Objem a povrch telies
|
|
- Ἀμήνὄφις Μιχαλολιάκος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Objem a povrch telies Kváder má: 8 vrcholov označujeme ich veľkými tlačenými písmenami 12 hrán hrany môžu mať tri veľkosti - a, b, c 6 stien steny sú tvorené obdĺžnikmi s rozmermi a, b, c Veľkosti troch hrán vychádzajúcich z toho istého vrcholu sa nazývajú rozmery kvádra, označujeme ich a, b, c. Objem V kvádra s rozmermi a, b, c vypočítame V = a.b.c Povrch S kvádra vypočítame, ak sčítame obsahy všetkých stien S = 2.(a.b + b.c + a.c) Kocka má: 8 vrcholov označujeme ich veľkými tlačenými písmenami 12 hrán všetky hrany majú rovnakú veľkosť a 6 stien všetky steny majú tvar štvorca s hranou dĺžky a Kocka má všetky rozmery rovnaké, označujeme a. Objem V kocky s hranou dĺžky a vypočítame V = a.a.a = a 3 Povrch S kocky vypočítame, ak sčítame obsahy všetkých jej stien S = 6.a.a = 6a 2 Siete kocky 1 liter = 1 dm3 1 ml = 1 cm3 Hranol
2 trojboký hranol štvorboký hranol šesťboký hranol Pri výpočte objemu a povrchu hranola je podstatné, aký tvar má jeho podstava. Vzorce pre rôzne podstavy hranolov nájdete v dokumentoch Trojuholník alebo Štvoruholníky. Objem hranola Povrch hranola V = S p.v S = 2.S p + S pl S pl = o p.v S p obsah podstavy v výška hranola S pl obsah plášťa o p obvod podstavy Valec Objem valca Povrch valca V = πr 2 v S = 2πr 2 + 2πrv 1. Úlohy na výpočet objemu a povrchu valca
3 Rotačný valec je teleso, ktoré vznikne otáčaním obdĺžnika okolo jednej jeho strany. Táto strana je výškou valca, ozn. v. Valec má dve podstavy kruhy s polomerom r. Ak rozvinieme jeho plášť do roviny, dostaneme obdĺžnik, ktorého jedna strana je výškou valca a druhá obvodom jeho podstavy. Pre objem a povrch valca platí: obsah podstavy P = π.r 2 objem valca V = Sp.v = π.r 2.v obsah plášťa Spl = 2π.r.v povrch valca S = 2.Sp + Spl = 2π.r.(r + v) 1. Vypočítaj objem a povrch valca, ak jeho rozmery sú a) r = 5 cm, v = 60 cm Riešenie: S=2041 cm 2, V=4710 cm 3 b) r = 2 mm, v = 3,5 m. Riešenie: S=439,85 cm 2, V=43,96 cm 3 2. Sud tvaru valca je vysoký 1,2 m, priemer jeho podstavy je 0,6 m. Koľko hl vody sa zmestí do suda? Aké najmenšie množstvo plechu treba na jeho výrobu? Riešenie: V=3,39 hl (po zaokrúhlení), S=2,826 m 2 počítame obe podstavy. 3. Aký objem (v dl) má hrnček tvaru valca, ak je vysoký 8 cm, priemer jeho podstavy je 7 cm? Riešenie: V= 3 dl. 4. Hrniec na polievku má tvar valca s priemerom dna 30 cm a výškou 36 cm. Pre koľko osôb vystačí polievka, ak je hrniec naplnený do ¾ výšky? Počíta sa s 0,25 l polievky pre jednu osobu. Riešenie: 19 litrov polievky pre 76 osôb. 5. Detský plastový bazénik ( tvaru valca ) je hlboký 60 cm. Jeho priemer je 3,2 m. a) Aké najmenšie množstvo materiálu treba na jeho výrobu? Nezabudni, že chýba jedna podstava. b) Koľko m 3 vody je v bazéne, ak je úplne naplnený? Riešenie: V= 4,823m 3, Sp=8 m 2, Spl=6 m 2, spolu 14 m 2 (zaokrúhlené dolu.) 6. Cestný valec má priemer 0,8 m a dĺžku 1,8 m. Akú plochu uvalcuje, ak sa otočí 1200-krát? Koľkokrát sa musí otočiť, aby uvalcoval cestu 3,6 m širokú a 6,28 km dlhú? Riešenie: Spl=4,5216 m 2, uvalcuje necelých 5426 m 2, 5000 otočiek 7. Nádrž fontánky je plytký valec s priemerom dna 210 cm a hĺbkou 40 cm. Dno a boky treba 2-krát natrieť ochranným náterom. Koľko plechoviek náteru treba kúpiť, ak jedna vystačí približne na 7,5 m 2 náteru? Riešenie: Sp+Spl=6,1 m 2 (zaokrúhlené), treba 2 plechovky náteru. 8. Drôt s priemerom 3 mm je dlhý m. Vypočítaj jeho hmotnosť (v kg), ak je vyrobený z kovu, ktorý má hustotu ρ = 8,9 g/cm 3. Ťahák : m = V.ρ Riešenie: V=10597,5 cm 3, m=94,3 kg. 9. Vnútorný polomer rúry je r 1 = 15 cm, vonkajší polomer r 2 = 20 cm, dĺžka rúry je v = 220 cm (pozri obrázok). Môže ju odniesť jeden človek, ak je vyrobená z materiálu s hustotou ρ = 2,8 g/cm 3? Riešenie: Objem dutiny je cm 3, objem plnej rúry cm 3, rozdiel cm 3, hmotnosť 338,5 kg 10. Strecha haly je polovicou plášťa valca s polomerom 6,5 m a dĺžkou 50 m. Aký objem má vzduch pod strechou? Koľko m 2 plechu treba na jej pokrytie, ak k minimálnemu množstvu treba kvôli spojom a odpadu pripočítať 5%? Riešenie:V=3316,625 m 3, pol. plášťa valca 1020,5 m 2, cca 1072 m 2 plechu. 11. Vypočítaj povrch valca, ak a) jeho objem je 141,3 dm 3 a polomer podstavy 3 dm Riešenie: v=5 dm, S=150,72 dm 2 b) objem je 509 cm 3 a výška 8 cm. Riešenie: r=4,5 cm, S=353,25 cm Objem hrnca (tvaru valca) má byť 2,5 l. Aký vysoký musí byť, ak priemer dna je 17 cm? Riešenie: v = 11 cm
4 2. Úlohy na výpočet objemu a povrchu kužeľa Rotačný kužeľ je teleso, ktoré vznikne otáčaním pravouhlého trojuholníka okolo jednej jeho odvesny. Táto strana je výškou kužeľa, ozn. v. Kužeľ má jednu podstavu kruh s polomerom r. Ak rozvinieme jeho plášť do roviny, dostaneme kruhový výsek, ktorého polomer je tzv. strana s kužeľa (najkratšia vzdialenosť od vrchola po obvod podstavy). Pre objem a povrch kužeľa platí: obsah podstavy P = π.r 2 objem kužeľa V = 1 / 3.Sp.v = 1 / 3.π.r 2.v obsah plášťa Spl = π.r.s povrch valca S = Sp + Spl = π.r.(r + s) 1. Vypočítaj objem a povrch kužeľa, v ktorom a) r = 5 cm, v = 12 cm Riešenie: V=942 cm 3, s=13 cm, S=282,6 cm 2 b) r = 1,44 m, s = 2,4 m Riešenie: S=17,363 m 2, v=1,92 m, V=4,167 m 3 c) v = 0,3 m, s = 34 cm Riešenie: r=16 cm, V=8038,4 cm 3, S=2512 cm 2 2. Strecha veže má tvar kužeľa s priemerom podstavy 12 m a výškou 8 m. Najmenej koľko m 2 krytiny treba na jej pokrytie? Pokrýva sa iba plášť. Riešenie: s=10 m, Spl=188,4 m 2 3. Stan v tvare kužeľa je vysoký 3 m, priemer jeho podstavy je 3,2 m. a) Stan je vyrobený je z dvoch vrstiev materiálu. Koľko m 2 látky treba na výrobu (vrátane podlahy), ak k minimálnemu množstvu treba kvôli odpadu pri strihaní pridať 20 %? b) Koľko m 3 vzduchu je v stane? Riešenie: s=3,4 m, S=25,12 m 2, treba cca 60,3 m 2 látky 4. Stojan, na ktorý sa lepia plagáty, má tvar kužeľa. Je vysoký 2,4 m, strana kužeľa je dlhá 2,5 m. Najviac koľko plagátov s rozmermi 40 cm x 60 cm je možné nalepiť na stojan tak, aby sa neprekrývali? Využiť sa dá 85 % plášťa kužeľa. Riešenie: r=0,7 m, Spl=5,495 m 2, plagát má 0,24 m 2, 19 plagátov. 5. Pravouhlý trojuholník má odvesny dlhé 3 cm a 4 cm. Jeden kužeľ vznikol rotáciou tohto trojuholníka okolo dlhej odvesny, druhý rotáciou okolo kratšej odvesny. Ktorý kužeľ má a) väčší objem b) menší plášť c) väčší celý povrch? Riešenie: Ak r=3 cm a v=4 cm, tak s=5 cm, V=37,68 cm 3, Spl=47,1 cm 2, S=75,36 cm 2. Ak r=4 cm a v=3 cm, tak s=5 cm, V=50,24 cm 3, Spl=62,8 cm 2, S=113,04 cm Sviečku vyrobili tak, že z kužeľa s priemerom podstavy 4 cm a výškou 20 cm odrezali rovnobežne s podstavou hornú časť vysokú 10 cm. a) Vypočítaj hmotnosť sviečky. Hustota materiálu, z ktorého je vyrobená, je ρ = 2,4 g/cm 3. Pomôcka: polomer odrezaného menšieho kužeľa je 1 cm. b) Akú časť objemu pôvodného kužeľa tvorí objem odrezanej časti? Riešenie: celý kužeľ má objem 83,73 cm 3, objem sviečky je 73,27 cm 3, hmotnosť 175,8 g. Objem odrezanej časti je osminou objemu pôvodného kužeľa. 7. a) Objem kužeľa je 94,2 dm 3, polomer podstavy je 6 dm. Vypočítaj výšku a celý povrch kužeľa. Riešenie: v=2,5 dm, s=6,5 dm, S=235,5 dm 2 b) Objem kužeľa je 981,25 cm 3, výška kužeľa je 6 cm. Vypočítaj polomer podstavy a obsah plášťa kužeľa. Riešenie: r=12,5 cm, s=13,87 cm, SPL=544,2 cm 2 8. Lievik má objem 0,5 l, hlboký je 7 cm. Koľko materiálu (v cm 2 ) treba na jeho výrobu? Riešenie: r=8,26 cm, s=10,83 cm, SPL=281 cm 2 3. Objem a povrch gule Otáčaním kruhu okolo jeho priemeru vznikne guľa. Všetky body na povrchu gule sú rovnako vzdialené od jej stredu táto vzdialenosť sa nazýva polomer gule. Pre objem a povrch gule platí:
5 povrch gule S = 4.π.r 2 objem gule V = 4 / 3.π.r 3 1. Vypočítaj objem a povrch gule, ak a) r = 5 cm Riešenie: V=523,3 cm 3, S=314 cm 2 b) d = 36 mm Riešenie: V=24,4 cm 3, S=40,7 cm 2 2. Zisti, čo má väčší povrch a čo objem: jedna guľa s polomerom r 1 = 0,6 m alebo 500 guličiek (spolu), každá s polomerom r 2 = 6 cm? Riešenie: veľká guľa V 1 = cm 3, S 1 =45216 cm 2, malé guličky spolu V 2 = cm 3, S 2 = cm 2 3. Vodojem má tvar gule s priemerom 7,5 m. a) Najviac koľko hektolitrov vody sa zmestí do vodojemu? b) Koľko plechoviek farby treba na natretie jeho povrchu, ak jedna stačí na 10 m 2 náteru? Riešenie: V=2208hl, S=177 m 2 (zaokrúhlené), treba 18 plechoviek farby 4. Dutá guľa má vnútorný polomer ( t.j. polomer dutiny ) r 1 = 62 mm, vonkajší polomer r 2 = 65 mm. Vyrobená je z materiálu s hustotou ρ = 8,1 g/cm 3. Vypočítaj hmotnosť gule! Riešenie: objem dutiny V 1 =997,8 cm 3, objem plnej gule V 2 =1149,8 cm 3, rozdiel je 152 cm 3 hmotnosť m=1231,2 g
6 5. Čo si má vybrať maškrtník, ak chce viac čokolády: balíček, v ktorom je 200 ks plných čokoládových guličiek s priemerom 1 cm, alebo dutú guľu s vonkajším priemerom 10 cm vyrobenú z čokolády hrubej 5 mm? Riešenie: objem guličiek spolu je 104,7 cm 3, plná veľká guľa má objem 523,3 cm 3, objem dutiny je 381,5 cm 3, rozdiel je 141,8 cm 3 objem čokolády vo veľkej guli je väčší. 6. Zmrzlinár predal za deň 6 litrov vanilkovej zmrzliny.koľko porcií tvaru polgule s priemerom 6 cm mohol z predanej zmrzliny urobiť? Riešenie: objem 1porcie je 56,52 cm 3, urobiť mohol 106 porcii. 7. Kupola hvezdárne tvaru polgule je vysoká 5,4 m. Koľko m 2 plechu treba na jej pokrytie, ak k minimálnemu množstvu treba kvôli spojom a odpadu pripočítať 15 %? Riešenie: SPL=183 m 2, treba 210,6 m 2 plechu. 8. Zem je (približne) guľa s polomerom km. a) Vypočítaj, koľko km 2 má povrch Zeme. b) Vypočítaj hmotnosť Zeme, ak 1 m 3 váži 5,515 tony. Riešenie: S= km 2, V= km 3, m= ton 9. Vypočítaj a) objem gule, ak jej povrch má 78,5 m 2, Riešenie: r=2,5m, V=65,417 m 3 b) povrch gule, ak jej objem je 14,13 m 3. Riešenie: r=1.5 m, S=28,26 m Železná guľa má hmotnosť 100 kg. Vypočítaj jej objem, polomer a povrch, ak hustota železa je ρ = 7,6 g /cm 3. Riešenie: V=13157,9 cm 3, r=14,65 cm, S=2694,9 cm 2 4. Úlohy na výpočet objemu a povrchu ihlana Ihlan je teleso ohraničené jedným n-uholníkom, ktorý tvorí podstavu ihlanu a n trojuholníkmi, ktoré tvoria bočné steny ihlanu. Ak je postavou pravidelný n-uholník, hovoríme o pravidelnom n-bokom ihlane. Výška ihlana (ozn. v) je kolmá vzdialenosť vrchola od roviny podstavy. Nemýľte si výšku ihlana s výškami jeho bočných stien! Ak majú ihlan a hranol úplne zhodné podstavy a rovnakú výšku, tak objem ihlanu je tretinou objemu hranola. Pre objem a povrch ihlana platí: objem ihlana povrch ihlana V = 1 / 3.Sp.v S = Sp + Spl Najčastejšie budeme počítať objem a povrch pravidelného štvorbokého ihlanu jeho podstavou je štvorec, plášť tvoria štyri zhodné trojuholníky. 1. V pravidelnom štvorbokom ihlane je podstavná hrana ozn. a, výška ihlana v a výška bočnej steny v a. Vypočítaj jeho objem a povrch, ak a) a = 6 cm, v = 4 cm Riešenie: V=48 cm 3, v a =5 cm, S=96 cm 2 b) a = 14 cm, v a = 25 cm Riešenie: V=1633,3 cm 3, v=24 cm, S=896 cm 2 c) v = 1,5 m, v a = 1,7 m. Riešenie: V=1,28 m 3, a=1,6 m, S=8 m 2 2. Podstavou ihlanu je obdĺžnik so stranami a,b. Vypočítaj objem a povrch ihlanu, ak a) a = 36 cm, b = 20 cm, výška v = 24 cm Riešenie: V=5760 cm 3, v a =30 cm, v b =26 cm, S=2320 cm 2 b) a = 3,2 m, b = 4,5 m, výška v = 3 cm. Riešenie: V=14,4 m 3, v a =1,6 m, v b =3,75 m, S=42,155 m 2
7 3. Strecha veže má tvar pravidelného štvorbokého ihlanu s podstavnou hranou dlhou 12 m a výškou 8 m. Najmenej koľko škridiel treba na jej pokrytie, ak škridly sú štvorce so stranou 20 cm? Riešenie: v a = 10 m, strecha(plášť ihlana) má 240 m 2, treba 6000 škridiel. 4. Zhora otvorená plechová nádoba má tvar štvorbokého ihlanu (je otočený hlavným vrcholom dolu). Podstava je obdĺžnik, hrany sú dlhé 18 cm a 32 cm, hĺbka nádoby je 12 cm. a) Koľko dm 2 plechu treba na zhotovenie tejto nádoby? b) Aký má objem (v litroch)? Riešenie: V=2,3 litra, v a =15 cm, v b =20 cm, Spl=5,9 dm 2 5. Veľká pyramída v Gíze ( Egypt ) má tvar pravidelného štvorbokého ihlanu. Pyramída je vysoká 149 m, jej podstavu tvorí štvorec so stranou 227 m. Je postavená z kamenných kvádrov s objemom približne 1 m 3. a) Koľko kvádrov potrebovali na postavenie pyramídy? b) Pyramídu vraj stavali 30 rokov. Kvádre vozili na lodiach po rieke Níl, keď bola rozvodnená. Mohli ich preto voziť iba 3 mesiace v roku. Koľko kvádrov museli doviesť každý deň? Riešenie: po zaokrúhlení kvádrov. Ak robili 90 dní x 30 rokov, museli doviesť 948 kvádrov každý vhodný deň. 6. Sklenená pyramída v Louvre ( zámok francúzskych kráľov v Paríži ) je vysoká 20,6 m. Podstavu tvorí štvorec so stranou a = 35 m. Koľko m 2 skla tvorí povrch pyramídy? Podstava sa nepočíta. Riešenie: v a =27,03 m, Spl=1892,1 m Pravidelný osemsten je teleso, ktoré má všetky steny rovnaké sú to rovnostranné trojuholníky. Môžeme ho vytvoriť aj tak, že zlepíme dva pravidelné štvorboké ihlany podstavami k sebe. Vytvor model pravidelného osemstenu s hranou a = 10 cm a vypočítaj jeho objem a povrch. Riešenie: v a =8,66 cm, S=346,4 cm 2, v=7,07cm, V=471,3 cm 2 (výsledky sú zaokrúhlené). 8. a) Pravidelný štvorboký ihlan má objem 163,3 cm 3 a podstavnú hranu a = 7 cm. Vypočítaj jeho výšku! Riešenie: v=10 cm b) Pravidelný štvorboký ihlan má objem 196 dm 3 a výšku 12 dm. Vypočítaj jeho podstavnú hranu! Riešenie: a=7 cm 9. Kocka ABCDEFGH má hranu a = 6 cm. Vypočítaj objem a povrch ihlanu ABCDH. Načrtni kocku aj ihlan, správne označ vrcholy a pohľadaj všetky pravé uhly v ihlane. Riešenie: v ihlane platí: a=6 cm, v=6 cm, V=72 cm 3. Plášť tvoria dve dvojice zhodných pravouhlých trojuholníkov. S ADH +S CDH =36 cm 2, AH =8,485 cm, S ABH =S BCH =25,458 cm 2, S=122,91 cm Štvorsten je pravidelný trojboký ihlan, ktorého bočné steny aj podstava sú zhodné rovnostranné trojuholníky. Vypočítaj objema povrch štvorstenu, ak jeho hrany sú dlhé 6 cm. Nápoveda: pätou výšky štvorstena je ťažisko protiľahlej strany. Riešenie: v a =t=5,2 cm, S=62,4 cm 2, v=4,9 cm, V=25,48 cm Vrecko na čaj má tvar štvorstenu s hranou dlhou 3 cm. a) Aký objem má jedno vrecko? b) Najviac koľko takých vreciek sa dá vyrobiť z 12 m 2 špeciálneho papiera?
8 Riešenie: v a =2,6 cm, S=15,6 cm 2, v=2,45 cm, V=3,185 cm 3, 7692 vreciek z 12 m 2 papiera 12. Na obr. je papierový štvorec so stranou a = 12 cm, body A a B sú stredy strán.. Ak papier prehneš pozdĺž čiarkovaných čiar, vytvoríš model ihlana (body D 1, D 2 a D 3 sa spoja v jednom vrchole). Vypočítaj jeho povrch a objem. Riešenie: S=a 2 =144 cm 2, podstavou ihlana je ABD, P=18 cm 2, výška ihlana v=a=12 cm, V=72 cm Vypočítaj objem a povrch pravidelného šesť bokého ihlana na obrázku. Podstavu tvorí šesť rovnostranných trojuholníkov so stranou a a výškou v a. Výška bočných stien je ozn. s. Riešenie: v a =26 cm, Sp=2340 cm 2, V=39000 cm 3,s=56,4 cm. Spl=5076 cm 2, S=7416 cm Vypočítaj objem a povrch pravidelného šesťbokého ihlanu, ak podstavná hrana a = 0,5 m, bočná hrana (napr. AV) b = 1,3 m. Riešenie: v=1,2 m, v a =0,433 m, Sp=0,6495 m 2, V=0,7794 m 3, s=1,276 m, Spl=1,914 m 2, S=2,5635 m Strecha jednej veže zámku je pravidelný šesťboký ihlan s hranou a = 8 m, vysoká je 11 m. Koľko škridiel treba na pokrytie veží na zámku, ak jedna škridla pokryje plochu 3 dm 2? Riešenie: v a =6,93 m, s=13 m, Spl=312 m 2, škridiel. 16. Koľko sviečok v tvare pravidelného šesťbokého ihlanu je možné vyrobiť z troch litrov vosku? Podstavná hrana sviečky meria 3 cm, sviečka je vysoká 12 cm. Riešenie: v a =2,6 cm, Sp=23,4 cm 2, V=93,6 cm 3, vyrobiť môžu 32 sviečok.
9
Povrch a objem ihlana
Povrch a objem ihlana D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme polpriamky
Povrch a objem hranola
Povrch a objem hranola D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a priamka, ktorá nie je rovnobežná s rovinou mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme priamky rovnobežné
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Povrch a objem zrezaného ihlana
Povrch a objem zrezaného ihlana Ak je daný jeden ihlan a zobereme rovinu rovnobežnú s postavou, prechádzajúcu ihlanom, potom táto rovina rozdelí teleso na dve telesá. Jedno teleso je ihlan (pôvodný zmenšený
4. POVRCH A OBJEM TELIES
Mgr. Mariana Sahajdová 4. POVRCH A OBJEM TELIES Obsah tematického celku: Povrch a objem kocky, kvádra a hranola Povrch a objem ihlana 4.1 Povrch a objem kocky, kvádra a hranola Základné pojmy povrch kocky
Objem a povrch valca, kužeľa, ihlana a gule
Objem a povrch valca, kužeľa, ihlana a ule 1. Plášť valca má rovnaký obsah ako jedna jeho podstav. Valec je vysoký 4 dm. Aký polomer má podstav tohto valca? 2. Vypočítaj objem a povrch valca, ktorého polomer
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
ZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol
II. ZÁKLADNÉ GEOMETRICKÉ TELESÁ Hranolová plocha Hranolový priestor Hranol Definícia II.1 Nech P n je ľubovoľný n-uholník v rovine α a l je priamka rôznobežná s rovinou α. Hranolová plocha - množina bodov
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Objem a povrch rotačného valca
Ma-Te-03-T List 1 Objem a povrch rotačného valca RNDr. Marián Macko Ž: Prečo má valec prívlastok rotačný? U: Vysvetľuje podstatu vzniku tohto telesa. Rotačný valec vznikne rotáciou, čiže otočením obdĺžnika
2. Aký obsah má vyfarbený útvar? Dĺţka strany štvorca je 3 m.
Dĺžka kružnice, obsah kruhu 1. Na obrázku je kruţnica vpísaná do štvorca so stranou 4cm a štyri kruţnicové oblúky so stredmi vo vrcholoch štvorca. ký obsah má vyfarbený útvar? 4 + π cm 16 - π cm 8π 16
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
1. Stereometria. 1.1 Premena jednotiek :10 :10 :10 :1000. Jednotky dĺžky: Jednotky obsahu :
1. Stereometria 1.1 Premena jednotiek Jednotky dĺžky: :10 :10 :10 :1000 Jednotky obsahu : 1 Jednotky objemu: : 1000 : 1000 : 1000 : 1000 000 000 : 10 : 10 : 10 : 100 Cvičenia: 1) Premeňte na uvedené jednotky:
Obvod a obsah rovinných útvarov
Obvod a obsah rovinných útvarov Z topologického hľadiska bod môže byť vnútorný, hraničný a vonkajší vzhľadom na nejaký rovinný útvar. D. Bod je vnútorný, ak môžeme nájsť taký polomer r, že kruh so stredom
1. Trojuholník - definícia
1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník
1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5
Ma-Te-05-T List 1. Objem a povrch gule. RNDr. Marián Macko
Ma-Te-05-T List 1 Objem a povrch gule RNDr. Marián Macko U: Guľu a guľovú plochu môžeme definovať ako analógie istých rovinných geometrických útvarov. Ž: Máte na mysli kružnicu a kruh? U: Áno. Guľa je
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
V každom prípade zapíšte vzájomnú polohu dvoch kružníc.
Kruh, kružnica 1. Polomer kružnice má veľkosť r = 5 cm, jej tetiva t = 8 cm. Vypočítaj vzdialenosť tejto tetivy od stredu kružnice.. Obsah kruhu je 78,5 cm. ký je jeho priemer? 3. Polomer kružnice k má
Objem a povrch zrezaného ihlana a zrezaného rotačného kužeľa
Ma-Te-06-T List 1 Objem a povrch zrezaného ihlana a zrezaného rotačného kužeľa RNDr. Marián Macko U: Počul si už niekedy o zrezanom rotačnom kuželi? Ž: O rotačnom kuželi som už počul, ale pojem zrezaný
Tematický výchovno-vzdelávací plán k pracovnému zošitu
Február Mesiac Týždeň Tematický výchovno-vzdelávací plán k pracovnému zošitu NOVÝ POMOCNÍK Z MATEMATIKY 8, časť Stupeň vzdelania: ISCED 2 - nižšie sekundárne vzdelávanie Vzdelávacia oblasť: Matematika
9 Planimetria. identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov,
9 Planimetria Ciele Preštudovanie tejto kapitoly vám lepšie umožní: identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov, používať jednotky
Zlomky sčítanie, odčítanie. A forma. B forma. 1. Kontrolná práca z matematiky 7. ročník. 1. Vypočítajte : = d) ( ) Vypočítajte : a) 5 + =
1. Kontrolná práca z matematiky 7. ročník Zlomky sčítanie, odčítanie 1. Vypočítajte : 6 2 5 7 2 2 2 a) + + = c) + = 7 3 21 9 3 3 9 3 5 1 1 + + 1 = d) ( ) 5 + 3,7 + 1 4 15 6 = 2. Vypočítajte : a) 1 5 5
Obvod a obsah nepravidelného a pravidelného mnohouholníka
Obvod a obsah nepravidelného a pravidelného mnohouholníka Ak máme nepravidelný mnohouholník, tak skúsime ho rozdeliť na útvary, ktorým vieme vypočítať obsah z daných údajov najvšeobecnejší spôsob: rozdeliť
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY. školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU
ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU V teste, ktorý máš vyriešiť, je 20 úloh. Na prácu je určených 120 minút. Úlohy nemusíš
Individuálny študijný plán M A T E M A T I K A - KVARTA 2012/2013
Individuálny študijný plán M A T E M A T I K A - KVARTA 2012/2013 ( Číslovanie kapitol je kvôli lepšej prehľadnosti podľa učebníc. ) Odporúčam: www.oskole.sk cez učivá, predmety a ročník navštíviť príslušné
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
wertyuiopasdfghjklzxcvbnmqwertyui Učebný odbor: 3178F00 VK opasdfghjklzxcvbnmqwertyuiopasdfg Mgr. Mária Hanková STREDNÁ ODBORNÁ ŠKOLA V LIPANOCH
qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq MATEMATIKA 2.ročník wertyuiopasdfghjklzxcvbnmqwertyui Učebný odbor:
9 Planimetria. 9.1 Uhol. Matematický kufrík
Matematický kufrík 89 9 Planimetria 9.1 Uhol Pojem uhol patrí k najzákladnejším pojmom geometrie. Uhol môžeme definovať niekoľkými rôznymi spôsobmi, z ktorých má každý svoje opodstatnenie. Jedna zo základných
SOŠ Stará Turá Prijímacie skúšky pre šk. r. 2013/2104
Príklady doporučené na prepočítanie žiakom ZŠ k prijímacím skúškam pre šk. rok 2O13/2O14 Hrdina - Maxian : Matematika - Príklady na prijímacie skúšky na SŠ 1. Počítanie s racionálnymi číslami 16/46 Nájdite
Planárne a rovinné grafy
Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
CHÉMIA Ing. Iveta Bruončová
Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
ZONES.SK Zóny pre každého študenta
ZONES.SK Zón pe každého študenta http://www.zones.sk /6 MO 8: TELESÁ MO 8: TELESÁ Hanol: majme piestoe oinu ρ, nej konený mnohouholník A A...A n nech A je od, ktoý neleží ρ eistuje páe jedno posunutie
MATEMATIKA - úlohy z MONITOROV a MSK
MATEMATIKA - úlohy z MONITOROV a MSK P.č. Tematické celky Strana 1 1.1 - Výroky 1 1.. - Množiny 4 3.1. - Výrazy 6 4 3.1. - Teória čísel 7 5 4.1. - Rovnice 9 6 4.. - Nerovnice 11 7 4.3. - Sústavy rovníc
Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku
Ma-Go-01-T List 1 Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku RNDr. Marián Macko U: Pojem goniometrické funkcie v preklade z gréčtiny znamená funkcie merajúce uhly. Dajú sa použiť v pravouhlom
(1 ml) (2 ml) 3400 (5 ml) 3100 (10 ml) 400 (25 ml) 300 (50 ml)
CPV 38437-8 špecifikácia Predpokladané Sérologické pipety plastové -PS, kalibrované, sterilné sterilizované γ- žiarením, samostne balené, RNaza, DNaza, human DNA free, necytotoxické. Použiteľné na prácu
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Stereometria Základné stereometrické pojmy Základné pojmy: Základné vzťahy: (incidencie) Veta 1: Def: Veta 2:
Stereometria 1. K úlohe č.1 v príklade vidíte sklenenú kocku, na ktorej je natiahnutý drôt. Vedľa vidíte 3 pohľady na túto kocku zhora, spredu a z pravého boku. Pre ďalšie kocky nakreslite takéto 3 pohľady.
Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV
Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A
6. V stene suda naplneného vodou je v hĺbke 1 m pod hladinou otvor veľkosti 5 cm 2. Aká veľká tlaková sila pôsobí na zátku v otvore?
Mechanika tekutín 1. Aká je veľkosť tlakovej sily na kruhový poklop ponorky s priemerom 1 m v hĺbke 50 m? Hustota morskej vody je 1,025 g cm 3. [402 kn] 2. Obsah malého piesta hydraulického zariadenia
MONITOR 9 (2007) riešenia úloh testu z matematiky
MONITOR 9 (007) riešenia úloh testu z matematiky Autormi nasledujúcich riešení sú pracovníci spoločnosti EXAM testing Nejde teda o oficiálne riešenia, ktoré môže vydať ia Štátny pedagogický ústav (wwwstatpedusk)
Test. Matematika. Forma A. Štátny pedagogický ústav, Bratislava NUPSESO. a.s.
Test Matematika Forma A Štátny pedagogický ústav, Bratislava Ò NUPSESO a.s. 1. Koľkokrát je väčší najmenší spoločný násobok čísel 84 a 16 ako ich najväčší spoločný deliteľ. A. B. 3 C. 6 D.1. Koľko záporných
Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie.
Zobrazenia v rovine Zobrazením Z z množiny A do množiny B nazývame predpis, ktorý každému prvku x množiny A priraďuje práve jeden prvok y množiny B. Zobrazenie v rovine priraďuje každému bodu X danej roviny
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B
. písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c
CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z DESKRIPTÍVNEJ GEOMETRIE
ŠTÁTNY PEDAGOGICKÝ ÚSTAV CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z DESKRIPTÍVNEJ GEOMETRIE BRATISLAVA 2012 Schválilo Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky dňa
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
2. UHLY. Zapisovanie uhlov 1. spôsob pomocou troch bodov. Pri zápise uhla pomocou troch bodov je VRCHOL VŽDY V STREDE ZÁPISU.
2. UHLY 2.1 ZÁPIS A OZNAČOVANIE UHLOV Dve polpriamky VA, VB, ktoré majú spoločný začiatok v bode V delia rovinu na dve časti. Tieto časti nazývame uhly. UHOL je časť roviny ohraničená dvoma polpriamkami,
Fakulta riadenia a informatiky Žilinskej univerzity
Poznámka k úlohám o funkciách: Ak nie je uvedené inak, je definičným oborom funkcie množina všetkých reálnych čísel, pre ktoré výraz definujúci funkciu má zmysel. 0 Ktorá z nasledujúcich funkcií nie je
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
ZBIERKA ÚLOH Z FYZIKY PRE 3. ROČNÍK
Kód ITMS projektu: 26110130519 Gymnázium Pavla Jozefa Šafárika moderná škola tretieho tisícročia ZBIERKA ÚLOH Z FYZIKY PRE 3. ROČNÍK (zbierka úloh) Vzdelávacia oblasť: Predmet: Ročník: Vypracoval: Človek
Kód testu NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU!
Kód testu 1203 NEOTVÁRJTE, POČKJTE N POKYN! PREČÍTJTE SI NJPRV POKYNY K TESTU! MTURIT 2015 EXTERNÁ ČSŤ Časť I Vyriešte úlohy 01 až 20 a do odpoveďového hárka zapíšte vždy iba výsledok nemusíte ho zdôvodňovať
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Tematický výchovno - vzdelávací plán. Cvičenia z matematiky. pre 9. ročník
výchovno vzdelávací plán Cvičenia z matematiky pre 9. ročník Počet hodín : 1 hod. týždenne Plán bol vypracovaný podľa: ŠVP pre 2. stupeň ZŠ ISCED 2 Plán vypracoval/a: Mgr. Viera Obložinská Školský rok:
ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3
ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v
6 HYDROMECHANIKA PRÍKLAD 6.1 (D)
Posledná aktualizácia: 4. apríla 0. Čo bolo aktualizované (oproti predošlej verzii z 3. mája 0): Malé úpravy textu a formátovania. Nový spôsob zobrazovania obtiažností. Písmená A, B, C, D vyjadrujú obtiažnosť
TEST Z MATEMATIKY. Prijímacie skúšky na školský rok 2017/2018
TEST Z MATEMATIKY Prijímacie skúšky na školský rok 2017/2018 Milí žiaci, máte pred sebou test z matematiky ku prijímacím skúškam. Budete ho riešiť na dvojhárok. Najprv na nalepený štítok dvojhárku napíšte
TESTOVANIE ZBIERKA ÚLOH Z MATEMATIKY
TESTOVANIE 9 2015 ZBIERKA ÚLOH Z MATEMATIKY Premena jednotiek 1.V technickom preukaze auta je uvedená jeho dĺžka 4135 mm. Koľko je to m a cm? 2.Zmestí sa do garáže dlhej 5 m auto, ktorého dĺžka je 4535
Objem a povrch ihlanov
M-Te-0-T List 1 Objem povrch ihlnov RNr. Mrián Mcko U: ko by si chrkterizovl n-boký ihln? Ž: Ihln je teleso, ktoré je určené jednou význčnou stenou vrcholom, ktorý v rovine tejto steny neleží. U: ýznčnú
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Základná škola Sačurov, Školská 389, Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník
Základná škola Sačurov, Školská 389, 094 13 Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník Vypracované podľa učebných osnov ŠkVP A schválených radou školy dňa 28.8.2008 s platnosťou
3. ročník. 1. polrok šk. roka 2016/2017
Príklady z MAT 3. ročník 1. polrok šk. roka 016/017 GONIOMETRIA 1. Načrtnite grafy daných funkcií na intervale 0, : f: y= tg x, g: y = -3.cos x, h: y = sin (x + ) -1. Určte hodnoty ostatných goniometrických
22 ). Stačí, ak napíšeš, že dĺžka kružnice
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 Σ PRIJÍMACIE KÚŠKY Z MATEMATIKY Milý študent, vítame Ťa na našom gymnáziu, Gymnáziu Vazovova 6 v Bratislave. Teší nás, že si sa pri výbere školy
MECHANIKA TEKUTÍN. Ideálna kvapalina je dokonale tekutá a celkom nestlačiteľná, pričom zanedbávame jej vnútornú štruktúru.
MECHANIKA TEKUTÍN TEKUTINY (KVAPALINY A PLYNY) ich spoločnou vlastnosťou je tekutosť, ktorá sa prejavuje tým, že kvapaliny a plynné telesá ľahko menia svoj tvar a prispôsobujú sa tvaru nádoby, v ktorej
GEOMETRIA 4 KONŠTRUKČNÁ GEOMETRIA
GEOMETRIA 4 KONŠTRUKČNÁ GEOMETRIA Obsahom predmetu je súhrn poznatkov viacerých geometrických disciplín od elementárnej planimetrie a stereometrie, syntetickej deskriptívnej geometrie, cez analytickú a
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
tretej odmocniny ( x ), mocniny čísla 10, n-tá mocnina ľubovoľného čísla (a n ) pre konkrétne hodnoty n, n je prirodzené číslo.
Mocniny a odmocniny, zápis veľkých čísel Školský vzdelávací program matematika 9. ročník 1. Obsah vzdelávania učebného predmetu v 9. ročníku (rozšírený počet hodín ) Tematický celok Témy Druhá a tretia
1. V klobúku je 20 červených, 16 modrých a 12 žltých guličiek. Vyjadri v percentách pravdepodobnosť, že náhodne vybraná gulička je žltá.
1. V klobúku je 0 červených, 16 modrých a 1 žltých guličiek. Vyjadri v percentách pravdepodobnosť, že náhodne vybraná gulička je žltá.. Riešením rovnice 3x 6 7 0 je: A x = 0 B x = C x = 7 D x = 3. Riešením
Obsahový štandard. 6 základné počtové výkony (operácie); základné vedomosti z geometrie
Tematický výchovno-vzdelávací plán: MATEMATIKA Školský rok: 017/018 Škola: Súkromné športové gymnázium Trenčianske Teplice Ročník: 3. Trieda 3. OA Týždenne: 4 hodiny (ŠVP) Ročne: 13 hodín (ŠVP) Vypracované
Algebraické výrazy I.
. Kontrolná prác z mtemtik 9. ročník A form Algebrické výrz I.. Zjednodušte zpíšte, ked výrz nemá zmsel : ) ( k ) s b) k k s s. Určte njmenší spoločný násobok výrzov : ) b ; b ; b) ; ; c) ; ;. Vpočítjte
2 Kombinacie serioveho a paralelneho zapojenia
2 Kombinacie serioveho a paralelneho zapojenia Priklad 1. Ak dva odpory zapojim seriovo, dostanem odpor 9 Ω, ak paralelne dostnem odpor 2 Ω. Ake su tieto odpory? Priklad 2. Z drotu postavime postavime
Testy a úlohy z matematiky
Testy a úlohy z matematiky Spracovala a zostavila: c Mgr. Hedviga Soósová 008 Vydavateľ: Copyright c VARIA PRINT, s. r. o. 008. Prvé vydanie. Kontakt: VARIA PRINT, s. r. o. Mgr. Marta Varsányiová Ul. františkánov
2 záhrady. Na koľko % má splnenú úlohu?
CVIČNÝ MONITOR 11 1. Zásoba materiálu pre 6 pracovníkov vystačí na 30 dní. Namiesto 6 pracovníkov firma prijala 9. Na koľko im vystačí zásoba materiálu? 2. Urč číslo, ktoré dostaneš podielom delenca -22
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
SLOVENSKO maloobchodný cenník (bez DPH)
Hofatex UD strecha / stena - exteriér Podkrytinová izolácia vhodná aj na zaklopenie drevených rámových konštrukcií; pero a drážka EN 13171, EN 622 22 580 2500 1,45 5,7 100 145,00 3,19 829 hustota cca.
22 Špeciálne substitúcie, postupy a vzorce používané pri výpočte
Špeciálne substitúcie, postupy vzorce používné pri výpočte niektorých ďlších typov neurčitých integrálov. Pomocou vhodnej substitúcie tvru t = n + b (potom = tn b, = n tn dt) vypočítjte neurčitý integrál
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
KATALÓG KRUHOVÉ POTRUBIE
H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
TC Obsahový štandard Výkonový štandard
Celé čísla. Počtové operácie s celými číslami UČEBNÉ OSNOVY ÔSMY ROČNÍK TC Obsahový štandard Výkonový štandard Pojem celé číslo Kladné a záporné čísla, kladné a záporné desatinné čísla Opačné čísla Absolútna
Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV
Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
ZÁKLADY ELEMENTÁRNEJ GEOMETRIE
UNIVERZITA KONŠTANTÍNA FILOZOFA FAKULTA PRÍRODNÝCH VIED ZÁKLADY ELEMENTÁRNEJ GEOMETRIE ŠEDIVÝ ONDREJ VALLO DUŠAN Vydané v Nitre 2009 Fakultou prírodných vied Univerzity Konštantína Filozofa v Nitre s finančnou
Vyriešený test z matematiky Celoslovenské testovanie žiakov 9. ročníka ZŠ T9-2015
Vyriešený test z matematiky Celoslovenské testovanie žiakov 9. ročníka ZŠ T9-2015 Zdroj zadaní príkladov: NÚCEM - Národný ústav certifikovaných meraní vzdelávania http://www.nucem.sk/documents//26/testovanie_9_2015/testy_t9_2015/t9_2015_test_z_matemati
PYTAGORIÁDA Súťažné úlohy republikového kola 35. ročník, školský rok 2013/2014
Kategória P 6 1. Napíšte číslo, ktoré sa skrýva pod hviezdičkou: *. 5 = 9,55 2. Janko Hraško je 25 - krát menší ako Ďuro Truľo. Napíšte, koľko centimetrov meria Janko Hraško, ak Ďuro Truľo meria 1,75 metra.
Katolícka univerzita v Ružomberku Pedagogická fakulta Rovinná geometria v starej Mezopotámii Miroslava Kyrczová História matematiky h. Doc. RNDr.
Katolícka univerzita v Ružomberku Pedagogická fakulta Rovinná geometria v starej Mezopotámii Miroslava Kyrczová História matematiky h. Doc. RNDr. Štefan Tkačik, PhD..5.009 V tejto práci sa pokúsime objasniť
2. Dva hmotné body sa navzájom priťahujú zo vzdialenosti r silou 12 N. Akou silou sa budú priťahovať zo vzdialenosti r/2? [48 N]
Gravitačné pole 1. Akou veľkou silou sa navzájom priťahujú dve homogénne olovené gule s priemerom 1 m, ktoré sa navzájom dotýkajú? Hustota olova je 11,3 g cm 3. [2,33 mn] 2. Dva hmotné body sa navzájom
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Kategória P 6 1. Vypíšte nepárne číslice nachádzajúce sa vo výsledku príkladu: 2,2. 2,02. 2,002 = 2. Vypočítajte a napíšte výsledok:
Kategória P 6 1. Vypíšte nepárne číslice nachádzajúce sa vo výsledku príkladu: 2,2. 2,02. 2,002 = 2. Vypočítajte a napíšte výsledok: 5. 5 1. 5 1. 5 1. 5 1. 5 5 = ( ( ( ( ( ))))) 3. Zo štyroch kartičiek,