1. Sončev sistem sestavlja Sonce in veliko število teles in snovi, ki jih nanj veže težnost. 2. Sončev sistem vsebujejo planeti, njihovi sateliti,

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Sončev sistem sestavlja Sonce in veliko število teles in snovi, ki jih nanj veže težnost. 2. Sončev sistem vsebujejo planeti, njihovi sateliti,"

Transcript

1 SONČNI SISTEM

2

3 1. Sončev sistem sestavlja Sonce in veliko število teles in snovi, ki jih nanj veže težnost. 2. Sončev sistem vsebujejo planeti, njihovi sateliti, manjši planeti, kometi, meteoriti in medplanetarni plin in prah. 3. V sončenem sistemu poznamo osem planetov, ki vsi krožijo okrog sonca po eliptičnih tirih. 4. Glede povprečno oddaljenost od sonca si sledijo Merkur, Venera, Zemlja, Mars, Jupiter, Saturn, Uran, Neptun in Pluton. 5. Sončni sistem naj bi nastal pred približno milijoni let z zgoščevanjem (akrecijo) iz sončne meglice, vrtečega se oblaka plina in prahu, iz katerega je nastalo tudi sonce.

4

5 Sonce

6 1. Latinski izraz: Sol 2. Sónce je edina zvezda in glavno telo našega Osončja. 3. Planet Zemlja in njeni sestrski planeti, tako drugi zemeljski planeti kot plinski velikani, krožijo okoli Sonca. 4. Druga telesa, ki krožijo okoli Sonca, so še asteroidi, meteoriti, kometi, čezneptunska telesa in seveda medzvezdni prah. 5. Sonce je velikanska vrteča se krogla žarečih plinov. 6. Sonce je sestavljen iz vodika (73,5%), helija (24,9%), sledov kisika, ogljika in drugih elementov. 7. Sončeva površina ni gladka ampak podobna brbotajočem kotlu žarečih plinov. 8. Od časa do časa se z Sončeve površine odlepijo loki (izbruhi). 9. Preko več let se na Soncu pojavljajo in izginevajo hladnejše temne lise (Sončeve pege), ki nastanejo ko silnice magnetnega polja prebadajo fotosfero. 10. Sonce ogreva le tiste stvari, ki vpijajo svetlobo. 11. V samem središču Sonca je sredica, ki ima 15 milijonov stopinj Celzija.

7

8 Merkur

9 1. Latinski izraz: Mercury 2. Merkúr je notranji planet. 3. Merkur je najmanjši in Soncu najbližji planet v Osončju. 4. Merkur se okoli svoje osi zavrti v 59 dneh. Torej se trikrat zavrti okoli svoje osi, da dvakrat obkroži sonce. 5. Planet Merkur težko opazimo. Pojavi se le nizko nad zahodnim obzorjem po sončnem vzhodu ali nizko na vzhodu, preden vzide sonce. 6. Merkur slabo poznamo. Edine naše podatke o Merkurju je preskrbel Meriner 10, edino vesoljsko plovilo ki je obiskalo ta planet. Slike ki jih je poslal, kažejo gol, kamnit planet. 7. Merkur nima atmosfere in satelitov. 8. Merkur po zunanjosti spominja na Luno, saj je močno prepreden s kraterji. 9. Površinske temperature na Merkurju znašajo med 90 in 700 K (-180 C do 430 C). 10. Planet so po svojem krilatem bogu - slu Merkurju, verjetno zaradi hitrega gibanja po nebu, poimenovali Rimljani. 11. Grki so ga imenovali Στίλβων Stilbon ( svetleči ) in Hermes.

