1 Logika a dôkazy. 2 Množiny. 3 Teória čísel. 4 Premenné a výrazy. 5 Rovnice, nerovnice a ich sústavy. Pojmy:
|
|
- Ἐφραίμ Βουγιουκλάκης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 1 Logika a dôkazy výrok, axióma, definícia, úsudok, hypotéza, tvrdenie, pravdivostná hodnota, logické spojky, negácia výroku, konjunkcia, disjunkcia, implikácia, ekvivalencia, vyplýva, je ekvivalentné, kvantifikátor (existenčný, všeobecný, aspoň, najviac, práve), základné druhy dôkazov priamy, nepriamy, sporom. 2 Množiny množina, prvky množiny, podmnožina, nadmnožina, prienik, zjednotenie a rozdiel množín, Vennove diagramy, disjunktné množiny, prázdna množina, doplnok množiny, konečná a nekonečná množina. Číselné množiny prirodzené (N), celé (Z), nezáporné (N o ), záporné (Z - ), racionálne (Q), iracionálne (I), reálne (R) čísla 3 Teória čísel n ciferné číslo, desiatková a dvojková sústava, dekadický a dvojkový zápis, desatinný rozvoj (konečný, nekonečný a periodický), číslo π, nekonečno, číselná os, znázorňovanie čísel, interval (uzavretý, otvorený, ohraničený, neohraničený), komutatívny, asociatívny a distributívny zákon deliteľ, násobok, deliteľnosť, najväčší spoločný deliteľ (NSD), najmenší spoločný násobok (NSN), prvočíslo, zložené číslo, nesúdeliteľné čísla, zvyšok, prvočíselný rozklad, prvočiniteľ. úmera (priama a nepriama), pomer, percento, promile, základ (pre počítanie s percentami) 4 Premenné a výrazy konštanta, premenná, výraz, obor definície výrazu, rovnosť výrazov, hodnota výrazu, mnohočlen, stupeň mnohočlena, doplnenie do štvorca (pre kvadratický mnohočlen), člen mnohočlena, vynímanie pred zátvorku, úprava na súčin, krátenie výrazu, zlomky (čitateľ, menovateľ, spoločný menovateľ, základný tvar zlomku, zložený zlomok, hlavná zlomková čiara, absolútna hodnota čísla,faktoriál, kombinačné číslo. 5 Rovnice, nerovnice a ich sústavy rovnica, nerovnica, sústava rovníc, sústava nerovníc a spôsob ich riešenia, koeficient, koreň, koreňový činiteľ, diskriminant, vzťah medzi diskriminantom a počtom koreňov, doplnenie do štvorca, úprava na
2 súčin, substitúcia, kontrola (skúška) riešenia, (ekvivalentné a neekvivalentné) úpravy rovnice a nerovnice. 6 Mocniny a odmocniny odmocnina (druhá), n-tá odmocnina, mocnina (s prirodzeným, celočíselným exponentom), exponent a základ mocniny, polynóm, mnohočlen, koeficient pri n-tej odmocnine, vzťahy pre počítanie s mocninami a odmocninami 7 Funkcia a jej vlastnosti premenná (veličina), daná premenná je funkciou inej premennej, funkcia, postupnosť, argument, funkčná hodnota, definičný obor a obor hodnôt funkcie, graf funkcie, rastúca, klesajúca, monotónna funkcia, maximum (minimum) funkcie, lokálne maximum a minimum funkcie, zhora (zdola) ohraničená funkcia, ohraničená funkcia, horné (dolné) ohraničenie; konštantná, prostá, inverzná, zložená. 8 Lineárna a kvadratická funkcia lineárna a kvadratická funkcia, definičný obor a obor hodnôt funkcie, graf funkcie, priebeh, extrémy, ohraničenosť, smernica priamky, vrchol paraboly. 9 Mocninová funkcia, lineárna lomená funkcia Mocnina s celočíselným exponentom, mocninová funkcia, koeficient pri n-tej mocnine (v polynomickej funkcii), exponent, lineárna lomená funkcia, asymptoty grafu lineárnej lomenej funkcie, graf priebeh, extrémy, ohraničenosť týchto funkcií. 10 Logaritmické a exponenciálne funkcie exponenciálna a logaritmická funkcia, základ exponenciálnej a logaritmickej funkcie, graf, priebeh, extrémy, logaritmus, prirodzený logaritmus, vzťahy medzi logaritmami. 11 Goniometrické funkcie
3 periodická funkcia, goniometrické funkcie, ich graf a vlastnosti, sínus, kosínus, tangens, (najmenšia) perióda, sínus a kosínus dvojnásobného uhla, hodnoty goniometrických funkcií uhlov 0, π/6, π/4, π/3, π/2 12 Postupnosti postupnosť, (n-tý) člen postupnosti, graf postupnosti, rastúca, klesajúca, monotónna postupnosť, maximum (minimum) postupnosti, zhora (zdola) ohraničená postupnosť, rekurentý vzťah, postupnosť daná rekurentne. 13 Aritmetická postupnosť aritmetická postupnosť, diferencia aritmetickej postupnosti, graf, priebeh, extrémy, rekurentné určenie postupnosti, n-tý člen, súčet. 14 Geometrická postupnosť geometrická postupnosť, kvocient geometrickej postupnosti, graf, priebeh, extrémy, jej rekurentné určenie, n-tý člen, súčet. 15 Základné rovinné útvary lineárne útvary Bod, priamka, polpriamka, úsečka, stred úsečky, deliaci pomer, polrovina, rovnobežné a rôznobežné priamky, uhol (ostrý, pravý, tupý), susedné, vrcholové, súhlasné a striedavé uhly, os úsečky, os uhla, uhol dvoch priamok, kolmé priamky, kolmica, vzdialenosť (dvoch bodov, bodu od priamky, rovnobežných priamok). 16 Základné rovinné útvary kružnica a kruh Stred, polomer (ako číslo i ako úsečka), priemer, tetiva, kružnicový oblúk, vzájomné polohy priamky a kružnice - dotyčnica, sečnica a nesečnica, obvod kruhu a dĺžka kružnicového oblúka, kruhový výsek a odsek, medzikružie, obsah kruhu a kruhového výseku. 17 Základné rovinné útvary trojuholník
4 Trojuholník (ostrouhlý, pravouhlý, tupouhlý, rovnoramenný a rovnostranný trojuholník), vrchol, strana (ako vzdialenosť, ako úsečka), výška (ako vzdialenosť, ako úsečka i ako priamka), uhol, ťažnica, ťažisko, stredná priečka, kružnica trojuholníku opísaná, kružnica do trojuholníka vpísaná, obvod a plošný obsah trojuholníka, trojuholníková nerovnosť, Pytagorova veta, sínusová a kosínusová veta. 18 Základné rovinné útvary štvoruholníky a mnohouholníky Vrchol, strana (ako vzdialenosť, ako úsečka), uhlopriečka, uhol, konvexný štvoruholník, rovnobežník, kosoštvorec, obdĺžnik, štvorec, lichobežník, rovnoramenný lichobežník, základňa a rameno lichobežníka, výška rovnobežníka a lichobežníka, plošný obsah rovnobežníka a lichobežníka, konvexné, nekonvexné a pravidelné mnohouholníky, obsah mnohouholníka. 19 Analytická geometria v rovine (karteziánska) súradnicová sústava na priamke (číselná os) a v rovine, súradnice bodu, vyjadrenie vzdialenosti dvoch bodov pomocou ich súradníc, všeobecná rovnica priamky, smernica priamky, smernicový tvar rovnice priamky, vzťah medzi smernicami dvoch rovnobežných resp. kolmých priamok, vzťah medzi koeficientami všeobecných rovníc dvoch rovnobežných resp. kolmých priamok, vzťah alebo postup pre výpočet: uhla dvoch priamok, vzdialenosti bodu od priamky; rovnica kružnice. 20 Konštrukčné úlohy rozbor, náčrt, konštrukcia, postup konštrukcie. 21 Množiny bodov daných vlastností a ich analytické vyjadrenie Študent vie: geometricky opísať a načrtnúť množiny bodov s konštantnou vzdialenosťou od - bodu, - priamky, - kružnice, geometricky opísať a načrtnúť množiny bodov, ktoré majú rovnakú vzdialenosť od - dvoch bodov, - dvoch rovnobežných priamok,
5 - dvoch rôznobežných priamok, geometricky opísať a načrtnúť množiny bodov, ktoré majú - od daného bodu vzdialenosť menšiu (väčšiu) ako dané kladné číslo, - od danej priamky vzdialenosť menšiu (väčšiu) ako dané kladné číslo, - od jedného bodu väčšiu vzdialenosť ako od druhého bodu, - od jednej danej priamky väčšiu vzdialenosť ako od druhej danej priamky 22 Zhodné zobrazenia osová súmernosť zhodné zobrazenie - osová súmernosť, os súmernosti, osovo súmerný útvar; skladanie zobrazení, inverzné zobrazenie. 23 Zhodné zobrazenia zhodné zobrazenie - posunutie, stredová súmernosť, stred súmernosti, otočenie, stred otočenia, orientovaný uhol a jeho veľkosti, uhol otočenia, osovo a stredovo súmerný útvar. 24 Základné spôsoby zobrazovania priestoru do roviny premietanie (voľné rovnobežné premietanie), kolmý priemet bodu a priamky do roviny, priemet priestorového útvaru do roviny, telesá: hranoly, ihlany, štvorsten, guľa, valec, kužeľ a ich obrazy vo voľnom rovnobežnom premietaní. 25 Stereometria: Lineárne útvary v priestore polohové úlohy (karteziánska) sústava súradníc v priestore, bod, priamka a rovina v priestore, ich vzájomné polohy, rovnobežné, rôznobežné a mimobežné priamky, rovnobežnosť a rôznobežnosť priamky a roviny, rovnobežné a rôznobežné roviny, priesečnica dvoch rovín, rez telesa rovinou. 26 Sterometria: Lineárne útvary v priestore metrické úlohy
6 uhol dvoch priamok, kolmosť priamok a rovín, priamka kolmá k rovine, uhol dvoch rovín, kolmý priemet bodu a priamky do roviny, vzdialenosť dvoch lineárnych útvarov (dvoch bodov, bodu od roviny, bodu od priamky, vzdialenosť rovnobežných priamok, priamky a roviny s ňou rovnobežnej, vzdialenosť rovnobežných rovín), uhol priamky s rovinou. 27 Telesá teleso, mnohosten, vrchol, hrana, stena, kocka, sieť kocky, hranol, kolmý a pravidelný hranol, kváder, rovnobežnosten, ihlan, štvorsten, pravidelný štvorsten, podstava, výšky v štvorstene, guľa, valec, kužeľ, objemy a povrchy telies. 28 Kombinatorika (kombinatorické) pravidlo súčtu, (kombinatorické) pravidlo súčinu, permutácie, variácie a variácie s opakovaním, kombinácie, faktoriál, kombinačné číslo, Pascalov trojuholník 29 Pravdepodobnosť pravdepodobnosť, doplnková pravdepodobnosť, náhodný jav, nezávislé javy. 30 Štatistika diagram graf (stĺpcový, obrázkový, kruhový, lomený, spojitý, histogram), základný súbor, výberový súbor, rozdelenie, modus, medián, aritmetický priemer (aj viac ako dvoch čísel), stredná hodnota, smerodajná odchýlka, rozptyl, triedenie. Zadanie sa skladá z troch častí: 1. teória + krátky príklad 2. dôkazová úloha 3. príklad
TEÓRIA. Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín,
TEÓRIA Množiny a operácie s nimi Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín, Vennove diagramy, disjunktné množiny, konečná a nekonečná množina,
Διαβάστε περισσότεραObvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Διαβάστε περισσότεραStredná priemyselná škola Poprad. Výkonové štandardy v predmete MATEMATIKA všetky odbory 1. až 4.ročník
Výkonové štandardy v predmete MATEMATIKA všetky odbory 1. až 4.ročník ÚVOD Vzdelávací štandard z matematiky pre stredné odborné školy so štvorročným štúdiom patrí medzi základné pedagogické dokumenty,
Διαβάστε περισσότερα7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Διαβάστε περισσότερα24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Διαβάστε περισσότεραTematický výchovno-vzdelávací plán k pracovnému zošitu
Február Mesiac Týždeň Tematický výchovno-vzdelávací plán k pracovnému zošitu NOVÝ POMOCNÍK Z MATEMATIKY 8, časť Stupeň vzdelania: ISCED 2 - nižšie sekundárne vzdelávanie Vzdelávacia oblasť: Matematika
Διαβάστε περισσότεραOsnovy pre slovensko-francúzske sekcie gymnázií Matematika
Osnovy pre slovensko-francúzske sekcie gymnázií Matematika CIELE Ciele matematiky na bilingválnom gymnáziu sa v zásade nelíšia od cieľov klasických slovenských gymnázií. Hlavným rozdielom je získanie schopnosti
Διαβάστε περισσότερα16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
Διαβάστε περισσότεραCIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY
CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY BRATISLAVA 2016 Schválilo Ministerstvo školstva, vedy, výskum a športu Slovenskej republiky dňa 21. 12. 2016 pod číslom 2016-25786/49974:1-10B0
Διαβάστε περισσότεραModerné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Διαβάστε περισσότερα1. Trojuholník - definícia
1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných
Διαβάστε περισσότεραZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol
II. ZÁKLADNÉ GEOMETRICKÉ TELESÁ Hranolová plocha Hranolový priestor Hranol Definícia II.1 Nech P n je ľubovoľný n-uholník v rovine α a l je priamka rôznobežná s rovinou α. Hranolová plocha - množina bodov
Διαβάστε περισσότερα23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
Διαβάστε περισσότεραŠtátny pedagogický ústav, Pluhová 8, Bratislava CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY
Štátny pedagogický ústav, Pluhová 8, 830 00 Bratislava CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY Bratislava 2008 ÚVOD Cieľové požiadavky z matematiky sú rozdelené vo väčšine kapitol
Διαβάστε περισσότεραObsahový štandard. 6 základné počtové výkony (operácie); základné vedomosti z geometrie
Tematický výchovno-vzdelávací plán: MATEMATIKA Školský rok: 017/018 Škola: Súkromné športové gymnázium Trenčianske Teplice Ročník: 3. Trieda 3. OA Týždenne: 4 hodiny (ŠVP) Ročne: 13 hodín (ŠVP) Vypracované
Διαβάστε περισσότεραTematický výchovno - vzdelávací plán. Cvičenia z matematiky. pre 9. ročník
výchovno vzdelávací plán Cvičenia z matematiky pre 9. ročník Počet hodín : 1 hod. týždenne Plán bol vypracovaný podľa: ŠVP pre 2. stupeň ZŠ ISCED 2 Plán vypracoval/a: Mgr. Viera Obložinská Školský rok:
Διαβάστε περισσότεραPovrch a objem ihlana
Povrch a objem ihlana D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme polpriamky
Διαβάστε περισσότεραTC Obsahový štandard Výkonový štandard
Celé čísla. Počtové operácie s celými číslami UČEBNÉ OSNOVY ÔSMY ROČNÍK TC Obsahový štandard Výkonový štandard Pojem celé číslo Kladné a záporné čísla, kladné a záporné desatinné čísla Opačné čísla Absolútna
Διαβάστε περισσότεραPREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
Διαβάστε περισσότεραUčebné osnovy. Predmet: Matematika vo francúzskom jazyku. 1. ročník 2. ročník 3. ročník 4. ročník 5. ročník Spolu počet h týždenne.
Gymnázium Ľudovíta Štúra v Trenčíne Učebné osnovy Stupeň vzdelania: ISCED 3A Študijný odbor: 7902 J gymnázium Zameranie školského vzdelávacieho programu: bilingválne štúdium Predmet: Matematika vo francúzskom
Διαβάστε περισσότερα1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Διαβάστε περισσότεραMaturita z matematiky T E S T Y
RNr. Mário oroš Maturita z matematiky príprava na prijímacie skúšky na vysokú školu T E S T Y Všetky práva sú vyhradené. Nijaká časť tejto knihy sa nesmie reprodukovať mechanicky, elektronicky, fotokopírovaním
Διαβάστε περισσότεραMatematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Διαβάστε περισσότεραObvod a obsah rovinných útvarov
Obvod a obsah rovinných útvarov Z topologického hľadiska bod môže byť vnútorný, hraničný a vonkajší vzhľadom na nejaký rovinný útvar. D. Bod je vnútorný, ak môžeme nájsť taký polomer r, že kruh so stredom
Διαβάστε περισσότεραPovrch a objem hranola
Povrch a objem hranola D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a priamka, ktorá nie je rovnobežná s rovinou mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme priamky rovnobežné
Διαβάστε περισσότεραMATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015
MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015 Mgr. Valeria Godovičová 1. Mesiac 1 Úvodná hodina Telo 2-5 Druhá a tretia mocnina - čo už poznáme - opačné čísla a ich mocniny SEPTEMBER
Διαβάστε περισσότεραZákladná škola Sačurov, Školská 389, Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník
Základná škola Sačurov, Školská 389, 094 13 Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník Vypracované podľa učebných osnov ŠkVP A schválených radou školy dňa 28.8.2008 s platnosťou
Διαβάστε περισσότεραGoniometrické funkcie
Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej
Διαβάστε περισσότεραTézy matematika. 1. Množiny, základné pojmy a vzťahy. 2. Výroky a ich pravdivostné hodnoty
Tézy matematika 1. Množiny, základné pojmy a vzťahy 1. Vysvetlite obsah pojmov množina, prázdna množina, disjunktné množiny, popíšte vzťahy medzi množinami (podmnožina, rovnosť množín) a operácie s množinami
Διαβάστε περισσότεραGoniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Διαβάστε περισσότεραZhodné zobrazenia (izometria)
Zobrazenie A, B R R (zobrazenie v rovine) usporiadaná dvojica bodov dva body v danom poradí (záleží na poradí) zápis: [a; b] alebo (a; b) karteziánsky (kartézsky) súčin množín množina všetkých usporiadaných
Διαβάστε περισσότερα1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Διαβάστε περισσότερα1.4 Rovnice, nerovnice a ich sústavy
1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,
Διαβάστε περισσότεραMatematika gymnázium so štvorročným a päťročným vzdelávacím programom MATEMATIKA
MATEMATIKA ÚVOD Vzdelávací štandard pre učebný predmet matematika nepredstavuje iba súhrn katalógov, ktoré stanovujú výkony a obsah vyučovacieho predmetu, ale je to predovšetkým program rôznych činností
Διαβάστε περισσότεραMatematika gymnázium so štvorročným a päťročným vzdelávacím programom MATEMATIKA
MATEMATIKA ÚVOD Vzdelávací štandard pre učebný predmet matematika nepredstavuje iba súhrn katalógov, ktoré stanovujú výkony a obsah vyučovacieho predmetu, ale je to predovšetkým program rôznych činností
Διαβάστε περισσότεραMocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník
1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5
Διαβάστε περισσότεραZobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie.
Zobrazenia v rovine Zobrazením Z z množiny A do množiny B nazývame predpis, ktorý každému prvku x množiny A priraďuje práve jeden prvok y množiny B. Zobrazenie v rovine priraďuje každému bodu X danej roviny
Διαβάστε περισσότεραTéma Pojmy Spôsobilosti
OBSAH VZDELÁVANIA 1.ročník (Prima) 4 hod. týždenne + 0,5 RH / 148,5 hod. ročne Tematický celok počet hodín Obsahový štandard Výkonový štandard Prostriedky hodnotenia Téma Pojmy Spôsobilosti Opakovanie
Διαβάστε περισσότερα9 Planimetria. identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov,
9 Planimetria Ciele Preštudovanie tejto kapitoly vám lepšie umožní: identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov, používať jednotky
Διαβάστε περισσότεραTéma c. 1. Výroková logika a logika výrokových foriem (predikátovej logiky). Množinovo-logický rozbor slovného textu
Téma c. 1 Výroková logika a logika výrokových foriem (predikátovej logiky). Množinovo-logický rozbor slovného textu A) Výrok a jeho vlastnosti. Výroky tvorené z jednoduchých výrokov pomocou logických operátorov.
Διαβάστε περισσότεραGEOMETRIA 4 KONŠTRUKČNÁ GEOMETRIA
GEOMETRIA 4 KONŠTRUKČNÁ GEOMETRIA Obsahom predmetu je súhrn poznatkov viacerých geometrických disciplín od elementárnej planimetrie a stereometrie, syntetickej deskriptívnej geometrie, cez analytickú a
Διαβάστε περισσότεραSúradnicová sústava (karteziánska)
Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme
Διαβάστε περισσότεραStereometria Základné stereometrické pojmy Základné pojmy: Základné vzťahy: (incidencie) Veta 1: Def: Veta 2:
Stereometria 1. K úlohe č.1 v príklade vidíte sklenenú kocku, na ktorej je natiahnutý drôt. Vedľa vidíte 3 pohľady na túto kocku zhora, spredu a z pravého boku. Pre ďalšie kocky nakreslite takéto 3 pohľady.
Διαβάστε περισσότεραMatematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Διαβάστε περισσότεραstereometria - študuje geometrické útvary v priestore.
Geometria Geometria (z gréckych slov Geo = zem a metro = miera, t.j. zememeračstvo) je disciplína matematiky prvýkrát spopularizovaná medzi starovekými grékmi Tálesom (okolo 624-547 pred Kr.), ktorý sa
Διαβάστε περισσότερα9 Planimetria. 9.1 Uhol. Matematický kufrík
Matematický kufrík 89 9 Planimetria 9.1 Uhol Pojem uhol patrí k najzákladnejším pojmom geometrie. Uhol môžeme definovať niekoľkými rôznymi spôsobmi, z ktorých má každý svoje opodstatnenie. Jedna zo základných
Διαβάστε περισσότεραŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, BRATISLAVA. VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM štvorročné štúdium
ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, 80 00 BRATISLAVA VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM štvorročné štúdium Vypracoval: RNDr. Marian Hanula Posúdili členovia Ústrednej
Διαβάστε περισσότεραtretej odmocniny ( x ), mocniny čísla 10, n-tá mocnina ľubovoľného čísla (a n ) pre konkrétne hodnoty n, n je prirodzené číslo.
Mocniny a odmocniny, zápis veľkých čísel Školský vzdelávací program matematika 9. ročník 1. Obsah vzdelávania učebného predmetu v 9. ročníku (rozšírený počet hodín ) Tematický celok Témy Druhá a tretia
Διαβάστε περισσότεραKód testu NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU!
Kód testu 1203 NEOTVÁRJTE, POČKJTE N POKYN! PREČÍTJTE SI NJPRV POKYNY K TESTU! MTURIT 2015 EXTERNÁ ČSŤ Časť I Vyriešte úlohy 01 až 20 a do odpoveďového hárka zapíšte vždy iba výsledok nemusíte ho zdôvodňovať
Διαβάστε περισσότεραAnalytická geometria
Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je
Διαβάστε περισσότεραGoniometrické substitúcie
Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať
Διαβάστε περισσότεραMatematika gymnázium s osemročným vzdelávacím programom MATEMATIKA ÚVOD
MATEMATIKA ÚVOD Vzdelávací štandard pre učebný predmet matematika chápeme ako program vytvárajúci priestor na rozvíjanie individuálnych učebných ciest žiakov. Pre učiteľov slúži najmä na orientáciu v cieľoch,
Διαβάστε περισσότεραMatematika gymnázium s osemročným vzdelávacím programom MATEMATIKA ÚVOD
MATEMATIKA ÚVOD Vzdelávací štandard pre učebný predmet matematika chápeme ako program vytvárajúci priestor na rozvíjanie individuálnych učebných ciest žiakov. Pre učiteľov slúži najmä na orientáciu v cieľoch,
Διαβάστε περισσότεραZákladná škola Jána Hollého s materskou školou Madunice. Prehľad učiva matematiky. základnej školy
Základná škola Jána Hollého s materskou školou Madunice Prehľad učiva matematiky základnej školy Obsah strana 1. Prirodzené, celé, racionálne, reálne čísla... 1 2. Operácie s racionálnymi číslami... 2
Διαβάστε περισσότεραMetodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
Διαβάστε περισσότεραVýroky, hypotézy, axiómy, definície a matematické vety
Výroky, hypotézy, axiómy, definície a matematické vety Výrok je každá oznamovacia veta (tvrdenie), o ktorej má zmysel uvažovať, či je pravdivá alebo nepravdivá. Výroky označujeme pomocou symbolov: A, B,
Διαβάστε περισσότεραCvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Διαβάστε περισσότεραMatematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Διαβάστε περισσότεραCIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z DESKRIPTÍVNEJ GEOMETRIE
ŠTÁTNY PEDAGOGICKÝ ÚSTAV CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z DESKRIPTÍVNEJ GEOMETRIE BRATISLAVA 2012 Schválilo Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky dňa
Διαβάστε περισσότεραMATEMATIKA CIELE UČEBNÉHO PREDMETU I. CHARAKTERISTIKA UČEBNÉHO PREDMETU
MATEMATIKA I. CHARAKTERISTIKA UČEBNÉHO PREDMETU Učebný predmet matematika je zameraný na rozvoj matematickej kompetencie tak, ako ju formuloval Európsky parlament: Matematická kompetencia je schopnosť
Διαβάστε περισσότεραTematický výchovno-vzdelávací plán. z matematiky. pre 9. ročník
výchovnovzdelávací plán z matematiky pre 9. ročník Počet hodín : 5 hod. týždenne Plán bol vypracovaný podľa: ŠVP pre 2. stupeň ZŠ ISCED 2 Plán vypracoval/a: Mgr. Viera Obložinská Školský rok: 2014/2015
Διαβάστε περισσότεραObvod a obsah nepravidelného a pravidelného mnohouholníka
Obvod a obsah nepravidelného a pravidelného mnohouholníka Ak máme nepravidelný mnohouholník, tak skúsime ho rozdeliť na útvary, ktorým vieme vypočítať obsah z daných údajov najvšeobecnejší spôsob: rozdeliť
Διαβάστε περισσότεραFakulta riadenia a informatiky Žilinskej univerzity
Poznámka k úlohám o funkciách: Ak nie je uvedené inak, je definičným oborom funkcie množina všetkých reálnych čísel, pre ktoré výraz definujúci funkciu má zmysel. 0 Ktorá z nasledujúcich funkcií nie je
Διαβάστε περισσότεραMatematika nižšie stredné vzdelanie MATEMATIKA
ÚVOD MATEMATIKA Vzdelávací štandard pre učebný predmet matematika nepredstavuje iba súhrn katalógov, ktoré stanovujú výkony a obsah vyučovacieho predmetu, ale je to predovšetkým program rôznych činností
Διαβάστε περισσότεραGymnázium v Košiciach, Opatovská 7 MATEMATIKA
Gymnázium v Košiciach, Opatovská 7 MATEMATIKA ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, 80 00 BRATISLAVA VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM (štvorročné štúdium) Vypracoval:
Διαβάστε περισσότεραVýrazy a ich úpravy. -17x 6 : -17 koeficient; x premenná; 6 exponent premennej x. 23xy 3 z 5 = 23x 1 y 3 z 5 : 23 koeficient; x; y; z premenné;
Výrazy a ich úpravy Počtový výraz je matematický zápis, ktorým vyjadrujeme počtové operácie s číslami a poradie v akom majú byť prevedené. Napr.: ( (5 1,76)+5):0,4. Počtové výrazy sa pomenovávajú podľa
Διαβάστε περισσότεραMATEMATIKA CIELE UČEBNÉHO PREDMETU I. CHARAKTERISTIKA UČEBNÉHO PREDMETU
MATEMATIKA I. CHARAKTERISTIKA UČEBNÉHO PREDMETU Učebný predmet matematika je zameraný na rozvoj matematickej kompetencie tak, ako ju formuloval Európsky parlament: Matematická kompetencia je schopnosť
Διαβάστε περισσότερα6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Διαβάστε περισσότεραZÁKLADY ELEMENTÁRNEJ GEOMETRIE
UNIVERZITA KONŠTANTÍNA FILOZOFA FAKULTA PRÍRODNÝCH VIED ZÁKLADY ELEMENTÁRNEJ GEOMETRIE ŠEDIVÝ ONDREJ VALLO DUŠAN Vydané v Nitre 2009 Fakultou prírodných vied Univerzity Konštantína Filozofa v Nitre s finančnou
Διαβάστε περισσότερα2. Aký obsah má vyfarbený útvar? Dĺţka strany štvorca je 3 m.
Dĺžka kružnice, obsah kruhu 1. Na obrázku je kruţnica vpísaná do štvorca so stranou 4cm a štyri kruţnicové oblúky so stredmi vo vrcholoch štvorca. ký obsah má vyfarbený útvar? 4 + π cm 16 - π cm 8π 16
Διαβάστε περισσότεραMatematika test M-1, 2. časť
M O N I T O R 001 pilotné testovanie maturantov MONITOR 001 Matematika test M-1,. časť forma A Kód školy: Číslo žiaka A B C F H I K L M O P S Kód A B C F H I triedy: 01 0 03 04 05 06 07 08 09 10 11 1 13
Διαβάστε περισσότεραMATEMATIKA - úlohy z MONITOROV a MSK
MATEMATIKA - úlohy z MONITOROV a MSK P.č. Tematické celky Strana 1 1.1 - Výroky 1 1.. - Množiny 4 3.1. - Výrazy 6 4 3.1. - Teória čísel 7 5 4.1. - Rovnice 9 6 4.. - Nerovnice 11 7 4.3. - Sústavy rovníc
Διαβάστε περισσότεραSúčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.
Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií
Διαβάστε περισσότεραFunkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
Διαβάστε περισσότεραŠkolský vzdelávací program matematika 8. ročník. 1. Obsah vzdelávania učebného predmetu v 8. ročníku (rozšírený počet hodín ) Obsahový štandard
Celé čísla. Počtové výkony s celými číslami Školský vzdelávací program matematika 8. ročník 1. Obsah vzdelávania učebného predmetu v 8. ročníku (rozšírený počet hodín ) Tematický celok Témy Kladné a záporné
Διαβάστε περισσότεραGoniometrické funkcie ostrého uhla v pravouhlom trojuholníku
Ma-Go-01-T List 1 Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku RNDr. Marián Macko U: Pojem goniometrické funkcie v preklade z gréčtiny znamená funkcie merajúce uhly. Dajú sa použiť v pravouhlom
Διαβάστε περισσότεραPovrch a objem zrezaného ihlana
Povrch a objem zrezaného ihlana Ak je daný jeden ihlan a zobereme rovinu rovnobežnú s postavou, prechádzajúcu ihlanom, potom táto rovina rozdelí teleso na dve telesá. Jedno teleso je ihlan (pôvodný zmenšený
Διαβάστε περισσότεραTest. Matematika. Forma A. Štátny pedagogický ústav, Bratislava NUPSESO. a.s.
Test Matematika Forma A Štátny pedagogický ústav, Bratislava Ò NUPSESO a.s. 1. Koľkokrát je väčší najmenší spoločný násobok čísel 84 a 16 ako ich najväčší spoločný deliteľ. A. B. 3 C. 6 D.1. Koľko záporných
Διαβάστε περισσότεραNUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky
Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory
Διαβάστε περισσότεραMaturitné otázky z matematiky
Gmnázium Pavla Horova Michalovce Maturitné otázk z matematik školský rok 00 / 00 . VÝROKY A MNOŽINY Maturitné otázk a príklad z matematik, Gmnázium Pavla Horova, Michalovce Výrok a jeho negácia. Kvantifikované
Διαβάστε περισσότεραObsahový a výkonový štandard MATEMATIKA
Obsahový a výkonový štandard MATEMATIKA Matematika, 1.ročník Numerácia v obore prirodzených čísel do 100 dvojice, vzťah rovnako nerovnako, viac menej kvalita čísel počítanie po jednom, po dvoch... poznávanie
Διαβάστε περισσότεραVzdelávacia oblasť: Matematika a práca s informáciami 2. STUPEŇ ZŠ - ISCED 2. Základná škola Pavla Horova Michalovce
Základná škola Pavla Horova Michalovce ŠKOLSKÝ ROK: 2016/2017 9. ROČNÍK Matematika Vypracoval: Mgr. Ľubomíra Bérešová, RNDr. Eva Ciglianová, Mgr. Mária Hinďošová, Mgr. Tatiana Markušová Obsah Charakteristika
Διαβάστε περισσότεραTematický výchovno-vzdelávací plán z matematiky pre 6.ročník ZŠ
Tematický výchovno-vzdelávací plán z matematiky pre 6.ročník ZŠ (spracovaný v súlade s UO matematiky schválenými Ministerstvom školstva Slovenskej republiky dňa 3. apríla 1997 rozhodnutím číslo 1640/97-151
Διαβάστε περισσότεραV každom prípade zapíšte vzájomnú polohu dvoch kružníc.
Kruh, kružnica 1. Polomer kružnice má veľkosť r = 5 cm, jej tetiva t = 8 cm. Vypočítaj vzdialenosť tejto tetivy od stredu kružnice.. Obsah kruhu je 78,5 cm. ký je jeho priemer? 3. Polomer kružnice k má
Διαβάστε περισσότεραTREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT k predmetu Matematika pre 2. ročník SOŠ v Strážskom, študijný odbor 3760 6 00 prevádzka a ekonomika dopravy Operačný program: Vzdelávanie Programové obdobie:
Διαβάστε περισσότεραPRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY
Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ PRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY Strojnícka fakulta Andrea Feňovčíková Gabriela Ižaríková aaaa aaaa Táto
Διαβάστε περισσότεραLineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus
1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových
Διαβάστε περισσότεραZÁKLADY MATEMATIKY 1 UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED
UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED ZÁKLADY MATEMATIKY 1 Kitti Vidermanová, Júlia Záhorská Eva Barcíková, Michaela Klepancová NITRA 2013 Názov: Základy matematiky 1 Edícia Pírodovedec.
Διαβάστε περισσότεραMinisterstvo školstva Slovenskej republiky. Učebné osnovy MATEMATIKA. pre 5. až 9. ročník základnej školy
Ministerstvo školstva Slovenskej republiky Učebné osnovy MATEMATIKA pre 5. až 9. ročník základnej školy Inováciu učebných osnov koordinoval: PhDr. L. Bálint, CSc. Schválilo Ministerstvo školstva Slovenskej
Διαβάστε περισσότεραPriamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Διαβάστε περισσότεραZlomky sčítanie, odčítanie. A forma. B forma. 1. Kontrolná práca z matematiky 7. ročník. 1. Vypočítajte : = d) ( ) Vypočítajte : a) 5 + =
1. Kontrolná práca z matematiky 7. ročník Zlomky sčítanie, odčítanie 1. Vypočítajte : 6 2 5 7 2 2 2 a) + + = c) + = 7 3 21 9 3 3 9 3 5 1 1 + + 1 = d) ( ) 5 + 3,7 + 1 4 15 6 = 2. Vypočítajte : a) 1 5 5
Διαβάστε περισσότεραKontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Διαβάστε περισσότεραZákladné vzťahy medzi hodnotami goniometrických funkcií
Ma-Go-2-T List Základné vzťahy medzi hodnotami goniometrických funkcií RNDr. Marián Macko U: Predstav si, že ti zadám hodnotu jednej z goniometrických funkcií. Napríklad sin x = 0,6. Vedel by si určiť
Διαβάστε περισσότεραMIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Διαβάστε περισσότερα4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme
Διαβάστε περισσότεραMaturitné úlohy. Matematiky. Pre gymnázium
Jozef Vozár Maturitné úlohy Z Matematiky Pre gymnázium I. (Úlohy s krátkou odpoveďou) OBSAH ÚVOD... 3 1. ZÁKLADY MATEMATIKY... 3 1.1 Logika a množiny... 3 1.2 Čísla, premenné a výrazy... 7 1.3 Teória čísel...
Διαβάστε περισσότερα7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu.
Teória množín To, že medzi množinami A, B existuje bijektívne zobrazenie, budeme symbolicky označovať A B alebo A B. Vtedy hovoríme, že množiny A, B sú ekvivalentné. Hovoríme tiež, že také množiny A, B
Διαβάστε περισσότεραMotivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
Διαβάστε περισσότεραMatematika. Učíme sa pre budúcnosť Stupeň vzdelávania Primárne vzdelávanie ISCED 2 Vyučovací jazyk Slovenský jazyk CHARAKTERISTIKA
Matematika Vzdelávacia oblasť Matematika a práca s informáciami Názov predmetu Matematika Časová dotácia ročník 5.roč. 6.roč. 7.roč. 8.roč. 9.roč. ŠVP 4 4 4 4 4 Disponibilné 1 1 1 1 1 Spolu 5 5 5 5 5 Škola
Διαβάστε περισσότεραObsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
Διαβάστε περισσότερα