Κβαντική Θεωρία του Ατόμου του Η
|
|
- Ἐλιακείμ Οικονόμου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κβαντική Θεωρία του Ατόμου του Η ΑΤΟΜΟ ΥΔΡΟΓΟΝΟΥ: Ηλεκτρόνιο υλοκύμα ου έχει εγκλωβιστεί σε εερασμένο ακτινικό φρέαρ δυναμικού V m V ε E V Σφαιρικές συντεταγμένες: α ακτινική αόσταση του σημείου αό το κέντρο υρήνας β ολική-ζενίια γωνία μεταξύ του και του άξονα z γ αζιμούια γωνία φμεταξύ της ροβολής του στο είεδο xy και του άξονα x y x cos z cos
2 Σφαιρικές συντεταγμένες
3 Κβαντική Θεωρία του Ατόμου του Η Η εξίσωση Scöig για το άτομο του Η σε σφαιρικές συντεταγμένες Θ ε E m Όου η ενέργεια για κάε στάμηιδιοτιμής Ε δίνεται αό την σχέση : m E ε 3... Θ Θ E m ε Eιδέχεται λύσεις της μορφής:
4 Κβαντική Θεωρία του Ατόμου του Η Καεμιά αό τις συναρτήσεις Θ φ ικανοοιεί και μια διαφορική εξίσωση m E ε Θ Θ E m ε m i 3... Θ Θ m E m ε
5 ΚΒΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ m i A im Εειδή τόσο η Ψφ.Θ.φ όσο και φ ρέει να έχει μια τιμή σε κάε σημείο του χώρου A im A im m ± ± ± 3... Θ m Θ ΗσυνάρτησηΘέχειλύσειςμόνοόταν : m m ± ± ± 3... ±
6 ΚΒΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ m E ε E m ε Κύριος κβαντικός αριμός [ΙΔΙΟΤΙΜΗ] της ενέργειας Η συνάρτηση έχει λύσεις μόνο όταν : s p f g... Δευτρεύεων Κβαντικός αριμός - [ΜΕΤΡΟ] της τροχιακής στροφορμής m ± ± ± 3... ± Μαγνητικός Κβαντικός αριμός - [ΔΙΕΥΘΥΝΣΗ] της τροχιακής στροφορμής
7 Κύριος κβαντικός αριμός Κβάντωση της ενέργειας Μοντέλο του Bo Ηλιακό σύστημα ηλεκτροστατική έλξη βαρυτική έλξη Άτομο Η Πλανητική κίνηση κβαντομηχανική - Scöig κλασσική φυσική - Nwto Διατηρούνται οι Διατηρούνται οι Βαμωτή Ολική Ενέργεια Βαμωτή Ολική Ενέργεια Διανυσματική Στροφορμή Διανυσματική Στροφορμή Στο άτομο Η η ολική Ε είναι σταερή μόνο ου : Ε > λαμβάνει οοιαδήοτε τιμή Ε < λαμβάνει μόνο μερικές τιμές E m ε E 3... Κβάντωση των ΙΔΙΟΤΙΜΩΝ της ενέργειας Όταν κβαντική φυσική κλασσική φυσική
8 Τροχιακός Δευτρεύεων Κβαντικός αριμός Κβάντωση του ΜΕΤΡΟΥ της τροχιακής στροφορμής Ακτινική κίνηση του - [] m E ε Η ολική ενέργεια του - καώς μετακινείται αό και ρος τον υρήνα αλλά και εριστρέφεται γύρο αό αυτόν [ΙΔΙΟΤΙΜΗ] της ενέργειας-ε E T ακτ T ερ V T ακτ T ερ ε E T ακτ ε T ερ m Tακτ Tερ m
9 Τροχιακός Δευτρεύεων Κβαντικός αριμός Κβάντωση του ΜΕΤΡΟΥ της τροχιακής στροφορμής Ακτινική κίνηση του - [] m Tακτ Tερ m T ερ m T ερ m L m T L m ερ mυ ερ Το ΜΕΤΡΟτης στροφορμής του - καώς εριστρέφεται γύρο αό υρήνα λαμβάνει μόνο τιμές L ώστε: m L m L L m m s p f g...
10 ΑΡΧΗ ΤΗΣ ΑΝΤΙΣΤΟΙΧΙΑΣ Μοντέλο του Bo κλασσική φυσική Άτομο Η κβαντομηχανική L L Στο άτομο Η όταν L ħ L ħ 5 L 5 ħ L ħ L ħ Στο άτομο Η όταν L L. ħ 5 L.5 ħ L.5 ħ L.5 ħ Οι ροβλέεις της κβαντικής φυσικής όταν συμίτουν με τις ροβλέεις της κλασσικής φυσικής
11 Μαγνητικός Κβαντικός αριμός Κβάντωση της ΔΙΕΥΘΥΝΣΗΣ της τροχιακής στροφορμής Το - καώς εριστρέφεται γύρο αό τον υρήνα η στροφορμή του L αίρνει κβαντισμένες τιμές μέτρου L και έχει διεύυνση κάετη στο είεδο εριστροφής του και κατεύυνση όως ορίζεται αό κανόνα του δεξιου χεριού Το - καώς εριστρέφεται γύρο αό τον υρήνα αντιστοιχεί σε στοιχειώδες «κυκλικό» ρεύμα ου δημιουργεί στοιχειώδες μαγντικό εδίο. Ατομικό - ουεριστρέφεταιγύροαότονυρήναμεστροφορμή Lαλληλειδράμε εξωτερικό μαγνητικό εδίο Β έτσι ώστε να λαμβάνει μόνο ορισμένες κατευύνσεις ουκαορίζονταιαότονμαγνητικόαριμό m ΧΩΡΙΚΗΚΒΑΝΤΩΣΗ Έστω ότι το Β Β z τότε κβάντωση αρουσιάζει μόνο η L z ενώ για τα L x και L y λήρης αροσδιοριστία L z m
12 Μαγνητικός Κβαντικός αριμός Κβάντωση της ΔΙΕΥΘΥΝΣΗΣ της τροχιακής στροφορμής Έστω ότι το Β Βz τότε κβάντωση αρουσιάζει μόνο η Lz Lz m m ±±±3...± ΧΩΡΙΚΗ ΚΒΑΝΤΩΣΗ Ατομικό - με στροφορμή Lz μορεί να λάβει μόνο κατευύνσεις με γωνία όως καορίζεται αό τη σχέση: L z L cos cos m
13 Κβάντωση Ενέργειας και τροχιακής Στροφορμής L ΚΒΑΝΤΩΣΗ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ του Η Ατομικό - με μία ιδιοτιμή ολικής ενέργειας Ε μορεί να λάβει μία τιμή μέτρου τροχιακής στροφορμή L Ατομικό - με μία ιδιοτιμή ολικής ενέργειας Ε μορεί να λάβει δύο τιμές μέτρου τροχιακής στροφορμή L και L με τρείς δυνατές κατευύνσεις ροσανατολισμού m 3 της Lz ως ρος τον άξονα z L σε γωνίες ως ρος το είεδο xy είεδο εριστροφής του z Lz για ± m Lz ± ħ ± 5 για m ±
14 Εκφυλισμός καταστάσεων κβάντωσης του ατόμου Ε L ħ L z ħ Ε L ħ L z ħ ιδιοκατάσταση του ατόμου s ιδιοκαταστάσειςτουατόμου s p 3 L L z ± 3 Ε 3 L ħ L z ħ L L 6 9ιδιοκαταστάσειςτουατόμου 3s 3p L L z ± ± ± z Ιδιοκαταστάσεις με διαφορετικά χαρακτηριστικά έχουν την ίδια ακριβώς ενέργεια - ΕΚΥΛΙΣΜΟΣ ΚΑΤΑΣΤΑΣΕΩΝ ΕΚΥΛΙΣΜΟΣ ως ρος εξαρτάται αό τη μορφή του δυναμικού του ατόμου ΕΚΥΛΙΣΜΟΣωςρος m εξαρτάται αό την ισοτροία του χώρου όου βρίσκεται το άτομο V ~ / υφίσταται εκφυλισμός ως ρος E tot E m µ Αρση Εκφυλισμού B B
15 Ιδιοσυναρτήσεις φ του ατόμου του Η m m m Θ Θ 3/ 3/ s τροχιακό - m o Α m m ε Πρώτη ακτίνα του Bo V P
16 Πυκνότητα ιανότητας Pφτης έσης του - στο ατόμου του Η / 3 Η ιανότητα να βρεεί ένα - σε μια έση είναι ανεξάρτητη της αζιμουιακή γωνία φ αξονική συμμετρία ως ρος τον άξονα z m m m Θ V φ P V V Θ m i A A A A A m i m i s τροχιακό - m V P
17 / 3 s τροχιακό - m p τροχιακό - m ± cos / 3 Πυκνότητα ιανότητας Pφτης έσης του - στο ατόμου του Η P Θ P 8 / 3 i ± ± Θ P φ
18 Πυκνότητα ιανότητας Pφ της έσης του - στο ατόμου του Η s καταστάσεις 3 m
19 Πυκνότητα ιανότητας Pφτης έσης του - στο ατόμου του Η p καταστάσεις 3 m ± ±
20 Πυκνότητα ιανότητας Pφτης έσης του - στο ατόμου του Η f καταστάσεις 6 καταστάσεις m ± ± ±3 m ± ± ±3 ± ±5 Όταν κβαντική φυσική κλασσική φυσική [Ατομα ybg ]
21 ΔΙΕΓΕΡΣΗ - ΑΠΟΔΙΕΓΕΡΣΗ ΑΤΟΜΟΥ [BOH - SCHÖDINGE]
Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά
Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού
και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.
Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )
vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Coons.
1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας
Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής
Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού
Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό
Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöding για το κεντρικό δυναμικό Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 3 k V ) Αποδεικνύεται ότι οι λύσεις της ακτινικής εξίσωσης
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις ΙI: Η Εξίσωση Schrödinger για σωμάτιο σε κεντρικό δυναμικό.
Πανειστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙI: Η Εξίσωση Schöinge για σωμάτιο σε κεντρικό δυναμικό.. Ακτινική εξίσωση Η εξίσωση Schöinge για ένα σωμάτιο το
ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ. ΛΥΣΗ (α) Το οδόστρωμα στη στροφή είναι οριζόντιο: N. Οι δυνάμεις που ασκούνται πάνω στο αυτοκίνητο είναι:
ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΑΣΚΗΣΗ 1 Μια οριζόντια στροφή μιας ενικής οδού έχει ακτίνα = 95 m. Ένα αυτοκίνητο παίρνει τη στροφή αυτή με ταχύτητα υ = 26, m/s. (α) Πόση πρέπει να είναι η τιμή του συντελεστή μ s της στατικής
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 6
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 25 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 6 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
Θεωρία De Broglie [1923]
Θερία De Brogle [93] Αξίμα De Brogle : Αφού τα φτόνια είναι και κύματα και σματίδια γιατί να μην συμεριφέρονται και τα σματίδια ς κύματα?? ΤΑ ΦΩΤΟΝΙΑενέργιας Ε.ν ενέχουν ορμή : v c c c cλ λ Ομοίς και σματίδια
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4
ιαλέξεις Κβαντικής Μηχανικής ΙΙ - Κεφάλαιο 4 Α. Λαχανας 1/ 45 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων ακαδηµαικό
Ατομική δομή. Το άτομο του υδρογόνου Σφαιρικά συμμετρικές λύσεις ψ = ψ(r) Εξίσωση Schrodinger (σφαιρικές συντεταγμένες) ħ2. Εξίσωση Schrodinger (1D)
Ατομική δομή Το άτομο του υδρογόνου Σφαιρικά συμμετρικές λύσεις ψ = ψ(r) Εξίσωση Schrodinger (1D) Εξίσωση Schrodinger (σφαιρικές συντεταγμένες) ħ2 2m 2 ψ + V r ψ = Εψ Τελεστής Λαπλασιανής για σφαιρικές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cetive
Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα
Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις
Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί
ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy
ΔΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Εφαρμογή Να υολογιστεί το ολοκλήρωμα : cos sin dd Ολοκληρώνουμε ρώτα ως ρος θεωρώντας το σαν σταθερά (αρατηρούμε ότι το «εσωτερικό» ολοκλήρωμα είναι ως ρος, δηλαδή ρώτα εμφανίζεται το
fysikoblog.blogspot.com
fysikobog.bogspot.com Πανειστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙV: Η Εξίσωση Schoedinge για σωμάτιο σε κεντρικό δυναμικό.. Ακτινική εξίσωση Η εξίσωση Schoedinge
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΟΛΩΝ ΤΩΝ ΘΕΜΑΤΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΜΑΤΑ 16968, 1765, 17656, 17663, 17664, 17681, 1769, 17699, 17704, 1775, 17736, 17739, 17741 ΘΕΜΑΤΑ 4 17837, 17838,
Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi
18 Αλλαγή µεταβλητής στο τριλό ολοκλήρωµα Υενθυµίζουµε ( Θεωρηµα ) το γενικό τύο αλλαγής µεταβλητής στο ολλαλό ολοκλήρωµα: f ( y) dy= f ( g( x) ) det J g( x) dx (1), Β= g Α Α n όου Α, Β R Jodan µετρήσιµα
Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση το άτομο του υδρογόνου ΔΕΝ είναι προς εξέταση
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών)
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σουδών) η Σειρά Ασκήσεων //7 Ι. Σ. Ράτης Ειστροφή µέχρι //7. Η σχέση διασοράς για τη ζώνη αγωγιµότητας Ε c c () ενός κυβικού ηµιαγώγιµου
Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη
( 1) G MT. g RT 1.3. Η τιμή της εκκεντρότητας είναι: όπου E είναι η νέα μηχανική ενέρεγεια του δορυφόρου. Έτσι έχουμε
6 th Intenationa Physics Oypiad. Saaanca (España) 5 ΘΕΜΑ : «ΜΟΙΡΑΙΟΣ» ΔΟΡΥΦΟΡΟΣ. και. GM g R M G g R 4 R g / 4.. /s. g R g R E M g R G E. Η τιμή της κάθετης αόστασης αό το δορυφόρο στο μεγάλο άξονα της
ΕΙΣΑΓΩΓΗ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ IV. ΟΙ ΚΒΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΤΑ ΤΡΟΧΙΑΚΑ
ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ IV. ΟΙ ΚΒΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΤΑ ΤΡΟΧΙΑΚΑ Ν. ΜΠΕΚΙΑΡΗΣ ΕΙΣΑΓΩΓΗ Στο ατομικό πρότυπο του Bohr ο κύριος κβαντικός αριθμός (n) εισάγεται αυθαίρετα, για τον καθορισμό
Ασκήσεις Ταλαντώσεων. Ταλαντώσεων. Ασκήσεις. πν ω. τροφικ. r r. r r. d I dt. d dt. T dt. r r. D dt CM M. ext
Ασκήσεις Ασκήσεις Ταλαντώσεων Ταλαντώσεων τ τροφικ ν ω ω τ ω ας αδρανε να ακτ r r r r r r r r r r r D D ό ί ί k a Steiner r et C Σ, :,,, :, .4 (AF( AF) Υλικό σηµείο ολισαίνει µρος και ίσω µεταξύ δύο λείων
Παράδειγμα/πρόβλημα ( ) = y 1. O x. V = y 2. Να βρεθούν οι συντεταγμένες (x,y) συναρτήσει των ( x, y ) του περιστρεφόμενου συστήματος συντεταγμένων Y
y Διανύσματα R y V y ĵ î R V î ( 1,0 ) ĵ ( 0,1) R + V (R + V )î + (R y + V y ) ĵ R + V H κατεύυνση του διανύσματος (( R + V ) 2 + ( R y + V y ) 2 ) R + V ϕ rc(tnϕ) rc Ανάλογες σχέσεις ισχύουν και για 3
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z
Δυνάμεις Σύνθεση Ανάλυση Δυνάμεων
Φυσική 1ης Λυκείου Κινήσεις Δυνάμεις Σύνεση Ανάλυση Δυνάμεων 1. Στις παρακάτω περιπτώσεις, υπολογίστε τις συνιστώσες των δυνάμεων = 10N και F = 18N στους άξονες x x και y y, καώς και την συνισταμένη στον
Διανύσματα. x = rcos! y = rsin! r = x 2 + y 2 x. q Ο απλούστερος ορισμός διανύσματος είναι ότι μετρά μετατοπίσεις
Διανύσματα ΦΥΣ 131 - Διάλ. 2 1 q Ο απλούστερος ορισμός διανύσματος είναι ότι μετρά μετατοπίσεις q Διανύσματα περιγράφουν μέτρο αλλά και κατεύυνση q Αντίετα, βαμωτά μεγέη περιγράφονται μόνο από το μέτρο
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται
Κβαντικοί αριθμοί τρεις κβαντικοί αριθμοί
Κβαντικοί αριθμοί Στην κβαντομηχανική εισάγονται τρεις κβαντικοί αριθμοί για τον καθορισμό της κατανομής του ηλεκτρονιακού νέφους (ατομικού τροχιακού). Οι κβαντικοί αυτοί αριθμοί προκύπτουν από την επίλυση
Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική
Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη
1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος
1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.
Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα
ΘΕΜΑ 1: Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ Εξετάσεις 1ης Ιουλίου 13 Τµήµα Α. Λαχανά) Α ) Για την πρώτη διεγερµένη κατάσταση του ατόµου του Υδρογόνου µε τροχιακή στροφορµή l = 1 να προσδιορισθουν οι αποστάσεις
ΜΔΕ Άσκηση 6 Α. Τόγκας
Πρόβλημα 15. Για κάθε μια αό τις ακόλουθες αρχικές τιμές θερμοκρασίας i) να βρεθεί η λύση στην μορφή μια σειράς Fourier της εξίσωσης της θερμότητας με εριοδικές συνοριακές συνθήκες u t = u x x < x
Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου
Κεντρικά Δυναμικά Δομή Διάλεξης Εύρεση ακτινικού μέρους εξίσωσης Schrödinger Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους Εφαρμογή σε άτομο υδρογόνου Ακτινική Συνιστώσα Ορμής Έστω Χαμιλτονιανή
Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)
Κυματική εξίσωση του Schrödinger (196) Η Ψ = Ε Ψ Η: τελεστής Hamilton (Hamiltonian operator) εκτέλεση μαθηματικών πράξεων επί της κυματοσυνάρτησης Ψ. Ε: ολική ενέργεια των ηλεκτρονίων δυναμική ενέργεια
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Να υπολογιστεί η πιθανότερη ακτίνα, *, στην οποία θα βρίσκεται
fysikoblog.blogspot.com
fysikobog.bogspot.co Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙΙΙ: Σφαιρικές Αρμονικές Στις σημειώσεις αυτές δίνομε την αναπαράσταση των ιδιοανυσμάτων της
Κβαντική Μηχανική ΙΙ. Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Μηχανική ΙΙ Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 2/ 25 Περιεχόµενα 6ης ενότητας Φαινόµενο
Ράβδος σε σκαλοπάτι. = Fημθ και Fy
Ράβδος σε σκαλοάτι Ράβδος μήκους ύψους ακουμά σε σκαλοάτι όως φαίνεται στο σχήμα. Το κάτω άκρο της είναι σε εαφή με λείο κατακόρυφο εμόδιο το οοίο μορεί να κρατείται σταερό σε οοιαδήοτε έση. Μεταξύ ράβδου
Διάλεξη 5: Ατομική Δομή. Σύζευξη Σπιν-Τροχιάς
Σύζευξη Σπιν-Τροχιάς Θεωρούμε το άτομο του υδρογόνου με το ηλεκτρόνιο να «περιστρέφεται» γύρω από τον πυρήνα. Ισοδύναμα θεωρούμε τον πυρήνα να περιστρέφεται γύρω από το ηλεκτρόνιο. Στο σύστημα αυτό η μαγνητική
Διανύσματα. ! Ο απλούστερος ορισμός διανύσματος είναι ότι μετρά μετατοπίσεις. ! Διανύσματα περιγράφουν μέτρο αλλά και κατεύθυνση
Επισκόπιση Θα µελετήσουµε την κίνηση σωµάτων και πώς οι αλληλεπιδράσεις τους µε άλλα σώµατα επηρεάζουν τη κίνηση αυτή Η µελέτη αυτή στηρίζεται σε µετρηµένο αριµό εµελιωδών αρχών που συσχετίζουν αιτία και
Αναγωγή στο 1ο τεταρτημόριο
ΑΛΓΕΒΡΑ ΒΛ ΤΡΙΓΩΝΟΜΕΤΡΙΑ - ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 1-1. -175663 Βασικές Τριγωνομετρικές ταυτότητες Αν 0
ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..9: Ασύμτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση. ΘΕΜΑ Β Να βρείτε
L 2 z. 2mR 2 sin 2 mgr cos θ. 0 π/3 π/2 π L z =0.1 L z = L z =3/ 8 L z = 3-1. V eff (θ) =L z. 2 θ)-cosθ. 2 /(2sin.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 15-16 Ν. Βλαχάκης 1. Σημειακό σώμα μάζας m είναι δεμένο σε αβαρές και μη εκτατό νήμα ακτίνας R και κινείται κάτω από την επίδραση του βάρους του mgẑ και της τάσης
γραπτή εξέταση στη ΦΥΣΙΚΗ Γ' κατεύθυνσης
γρατή εξέταση στη ΦΥΣΙΗ Γ' κατεύθυνσης Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: /04/0 Ύλη: Ονοματεώνυμο: αθηγητές: Όλη η ύλη Αθανασιάδης Φοίβος, Ατρείδης Γιώργος, όζυβα Χρύσα Θ Ε Μ Α ο Στις αρακάτω ερωτήσεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
1 m2 c 4 E 2 (ζ) Δείξτε ότι σωματίδιο με ολική ενέργεια Ε πολύ μεγαλύτερη της ενέργειας ηρεμίας του mc 2 κινείται με ταχύτητα που δίνεται από τη σχέση
ΤΜΗΜΑ ΦΥΣΙΚΗΣ Διδάσκοντες: Κ. Φουντάς, Σ. Κοέν, Ν. Νικολής. ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ Ι 11 9 13 Θέμα 1 o : (α) Διατυώστε τις δύο αρχές στις οοίες βασίζεται η θεωρία της ειδικής σχετικότητας. [4 μονάδες] (β) Περιγράψτε
dmi(x,y,z) Η µετάβαση από το πεδίο των ελκτικών δυνάµεων στο γήινο ελκτικό δυναµικό του πεδίου βαρύτητας
Σηµερινή ενότητα του µαήµατος Εισαγωγή στο γήινο πεδίο βαρύτητας ιδάσκοντες ηµήτρης εληκαράογλου Παρασκευάς Μήλας Γεράσιµος Μανουσάκης Στο νευτώνειο πεδίο ελκτικών δυνάµεων Η ελκτική δύναµη (1=- 1) που
Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi
8 λλαγή µεταβλητής στο τριλό ολοκλήρωµα Υενθυµίζουµε ( Θεωρηµα ) το γενικό τύο αλλαγής µεταβλητής στο ολλαλό ολοκλήρωµα: f ( y) dy= f ( g( x) ) det J g( x) dx (), Β= g n όου, Β Jodan µετρήσιµα υοσύνολα
Το άτομο του Υδρογόνου- Υδρογονοειδή άτομα
Το άτομο του Υδρογόνου- Υδρογονοειδή άτομα Το πιο απλό κβαντομηχανικό ρεαλιστικό σύστημα, το οποίο λύνεται ακριβώς, είναι το άτομο του Υδρογόνου (1 πρωτόνιο και 1 ηλεκτρόνιο) Το δυναμικό στην περίπτωση
"ΦΥΣΙΚΕΣ ΜΕΘΟΔΟΙ" ΕΠΙΛΥΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ
"ΦΥΣΙΚΕΣ ΜΕΘΔΙ" ΕΠΙΛΥΣΗΣ ΜΘΗΜΤΙΚΩΝ ΠΡΛΗΜΤΩΝ Ελατήρια σταερής τάσης (Constnt tension springs) Ένα ελατήριο του οοίου η τάση είναι ανεξάρτητη αό την ειμήκυνση ή τη συσείρωσή του ονομάζεται ελατήριο σταερής
ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ
ΘΕΜΑ Ο Μιγαδικοί i Δίνεται ο μιγαδικός και έστω w α. Να ρεθεί ο μιγαδικός w όταν w. Να δείετε ότι w i γ. Αν η εικόνα του κινείται στον κύκλο κέντρου, και ακτίνας και Μ είναι η εικόνα του w στο μιγαδικό
Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής
Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L
Κύριος κβαντικός αριθμός (n)
Κύριος κβαντικός αριθμός (n) Επιτρεπτές τιμές: n = 1, 2, 3, Καθορίζει: το μέγεθος του ηλεκτρονιακού νέφους κατά μεγάλο μέρος, την ενέργεια του τροχιακού τη στιβάδα στην οποία κινείται το ηλεκτρόνιο Όσομεγαλύτερηείναιητιμήτουn
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ
ΑEI ΠΕΙΡΑΙΑ (ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΚΑΤΑΝΟΜΗ ΠΙΕΣΗΣ & ΥΠΟΛΟΓΙΣΜΟΣ ΟΠΙΣΘΕΛΚΟΥΣΑΣ Σκοπός της άσκησης Η μέτρηση
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 6 Περιστροφική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 6 Περιστροφική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paua
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγρονη Φυσική II Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης
ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης Επικ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών. Γραφείο 21 210-746 2442 ppapagi@phys.uoa.gr Τις προσεχείς ώρες θα συζητήσουμε τα πέντε πρώτα
ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017
Στασίνου 6, Γραφ., Στρόβολος, Λευκωσία Τηλ. 57-78 Φαξ: 57-79 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 7 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Παρασκευή, 9/5/7 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΜΕΡΟΣ Α ln( x). Να υολογίσετε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή
Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή Δομή Διάλεξης Λεπτή Υφή: Άρση εκφυλισμού λόγω σύζευξης spin με μαγνητικό πεδίο τροχιακής στροφορμής και λόγω σχετικιστικού
ΤΟ ΑΤΟΜΟ. ΔΗΜΟΚΡΗΤΟΣ [Η ύλη αποτελείται από πολύ μικρές αδιαίρετες και άφθαρτες μονάδες ΑΤΟΜΑ]
ΤΟ ΑΤΟΜΟ ΔΗΜΟΚΡΗΤΟΣ [Η ύλη αποτελείται από πολύ μικρές αδιαίρετες και άφαρτες μονάδες ΑΤΟΜΑ] Μελέτη των ηλεκτρικών εκκενώσεων μέσα σε πολύ αραιωμένο αέρια [Εκκένωση αίγλης ] Καοδικές Ακτίνες Διαυλικές
Ατομική Δομή. Μαγνητική ροπή φορτίου σε τροχιά. q L 2. mvr. ιδάσκων: Λευτέρης Λοιδωρίκης Π1, 7146, cmsl.materials.uoi.
nivrsity of Ioannina Dpartnt of Matrias cinc & Enginring Coputationa Matrias cinc τική Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π, 746, idorik@cc.uoi.gr cs.atrias.uoi.gr/idorik ωρία της Ατομική Δ φορτίου
Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία
Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Πρόχειρο ιαγώνισµα: 11 Νοεµβρίου 2008 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 1 ώρα.
Μάθηµα 6 ο, Νοεµβρίου 8 (9:-:). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Πρόχειρο ιαγώνισµα: Νοεµβρίου 8 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης ώρα. ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ: ΕΤΟΣ ΣΠΟΥ ΩΝ: ΘΕΜΑ [4] Σωµάτιο εριγράφεται
Κβαντομηχανική ή κυματομηχανική
Κβαντομηχανική ή κυματομηχανική Ποια ήταν τα αναπάντητα ερωτήματα της θεωρίας του Bohr; 1. Φάσματα πολυηλεκτρονικών ατόμων 2. Κυκλικές τροχιές 3. Γιατί η ενέργεια του e είναι κβαντισμένη; Κβαντομηχανική
Πρόχειρες σημειώσεις στα επίπεδα ηλεκτρομαγνητικά κύματα
Πρόχειρες σηειώσεις στ είεδ ηλεκτρογνητικά κύτ ΠΡΙΧΟΜΝΑ Διάδοση είεδων ΗΜΚ σε η γώγι έσ Ανάκλση κι διάδοση γι ρόστωση κάετη στην ειφάνει Ο νόος του Sell στην λάγι ρόστωση Πόλωση κάετη στο είεδο ρόστωσης
Μερικές Διαφορικές Εξισώσεις
Πανειστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 17-18, Διδάσκων: Α.Τόγκας 3ο φύλλο ροβλημάτων Ονοματεώνυμο - ΑΜ: ΜΔΕ 3ο φύλλο ροβλημάτων Α. Τόγκας
μαγνητικό πεδίο τυχαίας κατεύθυνσης
Σπιν 1 μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο τυχαίας κατεύθυνσης 1) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο B B ˆ ˆ ˆ 0xex B0 yey B0 zez, όπου B0 x, B0
Ατομική και Μοριακή Φυσική
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ατομική και Μοριακή Φυσική Το άτομο του Υδρογόνου Λιαροκάπης Ευθύμιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Κβαντομηχανική σε μία διάσταση
vrsy of Io Dr of Mrls Scc & grg Couol Mrls Scc κή Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 76 ldor@cc.uo.gr csl.rls.uo.gr/ldor σταση Μία ιάσ ανική σε Μ κή Θεωρ ρία της Ύλης: Κβα αντομηχα Κβαντομηχανική
ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων στη Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης - ο ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας αό τις αρακάτω ερωτήσεις 1-4 και δίλα το γράμμα ου
Από τι αποτελείται το Φως (1873)
Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός
Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις
6 Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 1. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού Α λέγεται εριοδική, όταν υάρχει T τέτοιος ώστε για κάθε x A να
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 ου ΚΕΦΑΛΑΙΟΥ (Γ ΟΜΑ ΑΣ) Ασκήσεις σχολικού βιβλίου σελίδας
1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ου ΚΕΦΑΛΑΙΟΥ (Γ ΟΜΑ ΑΣ) Ασκήσεις σχολικού βιβλίου σελίδας 1 1 1. Σε τρίγωνο ΑΒΓ το ύψος του Α είναι ίσο µε το µισό της λευράς ΒΓ. να αοδείξετε ότι ισχύει εφβ + εφγ εφβ εφγ και σφβ +
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Tηλ.: 210-7722479 - e-mail:
ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Δίνεται η εξίσωση: z (εφθ)z + =, θ (, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη ραγματικοί αριθμοί. β) Έστω z,z οι ρίζες της αραάνω εξίσωσης. Αν ισχύει
Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων
Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων Περιεχόμενα Κεφαλαίου 39 Τα άτομα από την σκοπιά της κβαντικής μηχανικής Το άτομο του Υδρογόνου: Η εξίσωση του Schrödinger και οι κβαντικοί αριθμοί ΟΙ κυματοσυναρτήσεις
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις
Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 )
Πρόσθεση Στροφορμών Δομή Διάλεξης Ορισμός Ολικής Στροφορμής Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 ) Συντελεστές μετάβασης (Glebsch-Gordon) για σύνθεση από l=1, s=1/2
Κεφάλαιο 16: Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο
Κεφάλαιο 16: Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο Περιεχόμενα Κεφαλαίου Στο κεφάλαιο αυτό, θα θεωρήσουμε ως αδιατάρακτη Hamiltonian, εκείνη του ατόμου του υδρογόνου και θα μελετήσουμε τρία είδη διαταραχών.
fysikoblog.blogspot.com
fysoblog.blogspot.com Πανεπιστήμιο Αηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙΙ: Αλλαγή Συστήματος Συντεταγμένων Στις σημειώσεις αυτές δίνομε την αναπαράσταση των τελεστών
Ένα βαρούλκο με χάντρα.
Ένα βαρούλκο με χάντρα Το βαρούλκο ενός ηγαδιού αοτελείται αό τροχαλία ακτίνας R 0,5m και μάζας M 0Kg, στο οοίο είναι ροσαρμοσμένη χειρολαβή η οοία αοτελείται αό τρεις ράβδους αμελητέας μάζας Η ράβδος
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση 1 η (6/11/014) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς των Ειμελητών των φακέλων του
Physics by Chris Simopoulos
ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Χαρακτηριστικά μεγέθη της αλής αρμονικής ταλάντωσης είναι: Α) Αομάκρυνση (x ή y): ονομάζεται η αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x= ή y=) Β) Το λάτος της
, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία
f ( t ) ίνεται η συνεχής συνάρτηση f : [, + ) R µε: f ( ) = + ( + ), > t Α ) να δείξετε ότι: α) f ( ) = ln +, > β) f ( ) = Β) να µελετηθεί η µονοτονία και τα ακρότατα της f Γ) να δείξετε ότι η C f είναι
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. β) Το πραγματικό και το φανταστικό μέρος της f1( z ) γράφονται. Οι πρώτες μερικές παράγωγοι
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 4 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στο e-course στις «Περιλητικές Σημειώσεις» σελ7 και σελ5 β) Το ραγματικό και το φανταστικό μέρος της f( ) γράφονται uxy (, ) = si( x) και
(Μονάδες 15) (Μονάδες 12)
ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 2 η (2/12/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (/1/014) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς των Ειμελητών των φακέλων του Λυκείου
KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Κυματική εξίσωση Schrödiger Η δυνατότητα ενός σωματιδίου να συμπεριφέρεται ταυτόχρονα και ως κύμα, δηλαδή να είναι εντοπισμένο
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 12: Συνάρτηση Green από ιδιοσυναρτήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει την συνάρτηση Green από
ΥΛΙΚΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΔΙΑΤΑΞΕΙΣ. Μάθημα Ι: Εισαγωγικές έννοιες. Πρασσά Βάια
ΥΛΙΚΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΔΙΑΤΑΞΕΙΣ Μάθημα Ι: Εισαγωγικές έννοιες Πρασσά Βάια Περιγραφή Στοιχειώδεις έννοιες της επιστήμης υλικών, ηλεκτρική και θερμική αγωγιμότητα στα στερεά, στοιχειώδης κβαντομηχανική,