10

11 Venera

12 1. Latinski izraz: Venus 2. Venera je notranji planet. 3. Venera je Zemlji najbližji sosed in je (če ne štejemo Lune) najsvetlejši objekt na nočnem nebu. 4. Venero vidimo jo s prostim očesom le zjutraj ali zvečer. 5. Venera je edini planet v osončju, ki se vrti v nasprotno smer. Znanstveniki domnevajo, da zaradi trka z asteroidom. 6. Venera je pokrita z neprozorno plastjo bleščečih oblakov, zato njegovo površje iz vesolja ni vidno v vidni svetlobi. 7. Venera ima najgostejšo atmosfero od vseh zemeljskih planetov, ki je sestavljeno večinoma iz ogljikovega dioksida, zračni pritisk na površini pa je 90-krat večji kot na Zemlji. 8. Planet Venera se imenuje po rimski boginji ljubezni, Veneri. 9. Prvo vozilo, ki nam je poslalo podatke iz Venere je bila sovjetska vesoljska ladja. 10. Temperatura na Veneri je 470 C, atmosferski tlak pa je 90-krat večji kot na Zemlji.

13

14 Zemlja

15 1. Latinski izraz: Terra 2. Zemlja je največja od notranjih planetov in edina, na katerem je mogoče življenje. 3. Zemlja predstavlja največji trdni planet. 4. Zemlja se je oblikovala pred približno 4,57 milijarde let. 5. Zemljin edini naravni satelit Luna pa pred okoli 4,53 milijarde let. 6. Atmosfero Zemlje sestavljata v glavnem dušik (78%) in kisik (21%). 7. Okoli 70 odstotkov zemeljske površine pokrivajo oceani s slano vodo, preostanek pa zapolnjujejo celine ter otoki.

16

17 Mars

18 1. Latinski izraz: Mars 2. Mars je po zaporedju četrti notranji planet. 3. Planet mars se imenuje po rimskem bogu vojne Marsu, zaradi značilne rdeče barve. Rdeča barva je posledica prisotnosnoti železovega oksida na površju. 4. Mars ima dve majhni luni, Fobos in Deimos. 5. Na Marsu so velike puščave, z peščenimi sipinami in skalami, visoke gore, ogromne doline, vulkanski kraterji, kanjoni. Na Marsu je tudi največji kanjon v Osončju. 6. Na površju Marsa so dobro vidne posledice padcev meteoritov. 7. Marsova atmosfera je sestavljena iz 95% ogljikovega dioksida, 3% dušika, 1.6% argona, in manjših deležev kisika in vode.

19

20 Jupiter

21 1. Latinski izraz: Iuppiter 2. Jupiter je zunanji in največji planet sončnega sistema. 3. Če opazujemo Jupiter s prostim očesom je precej svetel. Svetlejše od njega so Sonce Luna, Venera in redkokdaj Mars. 4. Jupiter je ime dobil po rimskem bogu Jupitru. 5. Jupiter se okoli svoje osi zavrti v 9 urah in 55minutah. 6. Rdeča pega na Jupitru je orjaški vrtinčasti vihar v njegovi atmosferi. 7. Jupitrovo atmosfero sestavlja 86 % vodika in 14 % helija. 8. Jupiter ima 16 večjih lun. Vseh večjih in manjših lun Jupitra skupaj pa so do sedaj našteli 63.

22

23 Saturn

24 1. Latinski izraz: Saturn 2. Satúrn je zunanji, šesti planet od Sonca v Osončju. 3. Planet Saturn se imenuje po rimskem bogu Saturnu. 4. Saturn je plinski velikan, po velikosti drugi največji za Jupitrom. 5. Saturn je že od nekdaj najbolj znan po svojih značilnih obročih. Obroči so plast kamnin, ki obdaja Saturn. 6. Saturn ima 18 lun. Med njimi luno Titan, ki je druga največja luna v Osončju za Jupitrovo luno Ganimed. 7. Planet Satrun je sestavljen iz 75 % iz vodika in 25% iz helija.

