Grafično reševanje optimizacijskih nalog. Optimiranje nosilnih konstrukcij

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Grafično reševanje optimizacijskih nalog. Optimiranje nosilnih konstrukcij"

Transcript

1 Univerza v Ljubljani - Fakulteta za strojništvo KKTS - LASOK Optimiranje nosilnih konstrukcij doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: pisarna: FS telefon: 01/ boris.jerman@fs.uni-lj.si (Tema/Subject: ONK -...) Soavtor gradiva: i.prof.dr. Janez Kramar, univ.dipl.inž.str. Grafično reševanje optimizacijskih nalog Z grafičnim prikazom cenilne funkcije (CF) na ravnini (papir, zaslon) je mogoče reševati optimizacijske naloge z do tremi konstrukcijskimi spremenljivkami (KS). a) Najbolj enostavni so primeri CF z eno KS. Tedaj se na abscisno os nanaša edino KS, na ordinatno os pa vrednost CF. Optimum je najmanjši lokalni minimum znotraj dovoljenega območja. 2 1

2 b) V primeru dveh KS: - na koordinatni osi ravninskega koordin. sist. se nanese obe KS; - v ravnini teh KS se rišejo t.i. izolinije -črte enakih vrednosti CF. 3 c) V primeru treh KS: - možen prikaz v aksonometriji (točkam v prostoru se pripiše vrednosti CF, ki se lahko povežejo v izoploskve (z enakimi vrednostmi CF) 5 2

3 c) V primeru treh KS: - možen prikaz v več ravninskih nivojih (v teh nivojih nastopajo izolinije). 6 c) V primeru treh KS: - možen prikaz v več ravninskih nivojih (v teh nivojih nastopajo izolinije). V vseh treh primerih je sorazmerno enostavno najti mesto (mesta) najmanjše vrednosti CF in s tem optimalne vrednosti KS. 7 3

4 Potrebna matematična sredstva v procesu grafičnega reševanja optimizacijskih nalog KS tvorijo vektor z n komponentami: (en. 1) Skalarna CF v n-dimenzionalnem vektorskem prostoru: (en. 2) Išče se konstrukcijsko rešitev, da bo vrednost CF minimalna. Če se CF pomnoži s pozitivnim številom se: mesto optimuma ne spremeni (iste koordinate iste KS), vrednost optimuma spremeni za uporabljeni faktor. 8 Območje konstrukcijskih rešitev je: podvrženo p enakostnim pogojem (j = l do p): (en. 3) m neenakostnim omejitvam (j = 1 do m): (en. 4) Vse neenakostne omejitve se formulira v obliki '' ( ) 0''. (Omejitve z obliko '' ( ) 0'' se pomnoži z ''-1''.) 9 4

5 Število enakostnih pogojev je omejeno: drugače bi šlo za predoločen sistem, kjer je: (p-n) enakostnih pogojev med seboj odvisnih ali formulacija problema nekonsistentna. Kadar velja: p n, p = n, optimizacija ni potrebna, ker so vse rešitve enakostnih omejitev kandidatke za optimalno rešitev. p... število enakostnih pogojev n... število KS 10 Število neenakostnih omejitev ni omejeno. Lahko so: aktivne (krčijo dopustno območje konstrukcijskih rešitev); neaktivne (ne krčijo dopustnega območja). Modra neenakostna omejitev je neaktivna, saj ne krči dodatno dovoljeno območja, ki je že omejen s tremi črnimi neenakostnimi omejitvami. Optimizacijski problem je lahko tudi brez omejitev. 11 5

6 Število optimalnih rešitev optimizacijskega problema: lahko je ena sama; lahko jih je več; lahko ni nobene (kadar omejilne funkcije zožijo dovoljeno območje na prazno množico). Optimalna rešitev je lahko tudi v neskončnosti (teoretično). Primeri 12 Primer 5: Maksimiranje dobička Besedilna opredelitev: Podjetje izdeluje stroje vrste A in B. Pri danih virih lahko vsak dan izdela do 28 strojev vrste A ali do 14 strojev vrste B. Prodajni oddelek bi lahko vsak dan prodal do 14 strojev vrste A ali do 24 strojev vrste B. Transportne možnosti tovarne so omejene na 16 strojev dnevno. Podjetje dosega dobiček na stroj: - s prodajo stroja A 400, - s prodajo stroja B 600. Koliko strojev vrst A in B naj podjetje izdeluje dnevno, da bo dnevni dobiček največji možni? Intuitivna rešitev: 12 strojev B in 4 strojev A. Kaj pa dejansko? 13 6

7 Matematična opredelitev: Konstrukcijski (optimizacijski) spremenljivki: x 1... število dejansko izdelanih strojev A na dan. x 2... število dejansko izdelanih strojev B na dan. Cenilna funkcija*: Za izris izolinij CF, se določi poljubne vrednosti CF, nato pa se eno KS izrazi s pomočjo druge. Enakostnih omejitev ni. *... pri optimiranju po dogovoru vedno iščemo minimum. Če dejansko iščemo maksimum, CF pomnožimo z Neenakostne omejitve: Število izdelkov ne more biti negativno: Osnovni zapis: Standardni zapis: x 1 0 -x 1 0 x 2 0 -x 2 0 Neenakostna omejitev s strani virov in proizvodnje: (28 oz.14 - možna proizvodnja stojev A oz. B) Iz slednje omejitve se zapiše neenačba za izris omejitve dovoljenega območja območja možnih konstrukcijskih rešitev:

8 Neenakostne omejitve: Omejitev prodajnega oddelka: področje: 24 2 Omejitev s strani transporta: področje: 16 Celotna formulacija problema je linearna. 16 Iz grafa je vidno, da obstaja ena sama optimalna rešitev: S Diskusija: ugotoviti vpliv povečanja transportnih zmogljivosti; ugotoviti vpliv povečanja izdelovalnih zmogljivosti; kdaj je smiselno izboljšati prodajne zmogljivosti? S... Dovoljeno območje konstrukcijskih rešitev naloge»optimiranje dobička «. (Izdelano po Figure 3-3 in 3-5 iz [1].) Puščica z oznako»min«- smer padanja vrednosti izolinij CF. 17 8

9 Primer 6: Optimizacija z več enakovrednimi rešitvami Matematična opredelitev: Cenilna funkcija:, = ( +, ) in za graf: Neenakostne omejitve: =, za izris izolinije = const Osnovni zapis: Standardni: Za graf: 2x 1 +3x x 1 +3x x 2 =(12-2x 1 )/3 2x 1 +x 2 8 2x 1 +x x 2 =8-2x 1 x 1 0 -x 1 0 x 1 0 x 2 0 -x 2 0 x A S B Grafičen prikaz rešitve (po Figure 3-7 iz [1]). Obstaja neskončno optimalnih rešitev na daljici. C S... dovoljeno območje območje možnih konstrukcijskih rešitev. 19 9

10 Primer 7: Rešitev optimizacije v neskončnosti Matematična opredelitev: Cenilna funkcija: Neenakostne omejitve: 20 X 2 Grafičen prikaz rešitve: rešitev v neskončnosti f(x 1,x 2 )=4 (X 1 =, X 2 =0) S f(x 1,x 2 )=0 f(x 1,x 2 )= -4 X 1 (Figure 3.8 iz [1]) razvidno iz lege in smeri padanja izolinij. S... dovoljeno območje območje možnih konstrukcijskih rešitev

11 Primer 8: Rešitev optimizacije, kjer rešitev ni možna Matematična opredelitev: Cenilna funkcija: Neenakostne omejitve: Standardno: Za izris: 3x 1 + 2x 2 0 x 2-3/2 x 1-2x 1-3x x 2 (12-2x 1 )/3 -x 1 0 x 1 0-2x 2 0 x 2 0 x x 1 5 x x Grafičen prikaz omejitev nikjer niso vse izpolnjene! 5 Dovoljeno območje ne obstaja oz. je prazna množica (nobena rešitev ni možna, ne more ležati v dovoljenem območju) 23 11

12 Primer 9: Cena valjaste tlačne posode Besedilna opredelitev: Optimirati je potrebno valjasto tlačno posodo s polsferičnima dnoma glede na ceno. Tržna cena predizdelanih polsferičnih dnov na enoto mase je k-krat višja kot je izdelovalna cena predizdelanih valjastih plaščev. Medij v tlačni posodi: tekoča kemijska zmes s plinasto fazo v obsegu 10 % volumna. Za valjast plašč in dna je predvideno drobnozrnato jeklo P355, namenjeno izdelavi opreme pod tlakom. V posodi je nadtlak p d. BHARAT tanks and vessels, zajeto na: 24 Podane konstante: Zagotovljeni so ustrezni pogoji, da je z =

13 Skica posode: Tlačna posoda (poenostavljena skica, brez priključkov) 26 Matematična opredelitev: Konstrukcijske spremenljivke: Cenilna funkcija: Cena tlačne posode skupaj z dnoma je določena preko mase oz. volumna uporabljenega gradiva. Pri izračunu debeline pločevine se upošteva tudi dodatka: za morebitne negativne odstopke v debelini pločevine: δ e- ; za obrabo/korozijo: c

14 Volumen posode je vsota volumna valja in volumna krogle: Potrebna debelina valjastega dela posode je: Potrebna debelina sferičnega dna je: Volumen jekla za valjasti del: in za oba dna skupaj: (oboje ob predpostavki: e d << D i ) 28 Matematična opredelitev: Cenilna funkcija v prvem približku (ob upoštevanju proporcionalnosti med volumnom in maso): Pri tem velja, da je cena na kilogram dna : = Enakostni pogoj volumen posode (standardna oblika): 29 14

15 Matematična opredelitev: Neenakostni omejitvi: Prva v povezavi s potrebno debelino stene valja, druga pa s potrebno debelino stene sferičnega dna: Enote posameznih veličin: p d, f [MPa]; D i, c, δ e-, e v, e d [mm]; z [ ] 30 Matematična opredelitev: Neenakostni omejitvi: Razmislek o neenakostnih omejitvah v luči CF: za posodo bo najmanj uporabljenega gradiva, če bosta debelini sten najmanjši dopustni; tedaj bosta obe omejitvi aktivni in bosta postali enakostna pogoja: 31 15

16 Matematična opredelitev: Vsak od treh pogojnih izrazov vsebuje ob notranjem premeru D i samo še po eno od preostalih spremenljivk, ki se jo lahko ustrezno izrazi v odvisnosti od D i : 32 Matematična opredelitev: Iz CF se lahko (s pomočjo prejšnjih izrazov) izloči kar tri od štirih KS. Naloga tako postane enodimenzionalna. Nova oblika CF: Iskanje minimuma te CF se izvede na numerično-grafičen način z izračunavanjem vrednosti CF v odvisnosti od D i

17 Konkretni podatki: c 1 /mm 3, (3 /kg) k --- 1,4 V 0 mm 3 (=5000 l) p d MPa 2 (=20 bar) f MPa 240 z c mm 1 δ e- mm 0,3 34 Zapis CF v Excelu za izris grafa v Excelu: =$D$5*PI()*(4/PI()/G5*($D$7- PI()*G5^3/6)*($D$8*G5/(2*$D$9*$D$10- $D$8)+$D$11+$D$12)+$D$6*G5^2*($D$8*G5/(4*$D$9- $D$8)+$D$11+$D$12)) V koloni D Excelove razpredelnice so izbrani podatki iz predhodne tabele. V koloni G Excelove razpredelnice je premer posode D i, v razponu 100 mm do 7000 mm

18 Graf: ,00 Minimum je nekje med 1000 mm in 2000 mm Cena [ ] 8.000, , , ,00 0, Di [mm] Cena [ ] 2.680, , , , , , , Di [mm] oz. pri D i =1500 mm. 36 KONCEPT OPTIMALNEGA SNOVANJA Opredelitev optimizacijskega problema z: dobro izbranim vektorjem KS, primerno CF, naborom enakostnih pogojev, naborom neenakostnih omejitev. (en. 1) (en. 2) (en. 3) (en. 4) 37 18

19 KONCEPT OPTIMALNEGA SNOVANJA Obstaja veliko načinov reševanja optimizacijskih nalog. Najsplošnejše so numerične metode, ki se delijo v dve skupini: neposredne numerične metode, ki jim zadoščajo izključno zapisi (en. 1) do (en. 4) na prejšnji prosojnici; posredne numerične metode, kjer se po pravilih teorije optimalnosti najprej pripravi vrsto odvodov: CF, enakostnih pogojev in neenakostnih omejitev, ki usmerjajo iskanje kandidatnih točk za globalni optimum. 38 KONCEPT OPTIMALNEGA SNOVANJA S... območje možnih konstrukcijskih rešitev.... določena točko v S, kjer bi lahko bil minimum (kandidatna točka za optimum). Območje S ima globalni minimum v točki, če povsod v S velja: kadar velja neenačaj za vse točke iz S razen za, gre za strogi globalnem minimumu, sicer za šibki globalni minimumu. (en. 5) 39 19

20 KONCEPT OPTIMALNEGA SNOVANJA Kadar (en. 5) velja le v okolici točke, govorimo o lokalnem minimumu: kadar v tej okolici velja neenačaj samo za točko, gre za strogi lokalni minimum, sicer za šibki lokalni minimum. Matematični zapis okolice N v S: pri čemer je: 40 Osnovna matematična pomagala Zaprto območje obsega tudi vse točke na meji. Območje je omejeno, če velja za katerokoli točko iz območja:, kjer je c končno število. Cenilna funkcija, enakostni pogoji ter neenakostne omejitve naj bodo vsaj dvakrat zvezno odvedljive funkcije. Teorem I - Weierstrass-ov teorem o obstoju globalnega min.: Če je ( ) zvezna na S, ki je zaprto in omejeno, ima v S globalni minimum. S... območje možnih konstrukcijskih rešitev

21 Osnovna matematična pomagala Gradientni vektor (gradient) CF v opazovani točki : Gradientni vektor ( ) je normala na tangentno ravnino izoploskve skozi točko ter kaže v smeri največjega povečevanja CF iz opazovane točke. 42 Osnovna matematična pomagala Hessejeva matrika - matrika drugih odvodov CF v točki : i = 1 do n, j = 1 do n Ta matrika: je vedno simetrična, igra ključno vlogo pri formulaciji zadostnega pogoja optimalnosti

22 Osnovna matematična pomagala Razvoj cenilne funkcije v Taylorjevo vrsto okrog točke : Za CF ene spremenljivke: Za CF z več spremenljivkami - zapis v matrični obliki: kjer je: Razlika vrednosti CF v okoliški opazovani točki je v prvem točki do vrednosti v približku kar: 44 Osnovna matematična pomagala Glavni minorji kvadratne matrike: Vsaka kvadratna matrika A velikosti n x n ima spremljajoče skalarje - glavne minorje M k, ki so determinante podmatrik matrike A: A kk je podmatrika matrike A dimenzije k x k, ki se jo dobi s črtanjem vseh zadnjih n - k vrstic in stolpcev. Npr.: in 45 22

23 Osnovna matematična pomagala Teorem II - Kvadratna matrika A dimenzije n x n, je: pozitivno definitna, če in samo če so vsi njeni M k pozitivni: M k > 0, k = 1 do n. pozitivno poldefinitna, če in samo če so vsi: M k 0, k = 1 do n, in je vsaj en M k = 0. negativno definitna, če in samo če so: M k < 0 za sode k in M k > 0 za lihe k. negativno poldefinitna, če in samo če so: M k 0 za sode k in M k 0 za lihe k, in je vsaj en M k = 0. nedefinitna, če ne ustreza nobenemu gornjemu kriteriju

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Metode linearnega programiranja za optimalno konstruiranje

Metode linearnega programiranja za optimalno konstruiranje Univerza v Ljubljani - Fakulteta za strojništvo KKTS - LASOK Optimiranje nosilnih konstrukcij doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Matematično modeliranje. Simpleksna metoda.

Matematično modeliranje. Simpleksna metoda. Simpleksna metoda. Drago Bokal, Tanja Gologranc Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru Kanonična oblika linearnega programa. min c T x p. p.

Διαβάστε περισσότερα

Kanonična oblika linearnega programa. Simpleksna metoda. Bazne rešitve kanoničnega linearnega programa.

Kanonična oblika linearnega programa. Simpleksna metoda. Bazne rešitve kanoničnega linearnega programa. Kanonična oblika linearnega programa.. Drago Bokal, Tanja Gologranc Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru min c T x p. p. Ax = b x 0 Kako dobimo

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Poliedri Ines Pogačar 27. oktober 2009

Poliedri Ines Pogačar 27. oktober 2009 Poliedri Ines Pogačar 27. oktober 2009 Pri linearnem programiranju imamo opravka s končnim sistemom neenakosti in končno spremenljivkami, torej je množica dopustnih rešitev presek končno mnogo polprostorov.

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

INŽENIRSKA MATEMATIKA I

INŽENIRSKA MATEMATIKA I INŽENIRSKA MATEMATIKA I REŠENE NALOGE za izredne študente VSŠ Tehnično upravljanje nepremičnin Marjeta Škapin Rugelj Fakulteta za gradbeništvo in geodezijo Kazalo Števila in preslikave 5 Vektorji 6 Analitična

Διαβάστε περισσότερα

Funkcije dveh in več spremenljivk

Funkcije dveh in več spremenljivk Poglavje 3 Funkcije dveh in več spremenljivk 3.1 Osnovni pojmi Definicija 3.1.1. Funkcija dveh spremenljivk je preslikava, ki vsaki točki (x, y) ravninske množice D priredi realno število z = f(x, y),

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

Računski del izpita pri predmetu MATEMATIKA I

Računski del izpita pri predmetu MATEMATIKA I Kemijska tehnologija Visokošolski strokovni program Računski del izpita pri predmetu MATEMATIKA I 29. 8. 2013 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument. Ugasni in odstrani mobilni telefon.

Διαβάστε περισσότερα

D f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k,

D f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, Linearna funkcija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, n ᄀ. k smerni koeficient n začetna vrednost D f, Z f Definicijsko območje linearne funkcije so vsa realna števila. Zaloga

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

- Geodetske točke in geodetske mreže

- Geodetske točke in geodetske mreže - Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano

Διαβάστε περισσότερα

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

3.1 Reševanje nelinearnih sistemov

3.1 Reševanje nelinearnih sistemov 3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 215 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

primer reševanja volumskega mehanskega problema z MKE

primer reševanja volumskega mehanskega problema z MKE Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko: 4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Obvestila. Matematično programiranje z aplikacijami. Pregled predmeta Matematično programiranje z aplikacijami. Vaje: Nadaljujemo z začinjeno pizzo.

Obvestila. Matematično programiranje z aplikacijami. Pregled predmeta Matematično programiranje z aplikacijami. Vaje: Nadaljujemo z začinjeno pizzo. Obvestila. z aplikacijami Drago Bokal Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru 21. februar 2012 http://um.fnm.uni-mb.si/ Prosojnice: MPA NN Naslov

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Čas reševanja je 75 minut. 1. [15] Poišči vsa kompleksna števila z, za katera velja. z 2 +2 z +2 i 2 = Im. 1 2i

Čas reševanja je 75 minut. 1. [15] Poišči vsa kompleksna števila z, za katera velja. z 2 +2 z +2 i 2 = Im. 1 2i Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument. Ugasni in odstrani mobilni telefon.

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika 1 Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 21. april 2008 102 Poglavje 4 Odvod 4.1 Definicija odvoda Naj bo funkcija f definirana na intervalu (a, b) in x 0 točka s tega intervala. Vzemimo

Διαβάστε περισσότερα

Uporabna matematika za naravoslovce

Uporabna matematika za naravoslovce Uporabna matematika za naravoslovce Zapiski predavanj Študijski programi: Aplikativna kineziologija, Biodiverziteta Študijsko leto 203/4 doc.dr. Barbara Boldin Fakulteta za matematiko, naravoslovje in

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

2. VAJA IZ TRDNOSTI. Napetostno stanje valja je določeno s tenzorjem napetosti, ki ga v kartezijskem koordinatnem. 3xy 5y 2

2. VAJA IZ TRDNOSTI. Napetostno stanje valja je določeno s tenzorjem napetosti, ki ga v kartezijskem koordinatnem. 3xy 5y 2 . VAJA IZ TRDNOSTI (tenzor napetosti) (napetostni vektor, transformacija koordinatnega sistema, glavne normalne napetosti, strižne napetosti, ravninsko napetostno stanje, Mohrovi krogi, ravnotežne enačbe)

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

*P171C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE SPOMLADANSKI IZPITNI ROK. Sobota, 3. junij Državni izpitni center POKLICNA MATURA

*P171C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE SPOMLADANSKI IZPITNI ROK. Sobota, 3. junij Državni izpitni center POKLICNA MATURA Državni izpitni center *P7C0* SPOMLADANSKI IZPITNI ROK MATEMATIKA NAVODILA ZA OCENJEVANJE Sobota,. junij 07 POKLICNA MATURA Državni izpitni center Vse pravice pridržane. P7-C0-- NAVODILA ZA OCENJEVANJE

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK

MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK abc MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK ŠTEVILA PRIBLIŽNO RAČUNANJE PRIBLIŽNO RAČUNANJE Ta fosil dinozavra je star 7 milijonov in šest let, pravi paznik v muzeju.??? Ko sem

Διαβάστε περισσότερα

*P172C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE JESENSKI IZPITNI ROK. Petek, 25. avgust Državni izpitni center POKLICNA MATURA

*P172C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE JESENSKI IZPITNI ROK. Petek, 25. avgust Državni izpitni center POKLICNA MATURA Državni izpitni center *P7C0* JESENSKI IZPITNI ROK MATEMATIKA NAVODILA ZA OCENJEVANJE Petek, 5. avgust 07 POKLICNA MATURA Državni izpitni center Vse pravice pridržane. P7-C0-- NAVODILA ZA OCENJEVANJE nalog

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

II. LIMITA IN ZVEZNOST FUNKCIJ

II. LIMITA IN ZVEZNOST FUNKCIJ II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Διαβάστε περισσότερα

Dragi polinom, kje so tvoje ničle?

Dragi polinom, kje so tvoje ničle? 1 Dragi polinom, kje so tvoje ničle? Vito Vitrih FAMNIT - Izlet v matematično vesolje 17. december 2010 Polinomi: 2 Polinom stopnje n je funkcija p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, a i R.

Διαβάστε περισσότερα

Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb

Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb Fakulteta za računalništvo in informatiko Univerza v Ljubljani 2017/2018 Za kaj rabimo diferencialne

Διαβάστε περισσότερα

Afina in projektivna geometrija

Afina in projektivna geometrija fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji)

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) 7. VAJA IZ MEHANIKE TRDNIH TELES (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Pomik deformabilnega telesa je glede na kartezijski koordinatni sistem

Διαβάστε περισσότερα

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23.

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23. Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost. kolokvij 3. januar 08 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Nalog je 6,

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

1. UREJENE OBLIKE KVADRATNE FUNKCIJE

1. UREJENE OBLIKE KVADRATNE FUNKCIJE 1. UREJENE OBLIKE KVADRATNE FUNKCIJE A) Splošna oblika Definicija 1 : Naj bodo a, b in c realna števila in a 0. Realno funkcijo: f : x ax + bx + c imenujemo kvadratna funkcija spremenljivke x v splošni

Διαβάστε περισσότερα

11.5 Metoda karakteristik za hiperbolične PDE

11.5 Metoda karakteristik za hiperbolične PDE 11.5 Metoda karakteristik za hiperbolične PDE Hiperbolična kvazi linearna PDE ima obliko au xx + bu xy + cu yy = f, (1) kjer so a, b, c, f funkcije x, y, u, u x in u y, ter velja b 2 4ac > 0. Če predpostavimo,

Διαβάστε περισσότερα

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI

Διαβάστε περισσότερα

Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 2. Sobota, 4. junij 2011 / 90 minut

Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 2. Sobota, 4. junij 2011 / 90 minut Š i f r a k a n d i d a t a : Državni izpitni center *M111401* Višja raven MATEMATIKA Izpitna pola SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 011 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese

Διαβάστε περισσότερα

8. Posplošeni problem lastnih vrednosti

8. Posplošeni problem lastnih vrednosti 8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013

Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013 Postavitev hipotez NUJNO! Milena Kova 10. januar 2013 Osnove biometrije 2012/13 1 Postavitev in preizku²anje hipotez Hipoteze zastavimo najprej ob na rtovanju preizkusa Ob obdelavi jih morda malo popravimo

Διαβάστε περισσότερα

*P173C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE ZIMSKI IZPITNI ROK. Ponedeljek, 5. februar Državni izpitni center POKLICNA MATURA

*P173C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE ZIMSKI IZPITNI ROK. Ponedeljek, 5. februar Državni izpitni center POKLICNA MATURA Državni izpitni center *P7C0* ZIMSKI IZPITNI ROK MATEMATIKA NAVODILA ZA OCENJEVANJE Ponedeljek, 5. februar 08 POKLICNA MATURA Državni izpitni center Vse pravice pridržane. P7-C0-- NAVODILA ZA OCENJEVANJE

Διαβάστε περισσότερα

POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004

POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004 Oddelek za konstrkcije Laboratorij za konstrkcije Ljbljana, 12.11.2012 POROČILO št.: P 1100/12 680 01 Presks jeklenih profilov za spščen strop po točki 5.2 standarda SIST EN 13964:2004 Naročnik: STEEL

Διαβάστε περισσότερα

Del 5. Vektorske funkcije in funkcije več spremenljivk

Del 5. Vektorske funkcije in funkcije več spremenljivk Del 5 Vektorske funkcije in funkcije več spremenljivk POGLAVJE 1 Krivulje v R n 1. Risanje vektorskih funkcij in vektorskih zaporedij Funkcija iz R v R n je podana z dvema podatkoma: z definicijskim območjem,

Διαβάστε περισσότερα

Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom

Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom D. Beg, študijsko gradivo za JK, april 006 KK FGG UL Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom Nosilnost na bočno zvrnitev () Elemente, ki niso bočno podprti in so upogibno

Διαβάστε περισσότερα

Multivariatna analiza variance

Multivariatna analiza variance (MANOVA) MANOVA je multivariatna metoda za proučevanje odvisnosti med več odvisnimi (številskimi) in več neodvisnimi (opisnimi) spremenljivkami. (MANOVA) MANOVA je multivariatna metoda za proučevanje odvisnosti

Διαβάστε περισσότερα