Tematický výchovno - vzdelávací plán. Cvičenia z matematiky. pre 9. ročník
|
|
- θάνα Μαυρογένης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 výchovno vzdelávací plán Cvičenia z matematiky pre 9. ročník Počet hodín : 1 hod. týždenne Plán bol vypracovaný podľa: ŠVP pre 2. stupeň ZŠ ISCED 2 Plán vypracoval/a: Mgr. Viera Obložinská Školský rok: 2014/2015 Plán schválila riaditeľka školy: Mgr. Agnesa Kajtárová
2 September Mocniny a odmocniny, zápis veľkých čísel výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Druhá mocnina Určenie druhej mocniny čísel Mediálna Dopravná Súčin rovnakých činiteľov, druhá mocnina, druhá mocnina ako obsah štvorca, zápis druhej mocniny reálneho čísla, základ mocniny (mocnenec), exponent (mocniteľ), x 2 = ( x) 2 Prečítať správne zápis druhej mocniny ľubovoľného racionálneho čísla a určiť v ňom mocnenca (základ) a mocniteľa (exponent). Vedieť zapísať druhú a mocninu ľubovoľného racionálneho čísla ako súčin rovnakých činiteľov. Vedieť vysvetliť vzťah x 2 = ( x) 2
3 September Mocniny a odmocniny, zápis veľkých čísel výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Druhá odmocnina Určenie druhej odmocniny Mediálna Dopravná Druhá odmocnina, znak odmocnenia, základ odmocniny (odmocnenec), zápis druhej odmocniny ( x ;x 0 ) Vypočítať spamäti hodnotu druhej a tretej mocniny malých prirodzených čísel a hodnotu druhej odmocniny z čísel 4, 9, 16, 25,..., 100. Prečítať správne zápis druhej odmocniny ľubovoľného kladného racionálneho čísla a určiť v ňom stupeň odmocnenia a odmocnenca (základ). Človek vo sfére peňazí
4 September Mocniny a odmocniny, zápis veľkých čísel výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Určovanie druhých mocnín pomocou kalkulačky Tretia mocnina Určenie tretej mocniny Mediálna Dopravná Tretia mocnina, tretia mocnina ako objem kocky, zápis tretej mocniny x 3, x 3 ( x) 3 Vypočítať druhú mocninu ľubovoľného racionálneho čísla a druhú odmocninu kladného racionálneho čísla na kalkulačke. Prečítať správne zápis tretej mocniny ľubovoľného racionálneho čísla a určiť v ňom mocnenca (základ) a mocniteľa (exponent) Vedieť zapísať tretiu mocninu ľubovoľného racionálneho čísla ako súčin rovnakých činiteľov. Trvalé životné hodnoty
5 Október Mocniny a odmocniny, zápis veľkých čísel výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Tretia odmocnina Určenie tretej odmocniny Mediálna Dopravná Zápis tretej odmocniny ( 3 x ), mocniny čísla 10 Vedieť vysvetliť vzťah x 3 ( x) 3. Prečítať správne zápis tretej odmocniny ľubovoľného kladného racionálneho čísla a určiť v ňom stupeň odmocnenia a odmocnenca (základ). Chápať hodnotu ľudskej práce
6 Október Mocniny a odmocniny, zápis veľkých čísel výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Výpočet tretích mocnín a odmocnín na kalkulačke N.tá mocnina ľubovoľného čísla Mediálna Dopravná Ntá mocnina ľubovoľného čísla (a n ) pre konkrétne hodnoty n, kde n je prirodzené číslo Vypočítať tretiu mocninu ľubovoľného racionálneho čísla a tretiu odmocninu kladného racionálneho čísla na kalkulačke Zapísať aj súčin konkrétneho väčšieho počtu rovnakých činiteľov do tvaru mocniny a opačne.poznať zápis ntej mocniny ľubovoľného čísla a, kde n je prirodzené číslo (a n ). Výukové programy
7 Október Riešenie lineárnych rovníc a nerovníc výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Riešenie jednoduchých lineárnych rovníc a nerovníc pomocou ekvivalentných úprav Mediálna Dopravná Rovnosť a nerovnosť dvoch algebraických výrazov, lineárna rovnica s jednou neznámou, lineárna nerovnica s jednou neznámou, ľavá a pravá strana rovnice (nerovnice), riešenie (koreň) rovnice, nerovnice, znamienka rovnosti (nerovnosti), skúška správnosti, znaky nerovnosti, ostré a neostré nerovnice Vedieť rozhodnúť o rovnosti (nerovnosti) dvoch číselných (algebraických) výrazov. Vedieť rozlíšiť zápisy rovnosti, nerovnosti, rovnice, nerovnice. Riešiť jednoduchú lineárnu rovnicu (napr. 2x + 3 = 3x 6) a urobiť skúšku správnosti. Riešiť jednoduché lineárne nerovnice (napr.: 2(x + 8) > 42) Chápaťpeniaze ako prostriedok vyjadrenia hodnoty práce Číselná os
8 November Riešenie lineárnych rovníc a nerovníc výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Riešenie lineárnych rovníc so zátvorkami Riešenie lineárnych rovníc so zlomkami Riešenie lineárnych rovníc a nerovníc s desatinnými číslami a zlomkami Mediálna Dopravná Ekvivalentné úpravy Riešiť lineárne rovnice, napr.: 2(x 3) + 1 = x + 4 x 3 x 1 1 = (x+0,5) = x 2 Osvojiť si etické súvislosti problematiky bohatstva a chudoby Číselná os
9 November Riešenie lineárnych rovníc a nerovníc výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Riešenie jednoduchých lineárnych rovníc s neznámou v menovateli Mediálna Dopravná Výraz, lomený výraz, výraz s neznámou v menovateli, rovnica s jednou neznámou,, podmienky pre riešenie rovnice (neznámu v menovateli), skúška správnosti,... Riešiť jednoduché rovnice s neznámou v menovateli 12 3x (napr.: 5). x Vedieť urobiť skúšku správnosti riešenia lineárnej rovnice s neznámou v menovateli. Vedieť určiť podmienky riešenia rovnice (výrazu) s neznámou v menovateli. Vedieť vyjadriť neznámu zo vzorca (z primeraných matematických a fyzikálnych vzorcov). Číselná os
10 December Riešenie lineárnych rovníc a nerovníc výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Riešenie jednoduchých lineárnych nerovníc, ich vzťah k príslušnej lineárnej rovnici. Ako propedeutika jednoduché grafické znázornenie riešenia. Mediálna Dopravná Ekvivalentné úpravy pri riešení lineárnych nerovníc Riešiť jednoduché nerovnice aj s neznámou v menovateli Vedieť urobiť skúšku správnosti riešenia lineárnej nerovnice. Vedieť určiť podmienky riešenia nerovnice s neznámou v menovateli. Vedieť vyjadriť neznámu zo vzorca (z primeraných matematických a fyzikálnych vzorcov Osvojiť si, čo znamená žiť hospodárne Číselná os
11 December Niektoré ďalšie telesá, ich objem a povrch výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Valec, ihlan, kužeľ popis, znázornenie a sieť. Premeny jednotiek objemu a obsahu. Mediálna Dopravná Teleso, rotačný valec, ihlan (pravidelný štvorboký), rotačný kužeľ, sieť, podstava, kruh, kružnica, plášť, objem valca, povrch valca, polomer, výška, výška steny, vrchol, strana kužeľa, horná dolná podstava, jednotky obsahu a objemu Vedieť opísať valec, ihlan, kužeľ a pomenovať ich základné prvky. Vedieť určiť počet hrán, stien a vrcholov ihlana. Načrtnúť valec, ihlan, kužeľ vo voľnom rovnobežnom premietaní. Zostrojiť sieť valca, ihlana, kužeľa. Dosadením do vzorcov vedieť vypočítať objem a povrch telies vzorcov Modely telies
12 Január Niektoré ďalšie telesá, ich objem a povrch výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Guľa a rez guľou. Objem a povrch gule. Použitie vzorcov na výpočet objemu a povrchu valca, ihlana, kužeľa a gule (aj v slovných úlohách z praxe). Mediálna Dopravná Teleso, guľa, guľová plocha, rovina, hlavná kružnica guľovej plochy, povrch a objem gule, stred gule, polomer, rez guľou, kruh. Objem, povrch, valec, ihlan, kužeľ, guľa, vzorec, výpočet, jednotky obsahu a objemu. Vedieť opísať guľu a pomenovať jej základné prvky. Dosadením do vzorcov vedieť vypočítať objem a povrch gule. Používať vzorce pre výpočet objemu a povrchu valca, ihlana, kužeľa a gule. Riešiť primerané slovné úlohy na výpočet objemu a povrchu valca, ihlana, kužeľa a gule. Prevziať zodpovednosť za osobné finančné rozhodnutia vzorcov Modely telies
13 Januáer Súmernosť v rovine výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Stredová súmernosť, stred súmernosti Útvary stredovo súmerné Konštrukcia obrazu v stredovej súmernosti Osová súmernosť, os súmernosti Útvary osovo súmerné Konštrukcia obrazu v osovej súmernosti Mediálna Dopravná Súmernosť geometrických útvarov, zhodnosť, stred súmernosti, stredová súmernosť, os súmernosti, osová súmernosť, útvary osovo a stredovo súmerné, vzor, obraz. Základné pravidla rysovania, konštrukcia rovinného geometrického útvaru v osovej a stredovej súmernosti. Vedieť určiť či sú geometrické útvary súmerné podľa osi resp. podľa stredu. Nájsť os súmernosti osovo súmerného útvaru. Zostrojiť obraz bodu, úsečky, priamky, kružnice alebo jednoduchého útvaru (obrazca) zloženého z úsečiek a častí kružnice v osovej (aj v stredovej) súmernosti. Poznať nástroje na ochranu spotrebiteľov vzorcov Modely telies a rovinných útvarov Rysovacie pomôcky
14 Február Súmernosť v rovine výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Ukážky osovej a stredovej súmernosti útvarov (aj v štvorcovej sieti). Výtvarná Mediálna Dopravná Kreslenie, vzory, ornamenty, piktogramy, symboly, značky, Vedieť určiť osi súmernosti (štvorec, obdĺžnik, trojuholníky, kružnica kruh, atď.) Vedieť určiť stredovo súmerné rovinné útvary (štvorec, obdĺžnik, kruh). Poznať spôsoby používania rôznych typov platenia vzorcov
15 Február Pytagorova veta výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Pytagorova veta, jej odvodenie. Zápis Pytagorovej vety Mediálna Dopravná Pravouhlý trojuholník, základné prvky a vlastnosti pravouhlého trojuholníka pravý uhol, odvesny, prepona, Pytagoras, Pytagorova veta pre pravouhlý Δ ABC Poznať a vymenovať základné prvky pravouhlého trojuholníka (odvesna, prepona, súčet dvoch ostrých uhlov je 90 stupňov) Vedieť pre aký útvar platí Pytagorova veta. Poznať a vedieť formuláciu Pytagorovej vety a jej význam. Zapísať Pytagorovu vetu vzťahom c 2 = a 2 + b 2, ale aj vzťahom pri danom označení strán pravouhlého trojuholníka Poznať faktory ovplyvňujúce výšku čistej mzdy vzorcov
16 Marec Pytagorova veta výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Použitie Pytagorovej vety Mediálna Dopravná Pytagorová veta v kontextových úlohách, význam a využitie Pytagorovej vety, vyjadrenie neznámej zo vzorca... Samostatne vyjadriť a zapísať zo základného vzťahu Pytagorovej vety obsah štvorca nad odvesnou a (a 2 = c 2 b 2 ) a nad odvesnou b (b 2 = c 2 a 2 ). Vyjadriť vzťah pre výpočet odvesien a, b ( a = 2 c a 2 2 c b ; b = ) alebo ich druhých mocnín. 2 vzorcov
17 Marec Pytagorova veta výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Výpočet strán pravouhlého trojuholníka Pytagorova veta v rovinných geometrických útvaroch (rovnoramenný, rovnostranný trojuholník, lichobežník) Použitie Pytagorovej vety pri riešení praktických úloh. Mediálna Dopravná Využitie Pytagorovej vety v planimetrii Vzťahy c 2 = a 2 + b 2, a 2 = c 2 b 2, b 2 = c 2 a 2, a = 2 2 c b, 2 c a 2 b =, vzťah medzi geometriou a aritmetikou (algebrou),.. Vedieť vypočítať dĺžku tretej strany pravouhlého trojuholníka, ak sú známe dĺžky jeho dvoch zvyšných strán. Samostatne používať Pytagorovu vetu pri riešení úloh z planimetrie Samostatne používať Pytagorovu vetu na riešenie kontextových úloh z reálneho praktického života. Vedieť si stanoviť finančný plán vzorcov VZOR:
18 Apríl Grafické znázorňovanie závislostí výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Karteziánsky (pravouhlý dvojrozmerný) súradnicový systém. Zobrazovanie v pravouhlej sústave snadníc Rôzne spôsoby znázorňovania grafy závislostí. Informatika Mediálna Dopravná Pravouhlý systém súradníc, sústava súradníc v rovine, osi súradníc, priesečník súradnicových osí, súradnice bodu,, sústava súradníc, karteziánsky súradnicový systém,... Grafy, hodnota, hodnoty v tabuľke, najmenšia hodnota, nulová hodnota, najväčšia hodnota, závislosť dvoch hodnôt, priebeh, rast funkcie, klesanie funkcie,... Opísať a zostrojiť pravouhlý súradnicový systém. Zobraziť bod y v pravouhlom súradnicovom systéme (napr. A[3 ; 2]; úsečka XY, ak X[2 ; 4] a Y[3 ; 3], atď...). Zostrojiť graf lineárnej závislosti podľa údajov z tabuľky pre hodnoty x a y. Vedieť opísať základné vlastnosti grafu lineárnej funkcie (lineárnej závislosti) tvar grafu, súvislosť čísla k v predpise lineárnej funkcie y kx + q s jej rastom alebo klesaním. vzorcov Rysovacie pomôcky
19 Apríl Grafické znázorňovanie závislostí výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Lineárna závislosť (lineárna funkcia), jej vlastnosti a graf. Tabuľka lineárnej funkcie a jej graf Informatika Mediálna Dopravná Lineárna závislosť, lineárna funkcia, priama úmernosť, obor reálnych čísel, nezávislá (napr. x) a závislá premenná (napr. y), priamka v karteziánskom súradnicovom systéme, priamka = graf lineárnej závislosti (funkcie), vlastnosti grafu lineárnej funkcie, konštantná funkcia,... Vedieť uviesť dvojicu veličín, medzi ktorými je lineárna funkčná súvislosť. Vedieť zostaviť tabuľku a zostrojiť graf lineárnej funkcie v obore reálnych čísel. Poznať význam koeficientov k a q v predpise lineárnej funkcie y kx + q. Vedieť určiť, či je lineárna funkcia rastúca (klesajúca). Poznať rôzne typy úverov vzorcov Rysovacie pomôcky
20 Máj Podobnosť trojuholníkov výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Podobnosť geometrických útvarov, pomer podobnosti. Výpočet pomeru podobnosti Informatika Výtvarná Mediálna Dopravná Geometrické útvary, rovinné, zhodnosť geometrických útvarov, podobnosť geometrických útvarov v rovine, podstata podobnosti, pomer podobnosti k dvoch geometrických útvarov, pomer, postupný pomer, rozdeliť úsečku podľa daného pomeru k,... Vedieť vysvetliť podstatu podobnosti dvoch geometrických útvarov. Rozhodnúť o podobnosti dvojice daných útvarov v rovine (štvorce, obdĺžniky, trojuholníky, atď.). Vypočítať pomer podobnosti k pre dva rovinné útvary Vedieť použiť pomer podobnosti k dvoch podobných rovinných útvarov pri výpočtovej a primeranej konštrukčnej úlohe. Poznať spôsoby ako sa vyhnúť zadĺženiu vzorcov Rysovacie pomôcky
21 Máj Podobnosť trojuholníkov výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Podobnosť trojuholníkov, vety o podobnosti trojuholníkov Riešenie primeraných matematických (numerických) a konštrukčných úloh. Informatika Výtvarná Mediálna Dopravná Trojuholník, podobnosť trojuholníkov, vety o podobnosti trojuholníkov (sss, sus, uu) Poznať základné vety o podobnosti trojuholníkov (sss, sus, uu). Na základe viet o podobnosti trojuholníkov riešiť primerané matematické (numerické) a konštrukčné úlohy. Vedieť použiť pomer podobnosti k dvoch podobných útvarov pri výpočtovej úlohe. Vedieť zhodnotiť investičné alternatívy vzorcov Rysovacie pomôcky
22 Máj Podobnosť trojuholníkov výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Použitie podobnosti pri meraní výšok a vzdialeností, topografické práce v reálnych situáciách. Informatika Výtvarná Mediálna Dopravná Podobnosť útvarov v praxi, vety o podobnosti geometrických útvarov trojuholníkov, pomer podobnosti,... Vedieť využívať vlastností podobností trojuholníkov pri riešení praktických úloh zo života pri meraní (odhadovaní) vzdialeností a výšok. Riešiť jednoduché praktické topografické úlohy s využitím vlastností podobnosti trojuholníkov. Vedieť určiť skutočnú vzdialenosť mierka mapy a skutočné rozmery predmetov mierka plánu. vzorcov Rysovacie pomôcky Topografická súprava
23 Jún Štatistika výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Štatistický súbor, štatistická jednotka, štatistický znak, početnosť javu Aritmetický priemer Početnosť, relatívna početnosť udalosti a jej výpočet Grafické spracovanie údajov Štatistické prieskumy, triedenie, náhodný výber. Informatika Výtvarná Mediálna Dopravná Štatistický prieskum, štatistický súbor, rozsah štatistického súboru, štatistický znak, štatistická jednotka, absolútna početnosť, štatistické triedenie, náhodný výber, početnosť a relatívna početnosť javu,... Vedieť zrealizovať primeraný štatistický prieskum. Vedieť popísať triedenie štatistických jednotiek a náhodný výber zo súboru. Pripraviť a spracovať jednoduchý vlastný projekt zameraný na štatistický prieskum určitej udalosti s vyjadrením početnosti určitého javu. Poznať vplyv finančných kríz na hospodárenie rodiny vzorcov Rysovacie pomôcky
24 Jún Štatistika výchovnovzdelávací plán pre 9. ročník vypracovaný na počet hodín Realizácia vlastných jednoduchých štatistických prieskumov projektov, ich spracovanie Informatika Výtvarná Mediálna Dopravná Štatistický prieskum, štatistický súbor, rozsah štatistického súboru, štatistický znak, štatistická jednotka, absolútna početnosť, štatistické triedenie, náhodný výber, početnosť a relatívna početnosť javu,... Riešiť primerané úlohy s využitím výpočtu aritmetického priemeru, vedieť spracovať, plánovite a systematicky zhromažďovať a triediť údaje, vedieť vypočítať aritmetický priemer zaznamenávať a usporadúvať údaje do tabuľky, čítať (interpretovať) údaje z tabuľky, z kruhového a stĺpcového diagramu., údaje znázorniť z tabuľky kruhovým diagramom a stĺpcovým grafom vzorcov Rysovacie pomôcky
tretej odmocniny ( x ), mocniny čísla 10, n-tá mocnina ľubovoľného čísla (a n ) pre konkrétne hodnoty n, n je prirodzené číslo.
Mocniny a odmocniny, zápis veľkých čísel Školský vzdelávací program matematika 9. ročník 1. Obsah vzdelávania učebného predmetu v 9. ročníku (rozšírený počet hodín ) Tematický celok Témy Druhá a tretia
Tematický výchovno-vzdelávací plán. z matematiky. pre 9. ročník
výchovnovzdelávací plán z matematiky pre 9. ročník Počet hodín : 5 hod. týždenne Plán bol vypracovaný podľa: ŠVP pre 2. stupeň ZŠ ISCED 2 Plán vypracoval/a: Mgr. Viera Obložinská Školský rok: 2014/2015
MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015
MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015 Mgr. Valeria Godovičová 1. Mesiac 1 Úvodná hodina Telo 2-5 Druhá a tretia mocnina - čo už poznáme - opačné čísla a ich mocniny SEPTEMBER
Základná škola Sačurov, Školská 389, Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník
Základná škola Sačurov, Školská 389, 094 13 Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník Vypracované podľa učebných osnov ŠkVP A schválených radou školy dňa 28.8.2008 s platnosťou
Vzdelávacia oblasť: Matematika a práca s informáciami 2. STUPEŇ ZŠ - ISCED 2. Základná škola Pavla Horova Michalovce
Základná škola Pavla Horova Michalovce ŠKOLSKÝ ROK: 2016/2017 9. ROČNÍK Matematika Vypracoval: Mgr. Ľubomíra Bérešová, RNDr. Eva Ciglianová, Mgr. Mária Hinďošová, Mgr. Tatiana Markušová Obsah Charakteristika
Tematický výchovno-vzdelávací plán k pracovnému zošitu
Február Mesiac Týždeň Tematický výchovno-vzdelávací plán k pracovnému zošitu NOVÝ POMOCNÍK Z MATEMATIKY 8, časť Stupeň vzdelania: ISCED 2 - nižšie sekundárne vzdelávanie Vzdelávacia oblasť: Matematika
Téma Pojmy Spôsobilosti
OBSAH VZDELÁVANIA 1.ročník (Prima) 4 hod. týždenne + 0,5 RH / 148,5 hod. ročne Tematický celok počet hodín Obsahový štandard Výkonový štandard Prostriedky hodnotenia Téma Pojmy Spôsobilosti Opakovanie
MATEMATIKA CIELE UČEBNÉHO PREDMETU I. CHARAKTERISTIKA UČEBNÉHO PREDMETU
MATEMATIKA I. CHARAKTERISTIKA UČEBNÉHO PREDMETU Učebný predmet matematika je zameraný na rozvoj matematickej kompetencie tak, ako ju formuloval Európsky parlament: Matematická kompetencia je schopnosť
Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník
1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5
Matematika nižšie stredné vzdelanie MATEMATIKA
ÚVOD MATEMATIKA Vzdelávací štandard pre učebný predmet matematika nepredstavuje iba súhrn katalógov, ktoré stanovujú výkony a obsah vyučovacieho predmetu, ale je to predovšetkým program rôznych činností
Matematika gymnázium s osemročným vzdelávacím programom MATEMATIKA ÚVOD
MATEMATIKA ÚVOD Vzdelávací štandard pre učebný predmet matematika chápeme ako program vytvárajúci priestor na rozvíjanie individuálnych učebných ciest žiakov. Pre učiteľov slúži najmä na orientáciu v cieľoch,
Matematika gymnázium s osemročným vzdelávacím programom MATEMATIKA ÚVOD
MATEMATIKA ÚVOD Vzdelávací štandard pre učebný predmet matematika chápeme ako program vytvárajúci priestor na rozvíjanie individuálnych učebných ciest žiakov. Pre učiteľov slúži najmä na orientáciu v cieľoch,
MATEMATIKA CIELE UČEBNÉHO PREDMETU I. CHARAKTERISTIKA UČEBNÉHO PREDMETU
MATEMATIKA I. CHARAKTERISTIKA UČEBNÉHO PREDMETU Učebný predmet matematika je zameraný na rozvoj matematickej kompetencie tak, ako ju formuloval Európsky parlament: Matematická kompetencia je schopnosť
Tematický výchovno-vzdelávací plán z matematiky pre 6.ročník ZŠ
Tematický výchovno-vzdelávací plán z matematiky pre 6.ročník ZŠ (spracovaný v súlade s UO matematiky schválenými Ministerstvom školstva Slovenskej republiky dňa 3. apríla 1997 rozhodnutím číslo 1640/97-151
TC Obsahový štandard Výkonový štandard
Celé čísla. Počtové operácie s celými číslami UČEBNÉ OSNOVY ÔSMY ROČNÍK TC Obsahový štandard Výkonový štandard Pojem celé číslo Kladné a záporné čísla, kladné a záporné desatinné čísla Opačné čísla Absolútna
1. Trojuholník - definícia
1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných
Učebné osnovy: Matematika. Ročník: 9., Počet hodín : 4+2 hodín týždenne, spolu 198 hodín ročne ŠVP:
Učebné osnovy: Matematika Ročník: 9., Počet hodín : ŠVP: ŠkVP: 4+2 hodín týždenne, spolu 198 hodín ročne Štátny vzdelávací program pre 2. stupeň ZŠ v Slovenskej republike Základná škola 2. stupeň Základná
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Vzdelávacia oblasť - ISCED 2. Matematika a práca s informáciami
Vzdelávacia oblasť - ISCED 2 Matematika a práca s informáciami Vzdelávacia oblasť Matematika a práca s informáciami Rámcový učebný plán vzdelávacej oblasti Predmet/ročník 5. 6. 7. 8. 9. Spolu Matematika
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Povrch a objem ihlana
Povrch a objem ihlana D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme polpriamky
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
UČEBNÉ OSNOVY. Matematika. Názov predmetu: Ročník: piaty šiesty siedmy ôsmy deviaty. Časový rozsah výučby:
UČEBNÉ OSNOVY Názov predmetu: Ročník: Časový rozsah výučby: a) daný štátnym 4 h. týždenne vzdelávacím programom 132 h. ročne b) voliteľný školou 1 h. týždenne 33 h. ročne Stupeň vzdelania: Forma štúdia:
Ministerstvo školstva Slovenskej republiky. Učebné osnovy MATEMATIKA. pre 5. až 9. ročník základnej školy
Ministerstvo školstva Slovenskej republiky Učebné osnovy MATEMATIKA pre 5. až 9. ročník základnej školy Inováciu učebných osnov koordinoval: PhDr. L. Bálint, CSc. Schválilo Ministerstvo školstva Slovenskej
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Obsahový štandard. 6 základné počtové výkony (operácie); základné vedomosti z geometrie
Tematický výchovno-vzdelávací plán: MATEMATIKA Školský rok: 017/018 Škola: Súkromné športové gymnázium Trenčianske Teplice Ročník: 3. Trieda 3. OA Týždenne: 4 hodiny (ŠVP) Ročne: 13 hodín (ŠVP) Vypracované
1 Logika a dôkazy. 2 Množiny. 3 Teória čísel. 4 Premenné a výrazy. 5 Rovnice, nerovnice a ich sústavy. Pojmy:
1 Logika a dôkazy výrok, axióma, definícia, úsudok, hypotéza, tvrdenie, pravdivostná hodnota, logické spojky, negácia výroku, konjunkcia, disjunkcia, implikácia, ekvivalencia, vyplýva, je ekvivalentné,
1 Časová dotácia: Matematika. Vzdelávacia oblasť. Matematika a práca s informáciami. Názov predmetu. Stupeň vzdelania ISCED 2
Vzdelávacia oblasť Názov predmetu Matematika a práca s informáciami Matematika Stupeň vzdelania ISCED 2 Dátum poslednej zmeny UO 1. september 2014 UO vypracoval Mgr. Beáta Riegerová, Mgr. Branislav Polacsek
Stredná priemyselná škola Poprad. Výkonové štandardy v predmete MATEMATIKA všetky odbory 1. až 4.ročník
Výkonové štandardy v predmete MATEMATIKA všetky odbory 1. až 4.ročník ÚVOD Vzdelávací štandard z matematiky pre stredné odborné školy so štvorročným štúdiom patrí medzi základné pedagogické dokumenty,
Školský vzdelávací program matematika 8. ročník. 1. Obsah vzdelávania učebného predmetu v 8. ročníku (rozšírený počet hodín ) Obsahový štandard
Celé čísla. Počtové výkony s celými číslami Školský vzdelávací program matematika 8. ročník 1. Obsah vzdelávania učebného predmetu v 8. ročníku (rozšírený počet hodín ) Tematický celok Témy Kladné a záporné
CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY
CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY BRATISLAVA 2016 Schválilo Ministerstvo školstva, vedy, výskum a športu Slovenskej republiky dňa 21. 12. 2016 pod číslom 2016-25786/49974:1-10B0
Povrch a objem hranola
Povrch a objem hranola D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a priamka, ktorá nie je rovnobežná s rovinou mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme priamky rovnobežné
Štátny pedagogický ústav, Pluhová 8, Bratislava CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY
Štátny pedagogický ústav, Pluhová 8, 830 00 Bratislava CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY Bratislava 2008 ÚVOD Cieľové požiadavky z matematiky sú rozdelené vo väčšine kapitol
ISCED 2 nižšie sekundárne vzdelávanie slovenský jazyk. ISCED 2 nižšie sekundárne vzdelávanie slovenský jazyk
MATEMATIKA UČEBNÉ OSNOVY Názov predmetu Časový rozsah výučby Ročník Názov ŠVP Názov ŠkVP Stupeň vzdelania Vyučovací jazyk MATEMATIKA 3,5/1,5 hodín týždenne, spolu 165 hodín ročne. siedmy ŠVP pre nižšie
Obvod a obsah rovinných útvarov
Obvod a obsah rovinných útvarov Z topologického hľadiska bod môže byť vnútorný, hraničný a vonkajší vzhľadom na nejaký rovinný útvar. D. Bod je vnútorný, ak môžeme nájsť taký polomer r, že kruh so stredom
ŠKOLSKÝ VZDELÁVACÍ PROGRAM
ŠKOLSKÝ VZDELÁVACÍ PROGRAM MATEMATIKA vzdelávacia oblasť: Matematika a práca s informáciami ISCED 2 Prerokované a schválené v pedagogickej rade dňa 30.08.2013 1 Časová dotácia predmetu Základná škola s
Vzdelávacia oblasť: Matematika a práca s informáciami 2. STUPEŇ ZŠ - ISCED 2. Základná škola Pavla Horova Michalovce
Základná škola Pavla Horova Michalovce ŠKOLSKÝ ROK: 2016/2017 8. ROČNÍK Matematika Vypracoval: Mgr. Ľubomíra Bérešová, RNDr. Eva Ciglianová, Mgr. Mária Hinďošová, Mgr. Tatiana Markušová Obsah Charakteristika
Učebné osnovy MATEMATIKA
Učebné osnovy MATEMATIKA Názov predmetu Matematika Vzdelávacia oblasť Matematika a práca s informáciami Stupeň vzdelania ISCED 2 Dátum poslednej zmeny 1. 9. 2018 UO vypracovala RNDr. Daniela Maráková Ing.
Zlomky sčítanie, odčítanie. A forma. B forma. 1. Kontrolná práca z matematiky 7. ročník. 1. Vypočítajte : = d) ( ) Vypočítajte : a) 5 + =
1. Kontrolná práca z matematiky 7. ročník Zlomky sčítanie, odčítanie 1. Vypočítajte : 6 2 5 7 2 2 2 a) + + = c) + = 7 3 21 9 3 3 9 3 5 1 1 + + 1 = d) ( ) 5 + 3,7 + 1 4 15 6 = 2. Vypočítajte : a) 1 5 5
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
ISCED 2 nižšie sekundárne vzdelanie/ ISCED 1 primárne vzdelanie Každé dieťa je výnimočné Minden gyerek különleges
Vzdelávacia oblasť: Matematika a práca s informáciami Predmet: Matematika 8. roč. Názov ŠVP Názov ŠkVP Vyučovací jazyk Predmet Ročník Rozsah ISCED 2 nižšie sekundárne vzdelanie/ ISCED 1 primárne vzdelanie
Matematika. Učíme sa pre budúcnosť Stupeň vzdelávania Primárne vzdelávanie ISCED 2 Vyučovací jazyk Slovenský jazyk CHARAKTERISTIKA
Matematika Vzdelávacia oblasť Matematika a práca s informáciami Názov predmetu Matematika Časová dotácia ročník 5.roč. 6.roč. 7.roč. 8.roč. 9.roč. ŠVP 4 4 4 4 4 Disponibilné 1 1 1 1 1 Spolu 5 5 5 5 5 Škola
CHARAKTERISTIKA PREDMETU MATEMATIKA
UČEBNÉ OSNOVY STUPEŇ VZDELANIA VZDELÁVACIA OBLASŤ NÁZOV PREDMETU ISCED 2 NIŽŠIE SEKUNDÁRNE VZDELÁVANIE MATEMATIKA A PRÁCA S INFORMÁCIAMI MATEMATIKA CHARAKTERISTIKA PREDMETU MATEMATIKA Učebný predmet matematika
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Matematika. II. stupeň ZŠ ISCED2. Melichárková
Matematika II. stupeň ZŠ ISCED2 Melichárková MATEMATIKA ZÁKLADNÁ ŠKOLA ISCED 2 Charakteristika predmetu Predmet matematika je zameraný na rozvoj matematickej kompetencie, tzn. schopnosti rozvíjať a používať
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Povrch a objem zrezaného ihlana
Povrch a objem zrezaného ihlana Ak je daný jeden ihlan a zobereme rovinu rovnobežnú s postavou, prechádzajúcu ihlanom, potom táto rovina rozdelí teleso na dve telesá. Jedno teleso je ihlan (pôvodný zmenšený
1.4 Rovnice, nerovnice a ich sústavy
1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
ZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol
II. ZÁKLADNÉ GEOMETRICKÉ TELESÁ Hranolová plocha Hranolový priestor Hranol Definícia II.1 Nech P n je ľubovoľný n-uholník v rovine α a l je priamka rôznobežná s rovinou α. Hranolová plocha - množina bodov
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Matematika gymnázium so štvorročným a päťročným vzdelávacím programom MATEMATIKA
MATEMATIKA ÚVOD Vzdelávací štandard pre učebný predmet matematika nepredstavuje iba súhrn katalógov, ktoré stanovujú výkony a obsah vyučovacieho predmetu, ale je to predovšetkým program rôznych činností
Matematika gymnázium so štvorročným a päťročným vzdelávacím programom MATEMATIKA
MATEMATIKA ÚVOD Vzdelávací štandard pre učebný predmet matematika nepredstavuje iba súhrn katalógov, ktoré stanovujú výkony a obsah vyučovacieho predmetu, ale je to predovšetkým program rôznych činností
V. Matematika a práca s informáciami
V. Matematika a práca s informáciami Vzdelávacia oblasť Matematika a práca s informáciami rozvíja logické a kritické myslenie žiakov, ich schopnosť analyzovať a syntetizovať, argumentovať, komunikovať
Vzdelávacia oblasť: Matematika a práca s informáciami 2. STUPEŇ ZŠ - ISCED 2. Základná škola Pavla Horova Michalovce
Základná škola Pavla Horova Michalovce ŠKOLSKÝ ROK: 2015/2016 7. ROČNÍK Matematika Vypracoval: Mgr. Ľubomíra Bérešová, RNDr. Eva Ciglianová, Mgr. Mária Hinďošová Obsah Charakteristika predmetu.... 2 Ciele
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Ma-Te-05-T List 1. Objem a povrch gule. RNDr. Marián Macko
Ma-Te-05-T List 1 Objem a povrch gule RNDr. Marián Macko U: Guľu a guľovú plochu môžeme definovať ako analógie istých rovinných geometrických útvarov. Ž: Máte na mysli kružnicu a kruh? U: Áno. Guľa je
Ministerstvo školstva Slovenskej republiky. Agentúra Ministerstva školstva SR pre štrukturálne fondy EÚ. Ministerstvo zdravotníctva SR
Ministerstvo školstva Slovenskej republiky Agentúra Ministerstva školstva SR pre štrukturálne fondy EÚ Ministerstvo zdravotníctva SR Prioritná os: Opatrenie: Prijímateľ: Názov projektu: 1 Reforma systému
ŠTÁTNY PEDAGOGICKÝ ÚSTAV Bratislava ŠTÁTNY VZDELÁVACÍ PROGRAM. MATEMATIKA PRÍLOHA ISCED 2 2. upravená verzia pre 5. až 8.
ŠTÁTNY PEDAGOGICKÝ ÚSTAV Bratislava ŠTÁTNY VZDELÁVACÍ PROGRAM MATEMATIKA PRÍLOHA ISCED 2 2. upravená verzia pre 5. až 8. ročník ZŠ Vytvorila a schválila ÚPK pre matematiku Bratislava 2009 MATEMATIKA v
Učebné osnovy MATEMATIKA
Učebné osnovy MATEMATIKA Názov predmetu Matematika Vzdelávacia oblasť Matematika a práca s informáciami Stupeň vzdelania ISCED 2 Dátum poslednej zmeny 7. 9. 2015 UO vypracovali Ing. Jarmila Bohovicová
Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie.
Zobrazenia v rovine Zobrazením Z z množiny A do množiny B nazývame predpis, ktorý každému prvku x množiny A priraďuje práve jeden prvok y množiny B. Zobrazenie v rovine priraďuje každému bodu X danej roviny
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
MATEMATIKA PRIMÁRNE VZDELÁVANIE ISCED 2 VZDELÁVACIA OBLASŤ MATEMATIKA A PRÁCA S INFORMÁCIAMI SKRATKA PREDMETU
MATEMATIKA PRIMÁRNE VZDELÁVANIE ISCED 2 VYUČOVACÍ JAZYK SLOVENSKÝ JAZYK VZDELÁVACIA OBLASŤ MATEMATIKA A PRÁCA S INFORMÁCIAMI PREDMET MATEMATIKA SKRATKA PREDMETU MAT ROČNÍK ÔSMY ČASOVÁ DOTÁCIA 4 HODINY
Základná škola Kecerovce 79. Štruktúra učebných osnov vyučovacieho predmetu MATEMATIKA. ôsmy. ZŠ Kecerovce. 5 rokov. denná.
Štruktúra učebných osnov vyučovacieho predmetu Názov predmetu Vzdelávacia oblasť Časový rozsah výučby Ročník Škola Názov ŠkVP Kód a názov ŠVP Stupeň vzdelania Dĺžka štúdia Forma štúdia Vyučovací jazyk
Obsahový a výkonový štandard MATEMATIKA
Obsahový a výkonový štandard MATEMATIKA Matematika, 1.ročník Numerácia v obore prirodzených čísel do 100 dvojice, vzťah rovnako nerovnako, viac menej kvalita čísel počítanie po jednom, po dvoch... poznávanie
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Individuálny študijný plán M A T E M A T I K A - KVARTA 2012/2013
Individuálny študijný plán M A T E M A T I K A - KVARTA 2012/2013 ( Číslovanie kapitol je kvôli lepšej prehľadnosti podľa učebníc. ) Odporúčam: www.oskole.sk cez učivá, predmety a ročník navštíviť príslušné
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT k predmetu Matematika pre 2. ročník SOŠ v Strážskom, študijný odbor 3760 6 00 prevádzka a ekonomika dopravy Operačný program: Vzdelávanie Programové obdobie:
Vzdelávacia oblasť: Matematika a práca s informáciami 2. STUPEŇ ZŠ - ISCED 2. Základná škola Pavla Horova Michalovce
Základná škola Pavla Horova Michalovce ŠKOLSKÝ ROK: 2016/2017 7. ROČNÍK Matematika Vypracoval: Mgr. Ľubomíra Bérešová, RNDr. Eva Ciglianová, Mgr. Mária Hinďošová, Mgr. Tatiana Markušová Obsah Charakteristika
Tematický výchovno - vzdelávací plán
Tematický výchovno - vzdelávací plán Stupeň vzdelania: ISCED 2 Vzdelávacia oblasť: Človek a príroda Predmet: Fyzika Školský rok: 2016/2017 Trieda: VI.A, VI.B Spracovala : RNDr. Réka Kosztyuová Učebný materiál:
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Školský vzdelávací program. ISCED 3A - gymnázium MATEMATIKA. 1. a 3. ročník osemročného gymnázia
Školský vzdelávací program ISCED 3A - gymnázium MATEMATIKA 1. a 3. ročník osemročného gymnázia 1 Charakteristika predmetu Učebný predmet matematika na gymnáziách je zameraný na rozvoj matematickej kompetencie
16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
ŠTÁTNY VZDELÁVACÍ PROGRAM
ŠTÁTNY PEDAGOGICKÝ ÚSTAV ŠTÁTNY VZDELÁVACÍ PROGRAM MATEMATIKA (Vzdelávacia oblasť: Matematika a práca s informáciami) PRÍLOHA ISCED 2 Posúdila a schválila ÚPK pre matematiku Bratislava 2010 CHARAKTERISTIKA
Základná škola Jána Hollého s materskou školou Madunice. Prehľad učiva matematiky. základnej školy
Základná škola Jána Hollého s materskou školou Madunice Prehľad učiva matematiky základnej školy Obsah strana 1. Prirodzené, celé, racionálne, reálne čísla... 1 2. Operácie s racionálnymi číslami... 2
2. STUPEŇ ZŠ - ISCED 2
1. Charakteristika učebného predmetu MATEMATIKA 2. STUPEŇ ZŠ - ISCED 2 Učebný predmet matematika je zameraný na rozvoj matematickej kompetencie tak, ako ju formuloval Európsky parlament: Matematická kompetencia
Základná škola Podvysoká 307
Základná škola Podvysoká 307 Vzdelávacia oblasť Názov predmetu Stupeň vzdelania Ročník Časový rozsah výučby Forma štúdia Vyučovací jazyk Matematika a práca s informáciami MATEMATIKA ISCED 2 nižšie sekundárne
Téma c. 1. Výroková logika a logika výrokových foriem (predikátovej logiky). Množinovo-logický rozbor slovného textu
Téma c. 1 Výroková logika a logika výrokových foriem (predikátovej logiky). Množinovo-logický rozbor slovného textu A) Výrok a jeho vlastnosti. Výroky tvorené z jednoduchých výrokov pomocou logických operátorov.
Zhodné zobrazenia (izometria)
Zobrazenie A, B R R (zobrazenie v rovine) usporiadaná dvojica bodov dva body v danom poradí (záleží na poradí) zápis: [a; b] alebo (a; b) karteziánsky (kartézsky) súčin množín množina všetkých usporiadaných
Učebné osnovy. Predmet: Matematika vo francúzskom jazyku. 1. ročník 2. ročník 3. ročník 4. ročník 5. ročník Spolu počet h týždenne.
Gymnázium Ľudovíta Štúra v Trenčíne Učebné osnovy Stupeň vzdelania: ISCED 3A Študijný odbor: 7902 J gymnázium Zameranie školského vzdelávacieho programu: bilingválne štúdium Predmet: Matematika vo francúzskom
Súradnicová sústava (karteziánska)
Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme
ŠTÁTNY PEDAGOGICKÝ ÚSTAV Bratislava ŠTÁTNY VZDELÁVACÍ PROGRAM MATEMATIKA PRÍLOHA ISCED 2
ŠTÁTNY PEDAGOGICKÝ ÚSTAV Bratislava ŠTÁTNY VZDELÁVACÍ PROGRAM MATEMATIKA PRÍLOHA ISCED 2 Vytvorila a schválila ÚPK pre matematiku Bratislava 2010 MATEMATIKA v nižšom sekundárnom vzdelávaní (Celkom 626
Objem a povrch rotačného valca
Ma-Te-03-T List 1 Objem a povrch rotačného valca RNDr. Marián Macko Ž: Prečo má valec prívlastok rotačný? U: Vysvetľuje podstatu vzniku tohto telesa. Rotačný valec vznikne rotáciou, čiže otočením obdĺžnika
Učebné osnovy predmetu matematika 8. ročník
Učebné osnovy predmetu matematika 8. ročník Vzdelávacia oblasť Človek a príroda Názov predmetu Matematika Stupeň vzdelania ISCED 2 Ročník Časový rozsah vyučovania Vyučovací jazyk Poznámka: ôsmy 132 hod./4
TEÓRIA. Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín,
TEÓRIA Množiny a operácie s nimi Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín, Vennove diagramy, disjunktné množiny, konečná a nekonečná množina,
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, BRATISLAVA. VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM štvorročné štúdium
ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, 80 00 BRATISLAVA VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM štvorročné štúdium Vypracoval: RNDr. Marian Hanula Posúdili členovia Ústrednej
Objem a povrch telies
Objem a povrch telies Kváder má: 8 vrcholov označujeme ich veľkými tlačenými písmenami 12 hrán hrany môžu mať tri veľkosti - a, b, c 6 stien steny sú tvorené obdĺžnikmi s rozmermi a, b, c Veľkosti troch
Osnovy pre slovensko-francúzske sekcie gymnázií Matematika
Osnovy pre slovensko-francúzske sekcie gymnázií Matematika CIELE Ciele matematiky na bilingválnom gymnáziu sa v zásade nelíšia od cieľov klasických slovenských gymnázií. Hlavným rozdielom je získanie schopnosti
ŠkVP. MATEMATIKA 8. ročník vzdelávacie štandardy, učebný plán, učebné osnovy
Názov ŠVP ŠVP II. stupňa ZŠ v SR, ISCED 2 niţšie sekundárne vzdelávanie Názov ŠkVP Verní tradíciám otvorení Európe Vyučovací jazyk Slovenský Predmet Matematika /Matematika a práca s informáciami / Ročník
Objem a povrch zrezaného ihlana a zrezaného rotačného kužeľa
Ma-Te-06-T List 1 Objem a povrch zrezaného ihlana a zrezaného rotačného kužeľa RNDr. Marián Macko U: Počul si už niekedy o zrezanom rotačnom kuželi? Ž: O rotačnom kuželi som už počul, ale pojem zrezaný
Mgr. Jana Fraasová, Višňová 41, Malinovo. VEC: Sťažnosť k učebnici matematiky pre 9. ročník ZŠ od autorky Viery Kolbaskej
Mgr. Jana Fraasová, Višňová 41, 900 45 Malinovo Minister školstva, vedy, výskumu a športu SR Doc. PhDr. Dušan Čaplovič, DrSc. Stromová 1 813 30 Bratislava VEC: Sťažnosť k učebnici matematiky pre 9. ročník
9 Planimetria. 9.1 Uhol. Matematický kufrík
Matematický kufrík 89 9 Planimetria 9.1 Uhol Pojem uhol patrí k najzákladnejším pojmom geometrie. Uhol môžeme definovať niekoľkými rôznymi spôsobmi, z ktorých má každý svoje opodstatnenie. Jedna zo základných
CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z DESKRIPTÍVNEJ GEOMETRIE
ŠTÁTNY PEDAGOGICKÝ ÚSTAV CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z DESKRIPTÍVNEJ GEOMETRIE BRATISLAVA 2012 Schválilo Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky dňa
Ročník: šiesty. 2 hodiny týždenne, spolu 66 vyučovacích hodín
OKTÓBER SEPTEMBER Skúmanie vlastností kvapalín,, tuhých látok a Mesiac Hodina Tematic ký celok Prierezo vé témy Poznám ky Rozpis učiva predmetu: Fyzika Ročník: šiesty 2 hodiny týždenne, spolu 66 vyučovacích
Základné vzťahy medzi hodnotami goniometrických funkcií
Ma-Go-2-T List Základné vzťahy medzi hodnotami goniometrických funkcií RNDr. Marián Macko U: Predstav si, že ti zadám hodnotu jednej z goniometrických funkcií. Napríklad sin x = 0,6. Vedel by si určiť
UČEBNÉ OSNOVY - MATEMATIKA
UČEBNÉ OSNOVY - MATEMATIKA UČEBNÉ OSNOVY SÚ TOTOŽNÉ SO VZDELÁVACÍM ŠTANDARDOM ŠVP PRE DANÝ PREDMET Vypracovala: Mgr. Marcela Bujňáková Pre 5. ročník - schválené PK, dňa: 02.09.2015 Pre 6., 7., 8., 9. ročník
Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku
Ma-Go-01-T List 1 Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku RNDr. Marián Macko U: Pojem goniometrické funkcie v preklade z gréčtiny znamená funkcie merajúce uhly. Dajú sa použiť v pravouhlom