25

26 Uran

27 1. Latinski izraz: Uranium 2. Urán je zunanji, sedmi planet od Sonca v Osončju. 3. Planet Uran se imenuje po grškem bogu neba in praočetu drugih bogov Uranu (starogrško Oúranós). 4. Uran lahko vidimo na temnem nebu s prostim očesom kot zelo šibko zvezdo. Zlahka pa se ga najde z navadnim daljnogledom. 5. Uranova atmosfera je v Osončju najhladnejša z najnižjo temperaturo 224 C. 6. Uranova zgradba oblakov je kompleksna in plastna. V najnižjih oblakih se verjetno nahaja voda, v najvišjih pa metan. 7. Notranjost Urana v glavnem sestavljajo led in skale. 8. Uran ima 27 znanih naravnih satelitov.

28

29 Neptun

30 1. Latinski izraz: Neptune 2. Neptún je zunanji, po oddaljenosti od Sonca osmi planet v Osončju. 3. Neptun je tako oddaljen da ga s prostim očesom ni mogoče opaziti. 4. Okrog Neptuna - tega modrega planeta so bili odkriti šibki temni obroči, ki pa so manj izdatni kot Saturnovi. To so vetrovi, ki pihajo s hitrostjo 2000 km/h 5. V Neptunovem ozračju so znatne količine vodika, helija in metana, ki dajejo planetu značilno modro barvo. 6. Neptun dokazano obkroža devet lun. 7. Planet Neptun se zaradi svojega modrega izgleda imenuje po rimskem bogu morja Neptunu.

31

32 Pluton

33 1. Latinski izraz: Pluton 2. Plúton je imel od odkritja in vse do leta 2006 status najbolj zunanjega, devetega in zadnjega planeta od Sonca. 3. Od avgusta 2006, je sprejet sklep, v katerem je zapisano, da je v našem Osončju samo osem planetov. (Zato ker so našli še večje vesoljsko telo od Plutona, Erido, in bi morali status planeta dodeliti še drugim vesoljskim telesom) 4. Planetoid (majhen planet) Pluton so poimenovali po rimskem bogu Plutonu. 5. Pluton je zelo majhen, ledeni planet - planetoid. 6. Plutonova luna, Charon, je v primerjavi z njim zelo velika (ima kar desetino njegove mase).

34

35 Asteroidi = Manjši planeti

36 1. Asteroíd je majhno, trdno nebesno telo v našem Osončju, ki kroži okoli Sonca. Imenujemo jih tudi manjši planeti oziroma planetoidi. 2. V Sončnem sistemu jih je nekaj tisoč. 3. Večina jih kroži med Marsom in Jupitrom. To območje imenujemo asteroidni pas. 4. Največji med njimi je Ceres, ki ima premed od 940km. 5. Asteroide po navadi razvrščajo v skupine na podlagi lastnosti tirnic in na podlagi podrobnosti spektra sončne svetlobe, ki jo odbijajo.

kg 2 Naredimo miselni poskus.

kg 2 Naredimo miselni poskus. 41 3.1 3.2 3.3 F F Kako je angleški fizik Newton odkril gravitacijski zakon, pripoveduje tale anekdota. Nekega dne je ob popoldanskem čaju počival v senci jablane. Ko je zapihal vetrič, je z drevesa padlo

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

RAZISKOVALNO ASTRO NOMSKI KROŽE K internetna stran:

RAZISKOVALNO ASTRO NOMSKI KROŽE K internetna stran: ISSN 1580-3562 LETNIK VII, APRIL 2006 internetna stran: www.astromaister.sc-rm.net e-mail: AstroMaister@sc-rm.net RAZISKOVALNO ASTRO NOMSKI KROŽE K internetna stran: www.rak.sc-rm.net e-mail: Rak@sc-rm.net

Διαβάστε περισσότερα

ZEMLJINA SKUPINA PLANETA ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI

ZEMLJINA SKUPINA PLANETA ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI PLANETI ZEMLJINA SKUPINA PLANETA ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI ASTEROIDI Građa terestričkih planeta stjenovito središte, tanka atmosfera km ρ 4880 5,43 12104 5,24 12756 5,52

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

PRILOGA za spletno stran k mojemu ČLANKU TEST ZNANJA O ASTRONOMIJI IN SILAH ZA REVIJO FIZIKA V ŠOLI 2/2011, december 2011

PRILOGA za spletno stran k mojemu ČLANKU TEST ZNANJA O ASTRONOMIJI IN SILAH ZA REVIJO FIZIKA V ŠOLI 2/2011, december 2011 PRILOGA za spletno stran k mojemu ČLANKU TEST ZNANJA O ASTRONOMIJI IN SILAH ZA REVIJO FIZIKA V ŠOLI /0, december 0 Test V prispevek sem uvrstil test, ki preverja znanje astronomije in osnovno znanje o

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica drugega telesa, ki nanj učinkuje.

Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica drugega telesa, ki nanj učinkuje. 2. Dinamika 2.1 Sila III. PREDNJE 2. Dinamika (sila) Grška beseda (dynamos) - sila Gibanje teles pod vplivom zunanjih sil 2.1 Sila Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica

Διαβάστε περισσότερα

Zemlja in njeno ozračje

Zemlja in njeno ozračje Zemlja in njeno ozračje Pojavi v ozračju se dogajajo na zelo različnih časovnih in prostorskih skalah Prostorska skala Pojav 1 cm Turbulenca, sunki vetra 1 m 1 km 10 km 100 km 1000 in več km Tornadi Poplave,

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

- Geodetske točke in geodetske mreže

- Geodetske točke in geodetske mreže - Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

ASTRONOMI V KMICI dvanajstič

ASTRONOMI V KMICI dvanajstič ASTRONOMI V KMICI dvanajstič Astronomi v Kmici, dvanajstič kmi a Kazalo KMICA V GALILEJEVEM LETU... 2 MEDNARODNO LETO ASTRONOMIJE 2009 V SLOVENIJI... 2 ROJSTVO ZVEZD... 2 POVPREČNA TEMPERATURA PLANETOV...

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

GALAKSIJE OPAZOVANJE GALAKSIJ, izračuni, posledice

GALAKSIJE OPAZOVANJE GALAKSIJ, izračuni, posledice Moderna fizika - seminarska naloga GALAKSIJE OPAZOVANJE GALAKSIJ, izračuni, posledice Domžale, dne 20. 2. 2004 Marjan Grilj, 3.l. fizika vsš, FMF Vsebina: (1) Osnove: (a) opazovanje (b) določanje oddaljenosti

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Libracija Lune. Alexander Jerman, Domen Mlakar, Milan Grkovski, Gabriela Hladnik

Libracija Lune. Alexander Jerman, Domen Mlakar, Milan Grkovski, Gabriela Hladnik Libracija Lune Alexander Jerman, Domen Mlakar, Milan Grkovski, Gabriela Hladnik 8. september 006 Gibanje Lune 1. Libracija Pojem libracija prihaja iz latinskega glagola libro -are "uravnotežiti, nihati"(tudi

Διαβάστε περισσότερα

ZEMLJOMOR ALI GEOCID ARGUMENTI ZA IN PROTI. Zakaj bi želeli razbiti Zemljo? Vi, vi nori, bedasti, manijak! ZAKAJ?

ZEMLJOMOR ALI GEOCID ARGUMENTI ZA IN PROTI. Zakaj bi želeli razbiti Zemljo? Vi, vi nori, bedasti, manijak! ZAKAJ? 1 Andrej Ivanuša, december 2010 ZEMLJOMOR ALI GEOCID Odločili ste se, da izvršite zemljomor ali, če rečemo s tujko, geocid. Torej, odločili ste se, da razstrelite Zemljo. Da jo razstavite na prafaktorje,

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Zemlja in njeno ozračje

Zemlja in njeno ozračje Zemlja in njeno ozračje Pojavi v ozračju se dogajajo na zelo različnih časovnih in prostorskih skalah Prostorska skala Pojav 1 cm Turbulenca, sunki vetra 1 m 1 km 10 km 100 km 1000 in več km Tornadi Poplave,

Διαβάστε περισσότερα

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70 KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

kmi a Astronomi v Kmici, petnajstič ASTRONOMI V KMICI petnajstič

kmi a Astronomi v Kmici, petnajstič ASTRONOMI V KMICI petnajstič ASTRONOMI V KMICI petnajstič 1 Kazalo ASTRONOMI V KMICI PETNAJSTIČ... 3 HERMAN POTOČNIK NOORDUNG - ZNANOST ALI KULTURA... 4 VIŠINA SONCA NAD OBZORJEM... 6 GALAKSIJE... 8 POVRŠINSKA HITROST PLANETOV...

Διαβάστε περισσότερα

KAJ SO TO SPREMENLJIVKE?

KAJ SO TO SPREMENLJIVKE? SPREMENLJIVKE 1 2 USTVARJALC I: Polona Kuhar Petra Prijatelj Milena Dimc KAJ SO TO SPREMENLJIVKE? Spremenljivke so malo drugačne zvezde. To je tako, kot bi gledali dve žarnici enakega sijaja, toda v različni

Διαβάστε περισσότερα

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

ASTRONOMI V KMICI šestnajstič

ASTRONOMI V KMICI šestnajstič ASTRONOMI V KMICI šestnajstič KAZALO KMICA POSTAJA POLNOLETNA... 3 BLIŽE K SONCU... 8 DVAKRATNI SONČNI ZAHOD... 10 PRIBLIŽEVANJE DVEH TELES POD... 14 VPLIVOM GRAVITACIJSKE SILE... 14 PRAVLJICE O SONCU,

Διαβάστε περισσότερα

Theoretical Examination

Theoretical Examination Page 1 of 7 (T1) 1. NALOGA Drži ali ne drži Označi, ali so naslednje trditve pravilne ali napačne. Na listu za odgovore označi pravilen odgovor (TRUE, če je trditev pravilna, in FALSE, če je trditev napačna).

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

Energijska bilanca Zemlje. Osnove meteorologije november 2017

Energijska bilanca Zemlje. Osnove meteorologije november 2017 Energijska bilanca Zemlje Osnove meteorologije november 2017 Spekter elektromagnetnega sevanja Sevanje Osnovne spremenljivke za opis prenosa energije sevanjem: valovna dolžina - λ (m) frekvenca - ν (s

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

Univerza v Ljubljani. Fakulteta za matematiko in fiziko. oddelek za fiziko. seminar 4. letnik. Program Voyager. Avtor: Martin Knapič

Univerza v Ljubljani. Fakulteta za matematiko in fiziko. oddelek za fiziko. seminar 4. letnik. Program Voyager. Avtor: Martin Knapič Univerza v Ljubljani Fakulteta za matematiko in fiziko oddelek za fiziko seminar 4. letnik Program Voyager Avtor: Martin Knapič Mentor: prof. dr. Tomaž Zwitter Ljubljana, 17. marec 011 Povzetek: Sondi

Διαβάστε περισσότερα

1. kolokvij iz predmeta Fizika 2 (VSŠ)

1. kolokvij iz predmeta Fizika 2 (VSŠ) 0 0 0 4 2 5 9 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: 1. kolokvij iz predmeta Fizika 2 (VSŠ) 4.4.2013 1. Kolikšen je napetost med poljubno

Διαβάστε περισσότερα

ARHITEKTURA DETAJL 1, 1:10

ARHITEKTURA DETAJL 1, 1:10 0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P

Διαβάστε περισσότερα

Univerza v Ljubljani, Fakulteta za matematiko in fiziko. Seminar. Helioseizmologija

Univerza v Ljubljani, Fakulteta za matematiko in fiziko. Seminar. Helioseizmologija Univerza v Ljubljani, Fakulteta za matematiko in fiziko Seminar Helioseizmologija Avtor: Janez Kos Mentorica: doc. dr. Andreja Gomboc Ljubljana, december 2008 Povzetek Seminar predstavi problem preučevanja

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

MLADINSKI ASTRONOMSKI TABOR

MLADINSKI ASTRONOMSKI TABOR Marko Pust Aram Karalič MLADINSKI ASTRONOMSKI TABOR Zveza za tehnično kulturo Slovenije Ljubljana 2001 2 Kazalo I Nekaj astronomskih projektov 15 1 Vaje za ogrevanje 19 1.1 Spoznavanje ozvezdij..............................

Διαβάστε περισσότερα

SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4)

SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4) Naše oko zaznava svetlobo na intervalu valovnih dolžin približno od 400 do 800 nm. Odvisnost očesne občutljivosti od valovne dolžine je različna od človeka do človeka ter se spreminja s starostjo. Največja

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Svetloba in barve. Svetloba kot del EM spektra. Svetloba kot del EM spektra. Elektrotehnika in varnost Razsvetljava

Svetloba in barve. Svetloba kot del EM spektra. Svetloba kot del EM spektra. Elektrotehnika in varnost Razsvetljava Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Razsvetljava Svetloba in barve predavatelj prof. dr.

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

kmi a Astronomi v Kmici, trinajstič ASTRONOMI V KMICI trinajstič

kmi a Astronomi v Kmici, trinajstič ASTRONOMI V KMICI trinajstič ASTRONOMI V KMICI trinajstič 1 ASTRONOMIJA PO SVETOVNEM LETU ASTRONOMIJE... 2 MATEMATIČNO MODELIRANJE GIBANJA SATELITOV... 2 KAKO SO V VESOLJU NASTALI KEMIJSKI ELEMENTI?... 2 VIŠINA GORA NA LUNI... 2 PROJEKT

Διαβάστε περισσότερα

Energijska bilanca. E=E i +E p +E k +E lh. energija zaradi sproščanja latentne toplote. notranja energija potencialna energija. kinetična energija

Energijska bilanca. E=E i +E p +E k +E lh. energija zaradi sproščanja latentne toplote. notranja energija potencialna energija. kinetična energija Energijska bilanca E=E i +E p +E k +E lh notranja energija potencialna energija kinetična energija energija zaradi sproščanja latentne toplote Skupna energija klimatskega sistema (atmosfera, oceani, tla)

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Svetloba in barve. Svetloba kot del EM spektra. Svetloba kot del EM spektra. Elektrotehnika in varnost Razsvetljava

Svetloba in barve. Svetloba kot del EM spektra. Svetloba kot del EM spektra. Elektrotehnika in varnost Razsvetljava Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Razsvetljava Svetloba in barve predavatelj prof. dr.

Διαβάστε περισσότερα

PITAGORA, ki je večino svojega življenja posvetil številom, je bil mnenja, da ves svet temelji na številih in razmerjih med njimi.

PITAGORA, ki je večino svojega življenja posvetil številom, je bil mnenja, da ves svet temelji na številih in razmerjih med njimi. ZGODBA O ATOMU ATOMI V ANTIKI Od nekdaj so se ljudje spraševali iz česa je zgrajen svet. TALES iz Mileta je trdil, da je osnovna snov, ki gradi svet VODA, kar pa sploh ni presenetljivo. PITAGORA, ki je

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

PRILOGA VI POTRDILO O SKLADNOSTI. (Vzorci vsebine) POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA

PRILOGA VI POTRDILO O SKLADNOSTI. (Vzorci vsebine) POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA PRILOGA VI POTRDILA O SKLADNOSTI (Vzorci vsebine) A POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA Stran 1 POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA (1) (številka potrdila o skladnosti:)

Διαβάστε περισσότερα

Kazalo Termodinamika atmosfere

Kazalo Termodinamika atmosfere Kazalo 1 Termodinamika atmosfere 5 1.1 Temperaturno polje v ozračju.................. 5 1.1.1 Horizontalno polje temperature............. 6 1.1.2 Advekcijske spremembe temperature.......... 7 1.1.3 Individualne

Διαβάστε περισσότερα

Zgodba vaše hiše

Zgodba vaše hiše 1022 1040 Zgodba vaše hiše B-panel strani 8-11 Osnovni enobarvni 3020 3021 3023 paneli 3040 3041 Zasteklitve C-panel strani 12-22 S-panel strani 28-35 1012 1010 1013 2090 2091 1022 1023 1021 1020 1040

Διαβάστε περισσότερα

MLADINSKI ASTRONOMSKI RAZISKOVALNI TABOR MEDVEDJE BRDO Urednik: Igor Grom

MLADINSKI ASTRONOMSKI RAZISKOVALNI TABOR MEDVEDJE BRDO Urednik: Igor Grom MLADINSKI ASTRONOMSKI RAZISKOVALNI TABOR MEDVEDJE BRDO 2000 (poročilo) Urednik: Igor Grom Astronomsko društvo Javornik, Ljubljana, 2001 1 Kazalo 1 Uvod 6 2 Opazovanje nočnega neba 7 2.1 Zvezdne kopice.....................................

Διαβάστε περισσότερα

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1 Poglavje II Matrike Matrika je pravokotna tabela realnih števil Na primer: [ ] 1 1 1, 2 3 1 1 0 1 3 2 1, 0 1 4 [ ] 2 7, Matrika je sestavljena iz vrstic in stolpcev Vrstici matrike [ ] 1 1 1 2 3 1 [ ]

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Svetloba in barve. Svetloba kot del EM spektra. Svetloba kot del EM spektra

Svetloba in barve. Svetloba kot del EM spektra. Svetloba kot del EM spektra Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo Izbirni predmet - 10142 Svetlobna tehnika Svetloba in barve predavatelj prof. dr. Grega Bizjak, u.d.i.e. Svetloba

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

Katedra za farmacevtsko kemijo. Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks. 25/11/2010 Vaje iz Farmacevtske kemije 3 1

Katedra za farmacevtsko kemijo. Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks. 25/11/2010 Vaje iz Farmacevtske kemije 3 1 Katedra za farmacevtsko kemijo Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks 25/11/2010 Vaje iz Farmacevtske kemije 3 1 Sinteza kompleksa [Mn 3+ (salen)oac] Zakaj uporabljamo brezvodni

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2014/2015

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2014/2015 Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2014/2015 1 Temperatura zraka 1. Kako velik (v mm) bi bil razdelek za 1 C na živosrebrnem termometru, ki vsebuje

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Gimnazija Ptuj. Mikroskop. Referat. Predmet: Fizika. Mentor: Prof. Viktor Vidovič. Datum: Avtor: Matic Prevolšek

Gimnazija Ptuj. Mikroskop. Referat. Predmet: Fizika. Mentor: Prof. Viktor Vidovič. Datum: Avtor: Matic Prevolšek Gimnazija Ptuj Mikroskop Referat Predmet: Fizika Mentor: Prof. Viktor Vidovič Datum: 14. 3. 2010 Avtor: Matic Prevolšek Kazalo Opis mikroskopa 3 Povečava mikroskopa 5 Zgradba mikroskopa Ločljivost mikroskopa

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Zbirka vaj iz astronomije

Zbirka vaj iz astronomije Zbirka vaj iz astronomije Andreja Gomboc Fakulteta za naravoslovje, Univerza v Novi Gorici Morebitne napake prosim sporočite na: andreja.gomboc@ung.si 1 Nebesne koordinate 1. Katere zvezde so nadobzornice

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα