Trifazni sistemi. Izmenični signali, trifazni sistemi 24.
|
|
- Πήγασος Αντωνιάδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Izmenični signali, triazni sistemi 4. Triazni sistemi Vsebina poglava: sistem triaznih napetosti, zapis aznih napetosti, eektivne vrednosti in prikaz s kazalci (kompleksari), medazne napetosti, vezava bremena v trikot, vezava bremena v zvezdo z ali brez ničelnega vodnika, potencial zvezdišča, simetrično in nesimetrično breme.equation Chapter Section 4 Spoznali smo že primer dvoaznega sistema pri vrtilnem magnetnem polu, ki sta ga ustvarala dva para prečno postavlenih tulav s azno zamaknenim tokom za ¼ periode. gotovili smo, da bi tako ustvareno vrtilno magnetno pole ustvaralo navor na kratko skleneno vrtlivo tulavico in neno vrtene (laboratoriske vae). Vrtene tulavice bi dosegli tudi, če bi vrtlivo tulavo napaali s konstantnim tokom. V prvem primeru dobimo asinhrono vrtene (tulava se vrti z manšo rekvenco kot e rekvenca vzbuana), v drugem pa sinhrono (rekvenca vrtena e enaka rekvenci vzbuana). Možen pa e tudi obraten postopek: da se vrti magnet ali vrtliva tulava napaana z enosmernim tokom, v stranskih tulavah pa se inducirao napetosti, ki so azno zamaknene v skladu z lego tulav. V že obravnavanem primeru bi dobili inducirane napetosti na tulavah, ki bi bile azno zamaknene za četrtino periode. Z ustrezno priklučitvio dobimo dvoazni sistem napetosti. Na podoben način, le z uporabo treh parov naviti na iksnem delu (statoru) okoli vrtečega dela (rotora) z (elektro)magnetom, dobimo triazni sistem napetosti. Za vrtene rotora uporabimo recimo vodno energio (hidroelektrarne). Že Nikola Tesla e ugotovil, da ima triazni sistem kar neka prednosti pred enosmernim, ki ga e v začetnem obdobu elektriikacie promoviral Edison. Glavna prednost triaznega sistema e bila laži prenos energie na veče oddalenosti, ki e bil v primeru Edisonovega enosmernega zaradi Ohmskih izgub na»omrežu«praktično onemogočen in omeen le na kraše razdale. Poleg tega večazni simetrični sistemi omogočao dodatno zmanšane količine materiala, sa lahko en vodnik uporabimo skupno (povratni ali ničelni vodnik). V primeru, da e na simetrični triazni sistem generatorev priklučeno simetrično triazno breme, e vsota vseh aznih tokov v skupno spoišče enaka nič, kar pomeni, da v ničelnem vodniku ni toka. V takem primeru bi lahko ta vodnik»izpustili«, lahko pa ga obržimo za primer, ko breme ni popolnoma simetrično. V takem primeru bo tok v ničelnem vodniku različen od nič, vendar običano še vedno /
2 Izmenični signali, triazni sistemi 4. manši od tokov v aznih vodnikih. Premer ničelnega vodnika e v takih primerih lahko manši od aznih vodnikov. Sistem triaznih napetosti. V poglavu o vrtilnem polu smo spoznali, da e le-ta posledica krmilena sistema zasukanih tulav s azno zamaknenim tokom. gotovili smo, da to pole omogoča vrtene tranega magneta ali kratkostične tulavice, kar e osnova za razumevane delovana motorev. Režim motora lahko tudi obrnemo. Če namesto vzbuana tulav s tokom vrtimo rotor, se bo v tulavah inducirala napetost. Če so tulave zamanene za določen kot, bomo dobili več virov napetosti s aznim zamikom določenim z kotom zamika tulav. Če imamo sistem treh tulav zavrtenih za kot, dobimo na izhodu tulav napetosti, ki so azno zamaknene za kot. Slika: Postavitev tulav in generacia aznih napetosti. Gle še: Zapis aznih napetosti. V primeru triaznega sistema bomo na sponkah parov tulav, ki zaemao šestine oboda statora, dobili napetosti: /
3 Izmenični signali, triazni sistemi 4. u = cos( ωt + α), m π u = m cos ωt + α, π u = m cos ωt + α +. Triazni sistem s takim zaporedem az imenuemo pozitiven, sa se kompleksori napetosti izmenueo v smeri urinega kazalca. V nasprotnem primeru imamo opravka z negativnim triaznim sistemom. Mi bomo obravnavali na strani generatorev le simetrične triazne sisteme, to so taki, katerih amplituda vseh treh virov e enaka, aze pa so zamaknene za π. SLIKA: Triazni sistem prikažemo kot tri generatore z enako amplitudo in aznim π zamikom za / periode. Prikazana e vezava v»zvezdo«, pri kateri vežemo negativne sponke v skupno točko, ki o ozemlimo. Eektivne vrednosti in prikaz s kazalci (kompleksori). Običano si pri analizi vezi s triaznimi sistemi pomagamo s kazalčnimi diagrami (kompleksori), ker običano namesto amplitud napetosti in tokov uporablamo eektivne vrednosti. Razlog e preprosto v tem, da sta v energetiki prenos in poraba moči izredno pomembni, ti pa sta direktno povezani z eektivnimi vrednostmi signalov. Za kompleksor napetosti harmoničnega signala v polubni azi bo tore eektivna vrednost napetosti enaka = = /. e m /
4 Izmenični signali, triazni sistemi 4. Za kot α si lahko izberemo polubno vrednost, sa gre v principu za časovno vrtene treh azno zamaknenih kazalcev. Mi si bomo izbrali kot π, lahko pa bi si izbrali tudi drugega (pogosto e v uporabi tudi α = ). V primeru vezave v zvezdo e med ničelnim vodnikom in aznim vodnikom t.i. azna napetost, tore bi lahko pisali tudi =. Nam vsem sta znani azna (eektivna) napetost V in medazna napetost 4 V, ki o dobimo iz domače vtičnice. Kompleksori napetosti bodo tore π 9 = e = e = (4.) 6 = e = e = e (4.) π π + 5 = e = e (4.) Nalepše to prikažemo na sliki, ker so kazalci zarotirani za π / (za ). SLIKA: Kazalčni diagram aznih napetosti simetričnega pozitivnega triaznega sistema. Pogosto potrebuemo tudi zapise napetosti v obliki realnega in imaginarnega dela. Teda pišemo = = (4.4) = 4/
5 Izmenični signali, triazni sistemi 4. Medazne napetosti. Pogosto se triazne vire priklučue na breme tudi tako, da se uporabi medazne napetosti. Te dobimo tako, da priklučimo breme med sponke aznih napetosti. Matematičo ih dobimo z odštevanem kompleksorev aznih napetosti, kot na primer = = = = (4.5) = = = = = = (4.6) (4.7) Prikažimo medazne napetosti še v kompleksni ravnini. Tu dobimo kompleksor medazne napetosti preprosto z odštevanem kazalcev dveh aznih napetosti. SLIKA: Prikaz aznih in medaznih napetosti v kompleksni ravnini. Tako iz matematičnega zapisa medaznih napetosti, kot iz prikaza v kompleksni ravnini, lahko ugotovimo, da so medazne napetosti za veče od aznih ( = ), kar lahko s pridom izkoriščamo npr. za povečane moči na bremenu. m V drugih primerih pa lahko s tako vezavo uničimo napravo, ki e namenena priklučitvi le na azne napetosti. 5/
6 Izmenični signali, triazni sistemi 4. Vezava bremen. Napogostee se uporablata dva načina vezave bremen na triazni sistem. Poimenuemo u vezava v trikot in vezava v zvezdo. V prvem primeru ločimo še vezavo v zvezdo z ničelnim vodnikom in brez ničelnega vodnika. Pri vezavi v trikot uporabimo za priklop bremena medazne napetosti in ničelnega vodnika ne potrebuemo. Vezava bremena v zvezdo z ničelnim vodnikom. Ta vezava e morda nabol enostavna za obravnavo, sa e vsako od bremen priklučeno na eno od aznih napetosti. Fazni toki so zato I I I = = Y Z = = Y Z = = Y Z Vsota aznih tokov e enaka toku v ničelnem vodniku (4.8) I = I + I + I (4.9) Moč bremena e enaka vsoti moči posameznih bremen S = S + S + S, (4.) ker posamezno moč lahko določimo z že znanimi zvezami. Npr, moč v azi e S = I = I Z = Y (4.) SLIKA: Vezava bremena na triazni sistem v obliki trikot. Pri zapisu enačb za moč smo upoštevali (kot e v navadi pri obravnavi triaznih sistemov) eektivne vrednosti tokov in napetosti. V primeru obravnave z maksimalnimi vrednostmi e potrebno izraze pomnožiti z,5. 6/
7 Izmenični signali, triazni sistemi 4. Primer: Triazno breme, ki ga sestavlao impedance ( ) Z =, Z = 5 + 5, Z = priklučimo na triazni sistem /4 V v vezavi v zvezdo z ničelnim vodnikom. Določimo delovno moč bremena. Izračun: Delovno moč lahko izračunamo na enak način, kot smo že spoznali pri enoaznih sistemih. Zopet imamo na razpolago dva načina. Pri prvem uporabimo =, pri drugem pa P Re{ S} Re{ Y } zvezo P I cos( ϕ) = =. V azi imamo le upor, moč na nem e (V) P = = 59W. Za moč na bremenu v azi zapišemo 4 impedanco Z = 5 e in π π 4 Y = e S = S Realni del konugirane admittance e zopet /, tore bo moč bremena v azi ( V) P = = 59 W. Delovna moč v azi tri e enaka nič (e le alova moč), vsota vseh delovnih moči pa e 58 W. Dodatno: Določimo navidezno moč na bremenu: ( V) S = = 59 VA S S ( V) = = 59( + ) VA 45 5 e = ( V) 59 VA = S = 58VA Primer: Za podatke iz prešnega primera določimo tok v ničelnem vodniku. Izračun: Tok v ničelnem vodniku e enak vsoti posameznih aznih tokov I = I + I + I. Izračunati moramo tore vsak azni tok posebe in ih sešteti: I V = = = Z,A e V 75 45,5 = = = A (,84 -,4) A Z 5 e I e 7/
8 Izmenični signali, triazni sistemi 4. 5 e V 6 9, = = = A (,5 - ) A Z e I e I = I + I + I (,8) A Vezava bremena v zvezdo brez ničelnega vodnika. Iz prešnega primera ugotovimo, da tok v ničelnem vodniku ni enak nič. Zaka ni enak nič oziroma kakšna bremena bi morali imeti priklučena, da bi bil enak nič? Odgovori si sam! Ka pa, če ničelnega vodnika ni, ali pa recimo izpade? Kakšne bodo razmere v tem primeru? Ali bo delovna moč še vedno enako velika? SLIKA: Vezava bremena v zvezdo brez ničelnega vodnika. Potencial zvezdišča. Razmere na bremenu vezanem v trikot brez ničelnega vodnika lahko analiziramo s polubno metodo analize vezi. Napreprostee kar z metodo spoiščnih potencialov. En potencial ozemlimo, običano tistega na strani spoišča generatorev, potencial drugega pa določimo iz pogoa, da mora biti vsota vseh aznih tokov enaka nič: I + I + I = (4.) Slika: Vezava v trikot brez ničelnega vodnika. 8/
9 Izmenični signali, triazni sistemi 4. Te toke izrazimo s tokovi skozi posamezne impedance bremena S preureditvio dobimo od koder e ( ) ( ) ( ) V Y V Y V Y = (4.) ( ) V Y + Y + Y = Y + Y + Y, (4.4) V Y + Y + Y = Y + Y + Y. (4.5) Temu potencialu rečemo potencial zvezdišča. Če e ničelni vodnik priklučen, e seveda potencial zvezdišča enak nič in predstavla točko v središču kompleksne ravnine. V nasprotnem primeru pa se ta točka premakne v neko drugo točko, napetosti na elementih pa so razlike med aznimi napetostmi in potencialom zvezdišča: Z = V (4.6) Z = V (4.7) Z = V (4.8) Ko izračunamo napetosti na impedancah bremena, e pot do izračuna tokov ali moči na elementih preprosta. SLIKA: Premik potenciala zvezdišča ob odklopu ničelnega vodnika in kompleksori napetosti na elementih bremena. Primer: Določimo potencial zvezdišča in moči na elementih bremena iz primera vezanih v zvezdo, če v tem primeru nimamo ničelnega vodnika (e odkloplen). Izračun: Poiščemo potencial zvezdišča: 9/
10 Izmenični signali, triazni sistemi 4. V V 5 V e V e V e + e Y + Y + Y 45 9 = = 5 e e = V Y + Y + Y e e e = (,6) V 75 6 Moči na posameznih bremenih so tore Matlab: S=abs((sqrt()/-.5)-(--.6))^/(5-5) S = V Y = (, 6) =, 9 VA S = V Y = (, 6) V 485,( ) VA = + (5 5) S = V Y = (, 6) V = 7, 65 VA gotovimo lahko, da so se moči na elementih bremena spremenile. Navidezna moč e seda S ( , 7) VA, tore e delovna moč enaka 79 W, kar za 6,5 % več kot pri priklučitvi z ničelnim vodnikom. Komentar: gotovimo lahko, da se napetosti na posameznih elementih bremena lahko prece spremenio ob izklopu ničelnega vodnika. To lahko predstavla tudi problem v primeru, da napetost na elementu (ali pa moč) preseže dovoleno vrednost. Vezava bremena v trikot. Pri te vezavi so elementi bremena priklučeni na medazne napetosti. V te vezavi tore nimamo možnosti uporabe ničelnega vodnika. Napetosti na posameznih elementih bremena so za veči od aznih napetosti: =. Toki skozi posamezne impedance so tore določeni z medaznimi napetostmi, npr: I =, I =, I =. Z Z Z Fazni toki pa so razlike teh tokov, npr: I = I I, itd. m /
11 Izmenični signali, triazni sistemi 4. Slika: Vezava bremena v trikot (dva različna načina prikaza). Desno: Prikaz medaznih napetosti s kompleksori. Primer: Zopet vzemimo elemente bremena iz primera : ( ) Z =, Z = 5 + 5, Z = in ga v vezavi trikot priklučimo na triazni sistem /4 V. Določimo navidezno moč bremena. Izračun: Zopet vzemimo ormulo Y S =, pri čemer so seda elementi bremena na medazni napetosti, ki e za veči od aznih, razlika v izračunu navidezne moči v prvem primeru in tem primeru so le v veči medazni napetosti. Ker e za moč pomemben kvadrat napetosti, bo moč v vezavi trikot za x veča od tiste pri vezavi v zvezdo z ničelnim vodnikom. S = S S ϒ. ( V) ( V) = = = 587 VA, itd.. S = 58VA Simetrično breme. Simetrično breme e posebno primerno teda, ko nimamo na razpolago ničelnega vodnika, sa ga v primeru simetričnega bremena niti ne potrebuemo (tok v ničelnem vodniku e enak nič). V primeru simetričnega bremena (vse impedance v posameznih azah (ali medazah) so enake) bodo bremenski toki zaostaali ali prehitevali azne ali medazne napetosti za isti azni kot. To lahko prikažemo v kompleksni ravnini. /
12 Izmenični signali, triazni sistemi 4. SLIKA: Prikaz napetosti in tokov v kompleksni ravnini pri simetričnem triaznem bremenu. Trenutne moči na posameznih elementih bremena so: p ( t) = I cos( ωt) cos( ωt + β ) π π p( t) = I cos( ωt ) cos( ωt + β ) π π p( t) = I cos( ωt + ) cos( ωt + β + ) Vprašana za obnovo: ) Kako dobimo sistem dvoaznih ali triaznih napetosti? ) Zapišite časovni potek napetosti triaznih generatorev. ) Pozitiven in negativen triazni sistem. 4) Prikaz triaznih napetosti s kazalci: azne in medazne napetosti. 5) Vezava bremen: a. Zvezda z ničelnim vodnikom b. Zvezda brez ničelnega vodnika c. Trikot 6) Napetost na bremenih, azni tok in tok skozi breme, moč na bremenu pri posamezni vezavi. 7) Napetost zvezdišča. 8) Simetrično breme. Trenutna moč. Kolokviske in izpitne naloge:. kolokvi.4. izpit, 9. anuar 6 izpit,. uni 5 kolokvi, 6. uni 4 izpit, 4. uni 4 Izpit,. marec 6 Izpit,. 6. Izpit Izpit izpit, 4. ebruar 5 Izpit, 8. avgust 6 Izpit, 5. september 6 Izpit, 5. september 6 izpit, 6. aprila izpit. unia 6 Izpit Izpit,.. /
13 Izmenični signali, triazni sistemi 4. Vsoto vseh teh moči lahko vidimo na sliki. Za simetrično breme ugotovimo, da e trenutna moč konstantna in enaka p( t) = I cos( β ). Tore prece različna od enoaznega sistema, ko trenutna moč niha z dvono rekvenco vira. SLIKA: Na triazni sistem e priklučeno simetrično breme z vezavo v zvezdo z ničelnim 6 vodnikom. a) Breme e ohmsko, b) breme e induktivnega značaa: Z = Ze, c) breme e čisto induktivno in d) breme e nesimetrično. Trenutna moč na posameznem elementu bremena niha z dvono rekvenco vira (prikazana s črtkanimi črtami), celotna trenutna moč bremena e vsota trenutnih moči na posameznih elementih (polna črta). V primerih a in b e trenutna moč bremena konstantna (naveča e v primeru čisto ohmskega bremena), v primeru c e delovna moč enaka nič, v primeru d breme ni simetrično zato trenutna moč niha z dvono rekvenco osnovnega signala (toka ali napetosti). π /
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Izmenični signali kompleksni račun
zenicni_signali-kopleksni_racun(8).doc /7.6.6 zenični signali kopleksni račun Kopleksni račun e poebno orode za analizo vezi z izeničnii haroničnii signali. V osnovi diferencialne enačbe lahko z uporabo
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
1. Enosmerna vezja. = 0, kar zaključena
1. Enosmerna vezja Vsebina polavja: Kirchoffova zakona, Ohmov zakon, električni viri (idealni realni, karakteristika vira, karakteristika bremena matematično in rafično, delovna točka). V enosmernih vezjih
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Izmenični signali metode reševanja vezij (21)
Izmenični sinali_metode_resevanja (21b).doc 1/8 03/06/2006 Izmenični sinali metode reševanja vezij (21) Načine reševanja enosmernih vezij smo že spoznali. Pri vezjih z izmeničnimi sinali lahko uotovimo,
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Vaje: Električni tokovi
Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Matematika 2. Diferencialne enačbe drugega reda
Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:
INDUCIRANA NAPETOST (11)
INDUCIRANA NAPETOST_1(11d).doc 1/17 29.3.2007 INDUCIRANA NAPETOST (11) V tem poglavju bomo nadgradili spoznanja o magnetnih pojavih v stacionarnih razmerah (pri konstantnem toku) z analizo razmer pri časovno
Državni izpitni center *M * JESENSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 27. avgust 2009 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M097711* ELEKTROTEHNIKA JESENSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Četrtek, 7. avgust 009 SPLOŠNA MATURA RIC 009 M09-771-1- A01 Z galvanizacijskim
Kotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
Šolski center Ravne VIŠJA STROKOVNA ŠOLA Ravne na Koroškem TRIFAZNI MOTORJI (Seminarska naloga - elektrotehnika)
Šolski center Ravne VIŠJA STROKOVNA ŠOLA Ravne na Koroškem TRIFAZNI MOTORJI (Seminarska naloga - elektrotehnika) Izdelali: Rok Potočnik, Staš Lebar, Anto Džalto Ravne, 29.5.2013 Kazalo 1UVOD... 3 2Ustvarjanje
MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled
Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
Analiza 2 Rešitve 14. sklopa nalog
Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)
1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
Elektrotehnika. Študijsko gradivo za študente Pedagoške fakultete UL. Študijsko leto 2009/2010. Slavko Kocijančič
Elektrotehnika Študijsko gradivo za študente Pedagoške fakultete UL Slavko Kocijančič Študijsko leto 2009/2010 Ljubljana, marec 2010 Vsebina 1. OSNOVE ELEKTROTEHNIKE...1 OHMOV ZAKON...1 PRVI KIRCHHOFFOV
NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU
NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.
Osnovni pojmi pri obravnavi periodičnih signalov
Periodični signali, osnovni poji 7. Osnovni poji pri obravnavi periodičnih signalov Vsebina: Opis periodičnih signalov z periodo, frekvenco, krožno frekvenco. Razlaga pojov aplituda, faza, haronični signal.
Transformator. Izmenični signali, transformator 22.
zmenični signali, transformator. Transformator Vsebina: Zapis enačb transformatorja kot dveh sklopljenih tuljav, napetostna prestava, povezava medd maksimalnim fluksom in napetostjo, neobremenjen transformator
Zaporedna in vzporedna feroresonanca
Visokonapetostna tehnika Zaporedna in vzporedna feroresonanca delovanje regulacijskega stikala T3 174 kv Vaja 9 1 Osnovni pogoji za nastanek feroresonance L C U U L () U C () U L = U L () U C = ωc V vezju
Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
MAGNETNI PRETOK FLUKS
MGNETNI PRETOK FLUKS Equation Section 4 Vsebina poglavja: Določitev magnetnega pretoka, brezizvornost magnetnega polja, upodobitev polja z gostotnicami, induktivnost, lastna induktivnost, magnetni sklep.
Fazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
OSNOVE ELEKTROTEHNIKE I
OSNOVE ELEKTROTEHNIKE I ENOSMERNA VEZJA DEJAN KRIŽAJ 009 Namerno prazna stran (prirejeno za dvostranski tisk) D.K. / 44. VSEBINA. ENOSMERNA VEZJA. OSNOVNA VEZJA IN MERILNI INŠTRUMENTI 3. MOČ 4. ANALIZA
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
diferencialne enačbe - nadaljevanje
12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne
Električni naboj, ki mu pravimo tudi elektrina, označimo s črko Q, enota zanj pa je C (Coulomb-izgovorimo "kulon") ali As (1 C = 1 As).
1 UI.DOC Elektrina - električni naboj (Q) Elementarni delci snovi imajo lastnost, da so nabiti - nosijo električni naboj-elektrino. Protoni imajo pozitiven naboj, zato je jedro pozitivno nabito, elektroni
4. Analiza vezij. Analiza vezij(4).docj 4. Vsebina poglavja: metoda Kirchoffovih zakonov, metoda zančnih tokov, metoda spojiščnih potencialov.
4. Analiza vezij Vsebina polavja: metoda Kirchoffovih zakonov, metoda zančnih tokov, metoda spojiščnih potencialov. Spoznali smo že oba Kirchoffova zakona in zvezo med tokom in napetostjo na uporu. Zaradi
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
Moč s kompleksnim računom. ( cos( ϕ) sin( ϕ) { } { } S = U I, (19.3) Izmenični signali, kompleksna moč 19.
Izmenični sinali, kompleksna moč 9. Moč s kompleksnim računom Vseina: apis moči s kompleksnim računom, delovna, jalova, navidezna moč, ilanca moči, kompenzacija jalove moči, maksimalna moč. Equation Section
Gradniki TK sistemov
Gradniki TK sistemov renos signalov v višji rekvenčni legi Vsebina Modulacija in demodulacija Vrste analognih modulacij AM M FM rimerjava spektrov analognih moduliranih signalov Mešalniki Kdaj uporabimo
Državni izpitni center ELEKTROTEHNIKA. Izpitna pola
Š i f r a k a n d i d a t a : Državni izpitni center *M09177111* SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Sreda, 7. maj 009 / 180 minut (45 + 135) Dovoljeno gradivo in pripomočki: Kandidat
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Reševanje sistema linearnih
Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje
Elektrotehnika in elektronika
Elektrotehnika in elektronika 1. Zapišite pogoj zaporedne resonance, ter pogoj vzporedne resonance. a) Katera ima minimalno impedanco, katera ima minimalno admitanco? b) Pri kateri je pri napetostnem vzbujanju
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Izmenični signali. Dejan Križaj
Izenični signali Dejan Križaj . . KAZALO 6. PREHODNI POJAVI... 4 PREHODNI POJAVI... 5 ZVEZE MED TOKOM IN NAPETOSTJO NA ELEMENTIH VEZJA... 6 ZAČETNI POGOJI... 6 POLNJENJE KONDENZATORJA... 7 PRAZNENJE KONDENZATORJA...
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
) produkta toka z vektorjem diferen razdalje v smeri. d - Sila je pravokotna na tokovni element in mag.polje
1.MAGNETOSTATIKA 1.1 Amperov zakon mag.sile: Sila med dvema vzporednima vodnikoma je sorazmerna produktu toka v obeh vodnikih in njuni dolžini in nasprotno sorazmerna razdalji med vodnikoma - Tokovni element
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Moč s kompleksnim računom (19)
Izmenicni_sinali_kompleksna_moc(9).doc /8 8.5.007 Moč s kompleksnim računom (9) otovili smo že, da lahko moč na elementu (vezju) predstavimo s tremi»komponentami«. mim Delovno moč, ki predstavlja tudi
Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti
Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )
VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]
OSNOVE ELEKTROTEHNIKE I
OSNOVE ELEKTROTEHNIKE I 008 ENOSMERNA VEZJA DEJAN KRIŽAJ Spoštovani študenti! Pred vami je skripta, ki jo lahko uporabljate za lažje spremljanje predavanj pri predmetu Osnove elektrotehnike 1 na visokošolskem
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Analiza nadomestnega vezja transformatorja s programskim paketom SPICE OPUS
s programskim paketom SPICE OPS Danilo Makuc 1 VOD SPICE OPS je brezplačen programski paket za analizo električnih vezij. Gre za izpeljanko simulatorja SPICE3, ki sicer ne ponuja programa za shematski
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa.
3. AMPEROV ZAKON Equation Section 3 Vsebina poglavja: Integral polja po zaključeni zanki je sorazmeren toku, ki ga zanka objame. Izračuni polja s pomočjo Amperovega zakona za: tokovno premico, solenoid,
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.
Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,
Transformatorji in dušilke
Univerza v Ljubljani Fakulteta za elektrotehniko Danilo Makuc Transformatorji in dušilke Zbirka nalog z rešitvami Danilo Makuc, FE UN LJ, januar 011 Predgovor Zbirka vsebuje rešene naloge iz preteklih
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
2. Pri 50 Hz je reaktanca kondenzatorja X C = 120 Ω. Trditev: pri 60 Hz znaša reaktanca tega kondenzatorja X C = 100 Ω.
Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Trditev: idealni enosmerni tokovni vir obratuje z močjo
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
primer reševanja volumskega mehanskega problema z MKE
Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L
DISKRETNA FOURIERJEVA TRANSFORMACIJA
29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
3. Uporaba Biot-Savartovega zakona. Tokovna daljica: Premica: Tokovna zanka:
1. Magnetostatika 1. Amperov zakon magnetne sile (med tokovnima elementoma) Pravilno predvideva, da če električni tok povzroča magnetno polje in s tem odklon magnetne igle, mora obstajati tudi sila med
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Kvantni delec na potencialnem skoku
Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Državni izpitni center. Izpitna pola 2. Četrtek, 2. junij 2016 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M1617711* SPOMLADANSKI IZPITNI ROK Izpitna pola Četrtek,. junij 016 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični
Državni izpitni center *M * SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 29. maj 2008 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M877* SPOMLADANSK ZPTN ROK ELEKTROTEHNKA NAVODLA ZA OCENJEVANJE Četrtek, 9 maj 8 SPLOŠNA MATRA RC 8 M8-77-- A zračunajte gostoto toka v vodniku s presekom
Meritve električnih inštalacij
Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Varnost Meritve električnih inštalacij predavatelj
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo