράδειγμα 5 Σε ένα εργοστάσιο παραγωγής, τέσσερα προϊόντα υποβάλλονται σε διαδοχική επεξεργασία σε τρείς μηχανές βάση του πίνακα: Μηχανή Κόστος Λειτουργίας Απαιτούμενος Χρόνος Κατασκευής σε ώρες (ανά τεμάχιο) Προϊόν 1 Προϊόν 2 Προϊόν 3 Προϊόν 4 Ικανότητα Παραγωγής ανά ώρα Τιμή Πώλησης Ποια πρέπει να είναι η βέλτιστη ωριαία παραγωγή ανά προϊόν για τη μεγιστοποίηση του κέρδους του εργοστασίου; 11
12 Παράδειγμα 5 Η μεταβλητές απόφασης είναι τέσσερεις: x 1 για την ωριαία ποσότητα παραγωγής σε προϊόν 1, x 2 για την ωριαία ποσότητα σε προϊόν 2, x 3 για την ωριαία ποσότητα σε προϊόν 3, x 4 για την ωριαία ποσότητα σε προϊόν 4. Καθαρό κέρδος από μια μονάδα προϊόντος 1: 75 (2*10) (3*5) (7*4) = 12 Καθαρό κέρδος από μια μονάδα προϊόντος 2: 70 (3*10) (2*5) (3*4) = 18 Καθαρό κέρδος από μια μονάδα προϊόντος 3: 55 (4*10) (1*5) (2*4) = 2 Καθαρό κέρδος από μια μονάδα προϊόντος 4: 45 (2*10) (2*5) (1*4) = 11 Μεγιστοποίηση των κερδών ανά ώρα: Max Z = 12x x 2 + 2x x 2 Υπό περιορισμούς: 2x 1 + 3x 2 + 4x 3 + 2x 4 <= 500 3x 1 + 2x 2 + 1x 3 + 2x 4 <= 380 7x 1 + 3x 2 + 2x 3 + 1x 4 <= 450 x 1, x 2 x 3, x 4 >= 0 Λύση: x 1 = 0, x 2 = , x 3 = 0, x 4 = 50 με Ζ = 2950 χρ.μονάδες 12
13 Παράδειγμα 6 Η Aegean airlines διαθέτει 3 τύπους αεροσκαφών τα οποία πρέπει να καλύψουν 4 δρομολόγια. Για τα αεροσκάφη καθώς και για το κόστος των δρομολογίων και της ποινής ανά χαμένο πελάτη ισχύουν τα εξής: Πλήθος ημερήσιων δρομολογίων στο δρομολόγιο: Λειτουργικό Κόστος ( ) ανά δρομολόγιο Τύπος αεροσκάφους Χωρητικότητα (επιβάτες) Πλήθος αεροσκαφών Τύπος αεροσκάφους Ημερήσιος αριθμός επιβατών Ποινή ανά χαμένο πελάτη Ποια πρέπει να είναι η βέλτιστη κατανομή τύπων αεροσκαφών σε δρομολόγια και ποιο το βέλτιστο πλήθος δρομολογίων τους για την ελαχιστοποίηση του μεταφορικού κόστους; Tip: Εστω x ij είναι ο αριθμός των αεροσκαφών τύπου i στο δρομολόγιο j. Tip2: Έστω S j ο αριθμός των χαμένων πελατών ανά δρομολόγιο 13
14 Παράδειγμα 6 Η μεταβλητές απόφασης είναι το πλήθος κάθε τύπου αεροσκάφους ανά δρομολόγιο καθώς και ο αριθμός των επιβατών που δεν θα εξυπηρετηθούν: Ελαχιστοποίηση του μεταφορικού κόστους και των ποινών: Min Z = 3*1000x 11 +2*1100x 12 +2*1200x 13 +1* *800x 21 +3*900x 22 +3*1000x 23 +2*1000x 24 +5*600x *800x 32 +4*800x 33 +2*900x S S S S 4 Υπό περιορισμούς: 3*50x *30x *20x 31 + S 1 = 1000 (αριθμός επιβατών για το δρομολόγιο 1) 2*50x *30x *20x 32 + S 2 = 2000 (αριθμός επιβατών για το δρομολόγιο 2) 2*50x *30x *20x 33 + S 3 = 900 (αριθμός επιβατών για το δρομολόγιο 3) 1*50x *30x *20x 34 + S 4 = 1200 (αριθμός επιβατών για το δρομολόγιο 4) x 11 +x 12 +x 13 +x 14 <= 5 (πλήθος αεροσκαφών τύπου 1) x 21 +x 22 +x 23 +x 24 <= 8 (πλήθος αεροσκαφών τύπου 2) x 31 +x 32 +x 33 +x 34 <= 10 (πλήθος αεροσκαφών τύπου 3) x ij, s j >= 0 για κάθε i,j Λύση: x 11 = 5, x 24 = 8, x 31 = 2.5, x 32 = 7.5 με Ζ = 221,900 14
15 Παραδείγματα Βελτιστοποίησης δικτύων
16 Δίκτυο διανομής Παραγωγή 50 μ. Ερ.1 900/μον. Απ.1 Απαίτηση 30 μ. 400/μον. 200/μον. 10 Κ.Δ. 200/μον. 300/μον /μον. 100/μον. Παραγωγή 40 μ. Ερ.2 Απ.2 Απαίτηση 60 μ. 16
17 Μοντέλο x i,j =αριθμός μονάδων που μεταφέρονται στην ακμή (i,j) μεταξύ των κόμβων i και j Στόχος: Ελαχιστοποίηση: z = 2 x Ερ1,Ερ2 + 4 x Ερ1,ΚΔ + 9 x Ερ1,Απ1 + 3 x Ερ2,ΚΔ + x ΚΔ,Απ2 +3 x Απ1,Απ2 + 2 x Απ2,Απ1 Διατήρηση της ροής: σε κάθε κόμβο του δικτύου: Ροή εξόδου ροή εισόδου= αρ. Μονάδων που παράχθηκαν (εργοστάσιο) - αρ. Μονάδων που απαιτήθηκαν (αποθήκες) 0 ΚΔ Ανώτατο όριο μεταφοράς (σε μερικές ακμές) Πχ. Για την ακμή (Ερ.1,Ερ.2): x Ερ1,Ερ2 10 Περιορισμοί μη αρνητικότητας 17
18 Μοντέλο (λεπτομερή περιγραφή) Ελαχιστοποίηση z = 2 x Ερ1,Ερ2 + 4 x Ερ1,ΚΔ + 9 x Ερ1,Απ1 + 3 x Ερ2,ΚΔ +x ΚΔ,Απ2 + 3 x Απ1,Απ2 + 2x Απ2,Απ1 Κάτω από τις συνθήκες: x Ερ1,Ερ2 + x Ερ1,ΚΔ + x Ερ1,Απ1 = 50 -x Ερ1,Ερ2 + x Ερ2,ΚΔ = 40 - x Ερ1,ΚΔ - x Ερ2,ΚΔ + x ΚΔ,Απ2 = 0 - x Ερ1,Απ1 + x Απ1,Απ2 - x Απ2,Απ1 = x ΚΔ,Απ2 - x Απ1,Απ2 + x Απ2,Απ1 = - 60 x Ερ1,Ερ2 10, x ΚΔ,Απ2 80 x Ερ1,Ερ2 0, x Ερ1,ΚΔ 0, x Ερ1,Απ1 0, x Ερ2,ΚΔ 0, x ΚΔ,Απ2 0 x Απ1,Απ2 0, x Απ2,Απ1 0 18
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 9: : Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE & Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός Προγραμματισμός
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex 1. Αλγόριθμός Simplex
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex (C) Copyright Α.
Αλγοριθµική Επιχειρησιακή Ερευνα. Χειµερινό Εξάµηνο 2013-2014. Ασκήσεις. 1. Ενα διυλιστήριο µπορεί να επεξεργαστεί τρία είδη ακατέργαστου πετρελαίου :
Αλγοριθµική Επιχειρησιακή Ερευνα Χειµερινό Εξάµηνο 2013-2014 Ασκήσεις 1. Ενα διυλιστήριο µπορεί να επεξεργαστεί τρία είδη ακατέργαστου πετρελαίου : - το πρώτο προερχόµενο από την Αφρική, το οποίο ονοµάζεται
Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας»
Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Άσκηση 1. Έστω ότι μια επιχείρηση αντιμετωπίζει ετήσια ζήτηση = 00 μονάδων για ένα συγκεκριμένο προϊόν, σταθερό κόστος παραγγελίας
Επιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #1: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο
Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Γραμμικός προγραμματισμός: Εισαγωγή Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 3 η /2017 Γραμμικός προγραμματισμός Είναι μια μεθοδολογία
2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ
2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική
Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20
Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 1: Εισαγωγή στο Γραμμικό Προγραμματισμό (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών
Επιχειρησιακή έρευνα (ασκήσεις)
Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής
Αποφάσεων Marketing. Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών. ΔΠΜΣ Οικονομική & Διοίκηση Τηλεπικοινωνιακών Δικτύων
ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Αποφάσεων Marketing ΔΠΜΣ Οικονομική & Διοίκηση Τηλεπικοινωνιακών Δικτύων Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών Αθήνα, 2007 Η
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 6: Εφαρμογές Γραμμικού Προγραμματισμού (2 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Εισαγωγή στο Γραμμικό Προγραμματισμό
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Εισαγωγή στο Γραμμικό Προγραμματισμό Φουτσιτζή Γεωργία-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 15/10/2016 1 Περιεχόμενα Γραμμικός
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 9: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (1o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Διδάσκων: Νίκος Λαγαρός
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ 4 η Σειρά Ασκήσεων του Μαθήματος «ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ» Διδάσκων: Νίκος Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Μοντελοποίησης και Βελτιστοποίηση Εφοδιαστικών Αλυσίδων 7 Ο εξάμηνο
Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μοντελοποίησης και Βελτιστοποίηση Εφοδιαστικών Αλυσίδων 7 Ο εξάμηνο 2 η ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ ΔΕΚΕΜΒΡΙΟΣ 2012 Μιχαήλ Γεωργιάδης
Μοντέλα Διανομής και Δικτύων
Μοντέλα Διανομής και Δικτύων 10-03-2017 2 Πρόβλημα μεταφοράς (1) Τα προβλήματα μεταφοράς ανακύπτουν συχνά σε περιπτώσεις σχεδιασμού διανομής αγαθών και υπηρεσιών από τα σημεία προσφοράς προς τα σημεία
Διαχείριση Εφοδιαστικής Αλυσίδας
Διαχείριση Εφοδιαστικής Αλυσίδας 10 η Διάλεξη: Σχεδιασμός Δικτύων Εφοδιαστικής Αλυσίδας (Supply Chain Network Design) 2018 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στις
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού
2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Επιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #: Εφαρμογές του Γραμμικού Προγραμματισμού Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
Κεφάλαιο 4ο: Δικτυωτή Ανάλυση
Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΕΦΑΡΜΟΓΕΣΔΙΟΙΚΗΤΙΚΗΣΕΠΙΣΤΗΜΗΣ&
ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ ΙΟΥΛΙΟΥ 2014
ΠΑΝΕΠΙΣΤΗΜΙΟΥΠΟΛΗ - ΡΙΟ 00 ΠΑΤΡΑ UNIVERSITY CAMPUS-RIO 00 PATRAS, GR ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ ΙΟΥΛΙΟΥ 0 ΘΕΜΑ ( Μονάδες ) Στο παρακάτω πρόβληµα γ.π c max = + s. t + - + + + 0 +,,
Α. Διατύπωση μοντέλου προβλήματος γραμμικού προγραμματισμού
Ασκήσεις ΠΣΔ Α. Διατύπωση μοντέλου προβλήματος γραμμικού προγραμματισμού Μια επιχείρηση παράγει 3 προϊόντα και έχει 4 διαθέσιμαεργοστάσια. Ο χρόνος παραγωγής (σε λεπτά) για κάθε προϊόν διαφέρει από εργοστάσιο
Τμήμα Διοίκησης Επιχειρήσεων
Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 1: Γραµµικός προγραµµατισµός(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com http://vasilis-ismyrlis.webnode.gr/
Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς
Ασκήσεις γραφικής επίλυσης
Ασκήσεις γραφικής επίλυσης Άσκηση 1- (Παράδειγµα 3.4 βιβλίου) Σε ένα πτηνοτροφείο χρησιµοποιείται για την καθηµερινή διατροφή ενός συνόλου πτηνών ένα µείγµα αποτελούµενο από δύο είδη δηµητριακών: το είδος
ιαµόρφωση Προβλήµατος
Γραµµικός Προγραµµατισµός ιαµόρφωση Προβλήµατος Η παρουσίαση προετοιµάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόµενα Παρουσίασης 1. Γενικά Στοιχεία Γραµµικού
Τμήμα Διεθνούς Εμπορίου Επιχειρησιακή έρευνα. Επιχειρησιακή Έρευνα
ΤΕΙ Δυτικής Μακεδονίας Τμήμα Διεθνούς Εμπορίου Επιχειρησιακή Έρευνα Προβλήματα Διαμόρφωση μαθηματικού μοντέλου Γραφική λύση Επίλυση με τη μέθοδο Simplex Δρ. Ζαχαρούλα Καλογηράτου 1 Πρόβλημα 1. Εργαστήριο
Διαχείριση Εφοδιαστικής Αλυσίδας
Διαχείριση Εφοδιαστικής Αλυσίδας 4 η Διάλεξη: Βελτιστοποίηση πολλαπλών στόχων (Μulti-objective optimization) 2019 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στην βελτιστοποίηση
Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 013 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ 1 ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize
Το Πρόβλημα Μεταφοράς
Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού
Άσκηση 5. Εργοστάσια. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης
Άσκηση Μια μεγάλη εταιρεία σκοπεύει να μπει δυναμικά στην αγορά αναψυκτικών της χώρας διαθέτοντας συνολικά 7 μονάδες κεφαλαίου. Το πρόβλημα που αντιμετωπίζει είναι αν πρέπει να κατασκευάσει ένα κεντρικό
Fermat, 1638, Newton Euler, Lagrange, 1807
Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου
ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΣΙΜΟΥ
ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΣΙΜΟΥ Παράδειγμα #1 Η Επενδυτικά Έργα Α.Ε., θέλει να επενδύσει τα διαθέσιμα κεφάλαια της που ανέρχονται σε 2 δις για να συμμετάσχει σε κοινοπραξίες που θα
Μίγμα προϊόντων (product mix)
ΠΡΟΒΛΗΜΑΤΑ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 2 Μίγμα προϊόντων (product mix) Σε τέτοιου είδους προβλήματα, ο στόχος της βελτιστοποίησης είναι να βρεθεί η πιο κερδοφόρα λύση με βάση περιορισμένους πόρους εν συγκρίσει επιθυμητών
σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.
Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα
Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό
Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων
Επιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #6: Στοχαστικός Γραμμικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο. Δίκτυα Ροής Ελάχιστου Κόστους (Minimum Cost Flow Networks)
Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο Ορισμοί Παραδείγματα Δικτυακή Simplex (προβλήματα με και χωρίς φραγμούς). Δίκτυα Ροής Ελάχιστου Κόστους (Minimum ost Flow Networks) Ένα δίκτυο μεταφόρτωσης αποτελείται
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Εφαρμογή σε Άλλα Προβλήματα Διαχείρισης Έργων Π. Γ. Υψηλάντης ΓΠ στη Διοίκηση Έργων Προβλήματα μεταφοράς και δρομολόγησης Αναθέσεις προσωπικού Επιλογή προμηθευτών Καθορισμός τοποθεσίας
ΠΡΩΤΟ ΣΕΤ ΑΣΚΗΣΕΩΝ-ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
ΠΡΩΤΟ ΣΕΤ ΑΣΚΗΣΕΩΝ-ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΣΚΗΣΗ 1 Ένας κτηµατίας πρέπει να καθορίσει πόσα στρέµµατα καλαµποκιού και σιταριού να φυτέψει αυτή τη χρονιά. Ένα στρέµµα σιταριού
Εισαγωγή στο Γραμμικό Προγραμματισμό
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Εισαγωγή στο Γραμμικό Προγραμματισμό Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 15/10/2016 1 Παραδείγματα Που στοχεύει ο Γραμμικός Προγραμματισμός;
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Περιεχόμενα 1 Γενικά στοιχεία γραμμικού προγραμματισμού 2 Παράδειγμα γραμμικού προγραμματισμού και γραφικής επίλυσης του 3 Γραμμικός προγραμματισμός
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 8: Επίλυση με τη μέθοδο Simplex (2 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Δυναμικότητα (GWh) A B C Ζήτηση (GWh) W X Y Z
Άσκηση Η εταιρία ηλεκτρισμού ELECTRON έχει τρείς μονάδες ηλεκτροπαραγωγής Α, Β, C και θέλει να καλύψει τη ζήτηση σε τέσσερις πόλεις W, Χ, Υ, Ζ. Η μέγιστη παραγωγή, η απαιτούμενη ζήτηση και το κόστος μεταφοράς
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 10: Το πρόβλημα μεταφοράς: μαθηματικό μοντέλο και μεθοδολογία επίλυσης Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Γραμμικός Προγραμματισμός
Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2005-6 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα
Διαχείριση Εφοδιαστικής Αλυσίδας
Διαχείριση Εφοδιαστικής Αλυσίδας 1 η Διάλεξη: Βασικές Έννοιες στην Εφοδιαστική Αλυσίδα - Εξυπηρέτηση Πελατών 2015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στη Διοίκηση
Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1)
Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1) Η βιομηχανική επιχείρηση «ΑΤΛΑΣ Α.Ε.» δραστηριοποιείται στο χώρο του φυσικού αερίου και ειδικότερα στις συσκευές οικιακής χρήσης. Πρόκειται να εισάγει
Διαχείριση Εφοδιαστική Αλυσίδας. ΤΕΙ Κρήτης / Τμήμα Διοίκησης Επιχειρήσεων
Διαχείριση Εφοδιαστική Αλυσίδας ΤΕΙ Κρήτης / Τμήμα Διοίκησης Επιχειρήσεων Εισαγωγικές Έννοιες Δρ. Ρομπογιαννάκης Ιωάννης 1 Διαχείριση Εφοδιαστικής Αλυσίδας Ορισμοί - 1 - Εφοδιαστική/ Logistics: Η ολοκληρωμένη
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Μεταξύ δύο περιορισμών, ο ένας πρέπει να ισχύει Έστω ότι για την κατασκευή ενός προϊόντος
ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )
ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος
ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ
(Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 23: Κλασική Ανάλυση Ευαισθησίας, Βασικές Έννοιες Γραφημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΠΡΟΓΡΑΜ- ΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Συνοπτικός (Συγκεντρωτικός) Προγραμματισμός Παραγωγής
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΠΡΟΓΡΑΜ- ΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Συνοπτικός (Συγκεντρωτικός) Προγραμματισμός Παραγωγής Γιώργος Λυμπερόπουλος Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανολόγων Μηχανικών 17/3/2017 Γ. Λυμπερόπουλος - Διοίκηση
Ανάλυση ευαισθησίας. Άσκηση 3 Δίνεται ο παρακάτω τελικός πίνακας Simplex. Επιχειρησιακή Έρευνα Γκόγκος Χρήστος
Τμήμα Μηχανικών Πληροφορικής ΤΕ Ακαδημαϊκό έτος 2016-2017 Άρτα Επιχειρησιακή Έρευνα Γκόγκος Χρήστος Μεταπτυχιακό Μηχανικών Η/Υ και Δικτύων Μεταπτυχιακό Μηχανικών Η/Υ και Δικτύων ΣΕΤ ΑΣΚΗΣΕΩΝ 3 Ανάλυση
Συστήματα Αποφάσεων. Εργαστηριακές Ασκήσεις στον Γραμμικό Προγραμματισμό
Εργαστηριακές Ασκήσεις στον Γραμμικό Προγραμματισμό Άσκηση 1: Ανάθεση αεροπορικών πτήσεων Μικρή ιδιωτική αεροπορική εταιρία διαθέτει αεροσκάφη τριών τύπων: τα Α, Β και Γ, για να εκτελεί ναυλωμένες πτήσεις
Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις
Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 6.1 2 Τυπικά δεδομένα Ενότητα 6.3 Δοκιμή με σταθερή
Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού
Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 τελευταία ενημέρωση: 21/10/2016 1 Γραφική μέθοδος
The Product Mix Problem
Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας 1 The Product Mix Problem Τα προβλήματα αυτά αναφέρονται σε συστήματα τα οποία εκμεταλλευόμενα τους περιορισμένους πόρους που έχουν στη διάθεσή του, παράγουν
3.12 Το Πρόβλημα της Μεταφοράς
312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις
Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)
Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Θέμα 1 Μια επιχείρηση χρησιμοποιεί 3 πρώτες ύλες Α, Β, Γ για να παράγει 2 προϊόντα Π1 και Π2. Για την παραγωγή μιας μονάδας προϊόντος Α απαιτούνται 1
Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007
Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007 Επιτρέπεται µια σελίδα Α4 σηµειώσεων. Γράψτε ΜΟΝΟ τέσσερα θέµατα (αν υπάρχει 5 ο ΕΝ λαµβάνεται υπόψη) άριστα 3,5 θέµατα. Κάθε θέµα έχει ίδια αξία,
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ. Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ Αθήνα, Ιανουάριος 2015 Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης
Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών
ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών ΔΠΜΣ Οικονομική & Διοίκηση Τηλεπικοινωνιακών Δικτύων Αθήνα, 2007 Βασικά χαρακτηριστικά
Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο
Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Παράδειγμα προβλήματος ελαχιστοποίησης Μια κατασκευαστική εταιρία κατασκευάζει εξοχικές κατοικίες κοντά σε γνωστά θέρετρα της Εύβοιας Η
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Νοέμβριος 006 Αθήνα Κεφάλαιο ο Ακέραιος και μικτός προγραμματισμός. Εισαγωγή Μια από τις
Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος.
Τι είναι Επιχειρησιακή Έρευνα (Operations Research); Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος. Το σύνολο των τεχνικών (μαθηματικά μοντέλα) οι οποίες δημιουργούν μια ποσοτική
Επιχειρησιακή Έρευνα Εφαρμογές και Λογισμικό Γραμμικού Προγραμματισμού
Επιχειρησιακή Έρευνα Εφαρμογές και Λογισμικό Γραμμικού Προγραμματισμού Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης
Επιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής
Μάρκετινγκ Αγροτικών Προϊόντων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μάρκετινγκ Αγροτικών Προϊόντων Ενότητα 17 η : Μεταφορές Αγροτικών Προϊόντων Χρίστος Καμενίδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές
3. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΟΣ 3. Τι Είναι Απόθεμα Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές. Απόθεμα Α, Β υλών και υλικών συσκευασίας: Είναι το απόθεμα των υλικών που χρησιμοποιούνται
«Πρόβλημα μέγιστης ροής» Maximum flow problem. Κηρυττόπουλος Κωνσταντίνος PhD, Dipl. Eng., PMP
«Πρόβλημα μέγιστης ροής» Maximum flow problem Κηρυττόπουλος Κωνσταντίνος PhD, Dipl. Eng., PMP Στόχος προβλημάτων ροής Βέλτιστη αξιοποίηση κλάδων ενός δικτύου, προσανατολισμένου ή μη, για την επίτευξη μέγιστης
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 00-0 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (/05/0, 9:00) Να απαντηθούν 4 από τα 5
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 6 Γραμμικός Προγραμματισμός Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Γραμμικός Προγραμματισμός
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
Διοίκηση Λειτουργιών. (Operations Management) 1 ο μάθημα Εισαγωγή. Πανεπιστήμιο Πατρών Τμήμα Διοίκησης Επιχειρήσεων.
Διοίκηση Λειτουργιών (Operations Management) 1 ο μάθημα Εισαγωγή 1 Ομάδα Σχετικών Μαθημάτων ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ (5 ο εξάμηνο) ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΕΦΟΔΙΑΣΤΙΚΗΣ (LOGISTICS) (7 ο εξάμηνο) ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος
Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Πρόβλημα Μεταφοράς Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς Μαθηματική Διατύπωση Εύρεση Αρχικής Λύσης Προσδιορισμός Βέλτιστης Λύσης
ΠΑΡΑΓΟΝΤΕΣ ΕΝΙΣΧΥΣΗΣ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΤΩΝ LOGISTICS Όσο λοιπόν αυξάνει η σημασία και οι απαιτήσεις του διεθνούς εμπορίου, τόσο πιο απαιτητικές γίνονται
ΠΑΡΑΓΟΝΤΕΣ ΕΝΙΣΧΥΣΗΣ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΤΩΝ LOGISTICS Όσο λοιπόν αυξάνει η σημασία και οι απαιτήσεις του διεθνούς εμπορίου, τόσο πιο απαιτητικές γίνονται και οι συνθήκες μεταφοράς και διανομής. Το διεθνές εμπόριο
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Λήψη αποφάσεων υπό αβεβαιότητα
Διαχείριση Αβεβαιότητας Λήψη αποφάσεων υπό αβεβαιότητα Όταν έχω να αντιμετωπίσω ένα πρόβλημα λήψης αποφάσεων υπό αβεβαιότητα, μπορώ να ακολουθήσω τις ακόλουθες στρατηγικές: 1. Η λάθος προσέγγιση: «Βελτιστοποίηση
Ανάλυση Ευαισθησίας µε τη χρήση του Solver
Ανάλυση Ευαισθησίας µε τη χρήση του Solver Πρόβληµα 1 Μια εταιρία κατασκευής τηλεοράσεων κατασκευάζει τέσσερα µοντέλα τηλεοράσεων Μ1, Μ2, Μ3 και Μ4. Κάθε µοντέλο για να παραχθεί απαιτεί χρόνο συναρµολόγησης
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )
3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο