Interna navodila za dokumentiranje pisnih poročil. Laboratorij za regulacijsko tehniko in močnostno elektroniko (LRTME)
|
|
- Τυρώ Ζαΐμης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Interna navodila za dokumentiranje pisnih poročil Laboratorij za regulacijsko tehniko in močnostno elektroniko (LRTME)
2 1. Oprema pisnega poročila z grafičnimi prikazi V pisnem poročilu se glede na temo, ki je obravnavana, pojavijo grafični prikazi v obliki blokovnih shem, principialnih shem, električnih shem, oscilogramov, diagramov poteka, diagramov (grafov), fotografij ali kombinacije naštetih možnosti. Ne glede na vrsto grafičnega prikaza tega obravnavamo kot sliko. Pod njo se nahaja podnapis sledeče oblike: Slika x.y: Opis grafičnega prikaza X je zaporedna številka poglavja, v katerem se slika nahaja, y pa zaporedna številka slike v tem poglavju. Tako slika kot njen podnapis sta na postavitvi strani sredinsko poravnana. Primer električne sheme vezja je na sliki 1.1, primer blokovne sheme regulacijske zanke pa na sliki 1.. i DC T T 4 T 6 e 1 e L 1 L L u 1 u u i 1 i i A D D 4 D 6 B u e DC,dej C C izh R B D 1 D D 5 T 1 T T 5 Slika 1.1: Električna shema trifaznega tranzistorskega mostiča 1 K N * i B 1 R B K R,T R Î žel,kor i B T C u DC,žel Î žel,pi Î žel K * i DC u DC,dej u DC,dej Slika 1.: Blokovna shema izpopolnjene regulacijske zanke s tokovno korekcijsko vejo
3 V poročilu podajamo slike, ki so pomembne za razumevanje tematike in so v besedilu tudi opisane. Iz tega sledi, da se v besedilu nahaja sklic na posamezno sliko. Prvi sklic naj bo po možnosti v neposredni bližini pred sliko. Posamezne slike naj bodo pregledne in ne preobsežne. Določene detajle raje prikažemo ločeno na samostojnih slikah. Oznake veličin in simbolov morajo biti skladne z oznakami v besedilu. Pri uporabi barv v grafičnih prikazih moramo paziti, da bodo tudi elementi v svetlih barvah na papirju dobro vidni. Posebna pozornost velja pri tiskanju s ČB laserskim tiskalnikom. Rumena barva na primer je predstavljena z zelo svetlo sivino. Kaj lahko se zgodi, da te sploh ne vidimo. Če nimamo posebne namere za tiskanje barvnih prikazov na barvnem tiskalniku, raje kreiramo grafične prikaze v odtenkih sivine ali črno-beli tehniki že od začetka. To velja tudi za diagrame, ki jih ustvarimo v Excelu. Poteke črt za posamezne veličine obarvamo črno, za ločevanje pa raje uporabimo različne sloge črt (črtkana, pikčasta...). Najpogostejši grafični prikazi v rezultatih meritev so oscilogrami potekov karakterističnih veličin v vezju. Že pri samem snemanju moramo biti pozorni na to, da bo oscilogram pregleden in bo vseboval vse tisto, na kar bi radi še posebej pokazali. Pozorni moramo biti na nastavitev časovne baze in atenuatorjev posameznih kanalov, tako da kar najbolj optimalno izkoristimo zaslon osciloskopa. Po možnosti se pri snemanju skušamo izogniti nepotrebnim zankam, ki jih tvorijo nepravilno priključene mase sond. S tem omejimo stikalni šum na oscilogramih. Pravilno opremljen oscilogram kaže slika 1.. Iz oscilograma mora biti nedvoumno razvidno, kje je masa posamezne sledi. Če je ne naredi osciloskop, jo vrišemo naknadno. Obvezna oprema so tudi podatki za merila posameznih sledi ter časovne osi. Ti so lahko sestavni del slike ali pa so podani v opisu slike. Če je na oscilogramu več sledi, moramo poskrbeti, da se iz opisa slike razbere, kateri veličini pripada določena sled. Še bolje je, če oscilogram dodatno opremimo z oznakami predstavljenih veličin in na pripadajoče sledi nedvoumno pokažemo s puščicami.
4 Î žel i 1 u DC,dej k = V/razd; k = A/razd; k 4 = 50 V/razd; k t = 0 ms/razd Slika 1.: Odziv veličin v regulacijskem krogu z dodano (neoptimirano) tokovno korekcijsko zanko 1.1 Grafični simboli elektrotehniških elementov Grafični simbol posameznega elementa rišemo v 4 mm mreži. Debelina črt je 1 pt (point) kar je 0,5 mm. Velikost pisave za oznako simbola je 10 pt ali 1 pt. Črte imajo v»worddraw«pod 1 pt neostro odrezane konice, zato se uporabi takšnih debelin raje izogibamo. Kroge pri tranzistorjih lahko tudi izpustimo. Primer mreže in simbolov za upor ter dušilko je na sliki 1.4. R B Slika 1.4: Osnovna mreža za risanje grafičnih simbolov 4
5 Telo simbola za upor je v razmerju :1. Daljša stranica tako meri 8 mm krajša pa 4 mm. Dolžina priključnih žic je 8 mm, vendar te po potrebi lahko tudi skrajšamo. Datoteko z imenom EL_TEH_GRAF_sim.doc, v kateri so že kreirani najpogosteje uporabljeni simboli, lahko na vašo željo dobite v LRTME. Pri risanju shem je pomembno, da se razmerja med velikostjo simbolov posameznih elementov, ki smo jih kreirali v osnovni mreži, ohranijo. Zato narišemo celotno shemo z elementi v naravni velikosti in jo vstavimo v okvir slike (ukaz: Word Picture). Velikost te uokvirjene slike pa potem po potrebi skaliramo, vendar pri tem pazimo, da ohranimo razmerje med širino in višino. Če bomo morali določeno sliko glede na osnovno velikost zmanjšati za ¼ ali celo več, potem je dobro oznake elementov pisati s temu primerno večjo pisavo (npr. 14 pt). Lahko bi sicer ohranili velikost pisave pri skaliranju slike (nastavitev v Wordu), vendar v tem primeru kaj lahko pride do prekrivanja ali rezanja pisave. Izjeme, ki od zgornjih zahtev odstopajo, so električne sheme vezij, narisanih v programih za izdelavo tiskanih vezij. V teh programih so simboli elementov risani v drugačnih razmerjih ali oblikah, vendar tega ni treba spreminjati. Pri uvozu shem v Word moramo le poskrbeti, da so na shemi samo pomembne oznake, nepotrebne zaradi preglednosti odstranimo. Dodatno lahko sliko opremimo še v Wordu. Primer takšne električne sheme je na sliki k -15V 1k -15V +15V +5V * I_dej i * I_zel i žel 10k 10k 7 + U1-10k OP07 ε i 1k 7 + U OP U - LM k I_edit I_edit +15V +15V -15V Slika 1.5: Električna shema primerjalnega vezja časovno-diskretnega tokovnega regulatorja 5
6 . Pisanje fizikalnih veličin in matematičnih enačb Matematične enačbe v pisnem poročilu podajamo s ciljem osvetlitve določenih fizikalnih povezav, ki nastopajo med posameznimi fizikalnimi veličinami. Podajamo zgolj tista fizikalna dejstva, ki so bistvena za razumevanje. Matematične enačbe pišemo s pomočjo urejevalnika enačb (npr. Microsoft Equation), v katerem predhodno določimo velikost posameznih gradnikov enačbe. Enačbe vnašamo vedno v novo vrstico, in sicer uporabimo sredinsko postavitev. Na skrajni desni strani moramo navesti zaporedno številko enačbe (x.y). Številčenje enačb naj bo smiselno z oštevilčenjem poglavij. X je zaporedna številka poglavja (glavnega), v katerem se enačba nahaja, y pa zaporedna številka enačbe v tem poglavju. Enačbe zapišemo v urejeni obliki, kjer izpostavimo fizikalne veličine, ki so bistvene za razumevanje fizikalnega ozadja. i Iˆ U u DC m * = = (.1) f DC, dej K Izogibajmo se neposrednemu vrivanju enačb v tekst. Pri podajanju fizikalnih veličin v tekstu ali v okviru matematične enačbe pazimo na osnovne zakonitosti njihovega zapisa: 1. Oznaka fizikalne veličine se vedno piše poševno (italic) R.. Indeksi veličin: R M, R s, Če je indeks črka, jo pišemo poševno; če je številka, jo pišemo pokonci! R 1, u DC,.. Pozorni bodimo na različen zapis oznake elementa in fizikalne veličine (npr. upornost R 15 in upor R 15 ). 6
7 4. pri zapisu oznake fizikalne veličine, njenega merskega števila in enote se držimo naslednje forme R M = 100 Ω T = 100 C izjema presledek! presledek! enoto fizikalne veličine pišemo pokonci. 7
8 . Dokumentiranje programov v zbirniku in višjih programskih jezikih Asemblerska programska koda v pisnem poročilu se piše v fontu Courier New velikosti 9 ali 10 z enojnim presledkom med vrsticami. Prvi stolpec je namenjen labeli, drugi ukazu, tretji operandu in četrti komentarju. Stolpci so med seboj ločeni s tabulatorjem ali dvema. Primer programa v asemblerju: Sprem_1 equ $0000 * Naslov prve spremenljivke Sprem_ equ $0001 * Naslov druge spremenljivke org $C000 * Pričetek programa start ldd #$A0A0 * A0A0h=> D ldaa #$B0 * V akumulator A naloži vrednost b staa Sprem_1 * Vrednost v akumulatorju A shrani v * spremenljivko Sprem_1 staa $0 * Vrednost v akumulatorju A shrani na * naslov 0 stab Sprem_ * Vrednost v registru B shrani v spremenljivko * Sprem_ bra start * Brezpogojni skok na start end Celoten program v asemblerju naj bo pisan z enakim fontom, brez uporabe italic ali bold fonta, v obliki, ki jo zahteva prevajalnik. V besedilu, ki se nanaša na program, naj bodo številke v različnih številskih formatih pisane v tekočem fontu z označbo formata na koncu številke. Dodatno naj bodo grupirane v množice po štiri cifre, če so zapisane v binarnem ali heksadecimalnem sistemu (1AF 04E hex ali bin ). V programu uporabljene labele skokov se pišejo v ležečem Courier New fontu velikosti 10 med znakoma <> (primer <start>). Spremenljivke in konstante se zapisujejo v navadnem Courier New fontu velikosti 10 med znakoma <> (primer <Sprem_1>). 8
9 Imena uporabljenih datotek se pišejo v navadnem Courier New fontu velikosti 10 (primer Program.asm) pot do njih pa v ležečem Courier New fontu (primer C:\Programi\asm\). Če se piše oboje skupaj, je vse ležeče (primer C:\Programi\asm\Program.asm). Izbirni meniji in pot do njih se pišejo v ležečem in podčrtanem Arial fontu 10 (primer File > Save As...), besedilo izbirnih gumbov pa poudarjeno (primer OK, Cancel). Bližnjice na tipkovnici se pišejo v ostrih oklepajih v tekočem fontu (primer <Tab>). Courier New 10 <ležeč font v ostrih oklepajih> labele (skokov) <start> <navaden font v ostrih oklepajih> spremenljivke in konstante <Sprem_1> navaden font imena datotek Program.asm ležeč font pot do datoteke C:\Programi\asm\ Arial font 10 ležeč, podčrtan font izbirni meniji File > Save As... odebeljen font besedilo izbirnih gumbov OK, Cancel Izbran font <besedilo v ostrih oklepajih> bližnjice na tipkovnici <Tab> Nekatere uporabne bližnjice: <Ctrl+1> enojni razmik med vrsticami <Ctrl+> dvojni razmik med vrsticami <Ctrl+5> razmik 1,5 med vrsticami <Ctrl+Shift+Space> nedeljiv presledek <Ctrl+Shift+0> subscribe <Ctrl++> superscribe <Ctrl+Enter> nova stran 9
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Uvod v L A TEX 2ε. Osnove pisanja poročil. Špela Bolka. Ljubljana, 21. marec 2013
Uvod v L A TEX 2ε Osnove pisanja poročil Špela Bolka Ljubljana, 21. marec 2013 Motivacija Standardiziran izgled Pisanje poročil, člankov, knjig, predstavitev Enostavnejši zapis matematičnih izrazov Enostavnejše
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
VEKTORJI. Operacije z vektorji
VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,
Reševanje sistema linearnih
Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje
Tabele termodinamskih lastnosti vode in vodne pare
Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70
KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Vaje: Električni tokovi
Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete
vezani ekstremi funkcij
11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.
Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
Kotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Fazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004
Oddelek za konstrkcije Laboratorij za konstrkcije Ljbljana, 12.11.2012 POROČILO št.: P 1100/12 680 01 Presks jeklenih profilov za spščen strop po točki 5.2 standarda SIST EN 13964:2004 Naročnik: STEEL
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti
Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne
Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek.
DN#3 (januar 2018) 3A Teme, ki jih preverja domača naloga: Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni
Tema 1 Osnove navadnih diferencialnih enačb (NDE)
Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer
Navadne diferencialne enačbe
Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama
Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
primer reševanja volumskega mehanskega problema z MKE
Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L
Analiza 2 Rešitve 14. sklopa nalog
Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)
Gnuplot program za risanje grafov
Gnuplot program za risanje grafov B. Golli Pedagoška fakulteta UL, Ljubljana 2010 Kazalo 1 Uvod 3 2 Namestitev programa na različnih platformah 3 2.1 MS Windows........... 3 2.2 Drugi operacijski sistemi.....
Logika in množice c
Logika in množice c226358 Andrej Bauer Davorin Lešnik 2018-02-01 2 Predgovor 4 Kazalo 1 Matematično izražanje 9 1.1 Pisave in simboli..................................... 9 1.2 Izrazi............................................
1 Fibonaccijeva stevila
1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Arduino grafični vmesnik
Laboratorij za načrtovanje integriranih vezij Univerza v Ljubljani Fakulteta za elektrotehniko Arduino grafični vmesnik DES 2012/13 - razvoj vgrajenega sistema Arduino grafični vmesnik Arduino Leonardo
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Matematika 2. Diferencialne enačbe drugega reda
Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:
Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom
VSŠ Velenje ELEKTRIČNE MERITVE Laboratorijske vaje Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom Vaja št.2 M. D. Skupina A PREGLEDAL:. OCENA:.. Velenje, 22.12.2006 1. Besedilo naloge
l 5 Levo: Površinski profil referenčne dolžine in dolžina vrednotenja; Desno: srednja linija profila
referenčna linija profila l=l=l=l=l 1 2 3 4 5... referenčna dolžina l 1 l 2 l 3 l 4 l 5 l n dolžina vrednotenja Levo: Površinski profil referenčne dolžine in dolžina vrednotenja; Desno: srednja linija
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
MODERIRANA RAZLIČICA
Dr`avni izpitni center *N07143132* REDNI ROK KEMIJA PREIZKUS ZNANJA Maj 2007 NAVODILA ZA VREDNOTENJE NACIONALNO PREVERJANJE ZNANJA b kncu 3. bdbja MODERIRANA RAZLIČICA RIC 2007 2 N071-431-3-2 NAVODILA
Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.
1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.
1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ
TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri
Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik
Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI
Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled
Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q
K U P M Metka Jemec. Konferenca o učenju in poučevanju matematike, M a r i b o r, 2 3. i n 2 4. avgusta
U K 20 P K U P M 2 0 1 2 ROZETA 12 M Metka Jemec Konferenca o učenju in poučevanju matematike, M a r i b o r, 2 3. i n 2 4. avgusta 2 0 1 2 Kaj je rozeta? Rozeta je oblika vzorca, narejena v obliki simetrične
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Analiza nadomestnega vezja transformatorja s programskim paketom SPICE OPUS
s programskim paketom SPICE OPS Danilo Makuc 1 VOD SPICE OPS je brezplačen programski paket za analizo električnih vezij. Gre za izpeljanko simulatorja SPICE3, ki sicer ne ponuja programa za shematski
FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila
FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer
diferencialne enačbe - nadaljevanje
12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Termovizijski sistemi MS1TS
Termovizijski sistemi MS1TS Vežbe 02 primer 1 MATLAB funkcija conv. f x = rect x rect x 2 ( ) ( ) ( ) y=conv(rectangle_function(x),rectangle_function(x-2)); figure,subplot(3,1,1),plot(x,rectangle_function(x)),xlabel('\itx'),ylabel('rect({\itx})');
Arduino-FPGA vremenska postaja
Laboratorij za načrtovanje integriranih vezij Univerza v Ljubljani Fakulteta za elektrotehniko Arduino-FPGA vremenska postaja DES 2013/14 - razvoj vgrajenega sistema Arduino grafični vmesnik Arduino Leonardo
Radiatorji, pribor, dodatna oprema ter rezervni deli
CENIK 2017 Radiatorji, pribor, dodatna oprema ter rezervni deli Cenik velja od 1.3.2017 do preklica ali do objave novega. Pridržujemo si pravico do sprememb tehničnih in ostalih podatkov brez predhodne
1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )
VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]
,..., y T imenujemo časovna vrsta.
ČASOVNE VRSTE. UVOD Številsko spremenljivko Y opazujemo v času. Podatki se nanašajo na zaporedna časovna obdobja t, t,..., t T. Statistično vrsto y, y,..., y T imenujemo časovna vrsta. T dolžina časovne
PROCESIRANJE SIGNALOV
Daum: 5.. 999. Izračuaje kompoee ampliudega spekra podaega periodičega sigala! Kolikša je osova frekveca ega sigala? Tabeliraje prvih šes ampliud! -,,,,3,4,5 - [ms]. Izračuaje Fourierjev rasform podaega
Osnove matematične analize 2016/17
Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja
Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:
NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več
Urejanje besedil z odprtokodnimi urejevalniki
Urejanje besedil z odprtokodnimi urejevalniki Viktorija Florjanèiè Založba Univerze na Primorskem Uredniški odbor Aleksandra Brezovec Andrej Brodnik Primož Dolenc Nadja Furlan Alenka Gril Alen Ježovnik
Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013
Postavitev hipotez NUJNO! Milena Kova 10. januar 2013 Osnove biometrije 2012/13 1 Postavitev in preizku²anje hipotez Hipoteze zastavimo najprej ob na rtovanju preizkusa Ob obdelavi jih morda malo popravimo
osnovni koraki Matija Lokar in Srečo Uranič V 0.9 oktober 2008
诲诲뾡盦盨 盨 ʚProgramski jezik C# osnovni koraki Matija Lokar in Srečo Uranič V 0.9 oktober 2008 2 3 Predgovor Omenjeno gradivo predstavlja prvi del gradiv, namenjenih predmetu Programiranje 1 na višješolskem