Odvodňovanie a úprava tokov Sprievodná správa, Súhrnná technická správa, Dokumentácia a stavebné výkresy
|
|
- Νικόμαχος Τρικούπης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Sloveská poľohospodárska uverzta v Ntre Fakulta záhradíctva a krajého žerstva Katedra krajého žerstva Odvodňovae a úprava tokov Sprevodá správa, Súhrá techcká správa, Dokumetáca a stavebé výkresy Meo: Juraj MÁTEL Šk.r.: 00/0 Ročík: 3.FZKI
2 A/ Sprevodá správa Základé údaje stavby: Názov stavby: Úprava Suchého potoka v km,570-3,6 Kraj: Okres: Katastrále územe: Stupeň dokumetáce: Ivestor: Užívateľ: Baskobystrcký Zvole Sebechleby Projekt Sloveský vodohospodársky podk Ružomberok Sloveský vodohospodársky podk Ružomberok Termí začata výstavby: Termí ukočea výstavby: Predpokladaé áklady stavby:
3 B/ Súhrá techcká správa Charakterstka stavby: Navrhovaá stavba je súčasťou celkovej úpravy Suchého potoka. Úsek toku v blízkost travláu obce Sebechleby spôsobuje začé materále škody a obydlach a pozemkoch prľahlých k toku. Údaje o použtých podkladoch: výškopsá a polohopsá stuáca v M :000 hydrologcké údaje poskytuté SHMÚ v Bratslave geologcké a hydrogeologcké údaje vypracovaé IGHP Žla zememeračské podklady vypracovaé frmou Geotp Bratslava Hydrologcké údaje: plocha povoda toku k uvažovaému proflu: S p 7,040 km dlhodobý ročý úhr zrážok: H s 674 mm premerý dlhodobý ročý pretok: Qa,5 m 3.s - M - deé pretoky Q MD (l.s - ) M [d] Q MD [m 3.s - ],9,,6,,0,98,8,65,6,39,3 0,59 0,56 N - ročé pretoky Q N (m 3.s - ) N [roky] Q N [m 3.s - ],4 3,85 5,9 8 0,4 3, 6 Výsledky geologckého preskumu, hydrogeologckého a pedologckého preskumu: geologckú stavbu územa tvora eogée hory (adezty, lparty mestam uložeým v príkrovoch s masou vulkackých tufov). Kvartér je tvoreý z hlto-kameých sutí hlada podzemej vody v preskumých sodách dosahovala hĺbku, -,9 m. V ektorých mestach sa prejavl zaky zamokrea o rôzej tezte pedologcký preskum ukázal prevahu ílovtej hly a hly; uhol prrodzeej sklotost zemy ϕ 9 40' Kvalta vody: aalýza odobratých vzorek povrchovej vody z toku zaradla akosť vody (podľa STN ) do tredy čstoty II. - povrchová voda zečsteá
4 Vyšetree splaveí: mm a základe rozboru splaveí bola určeá veľkosť efektíveho zra d e 66 Bologcký preskum: bologcký preskum porastov údolej vy ukazal výskyt ekoľkých exemplárov starších dreví, ktoré je potrebé zachovať. Väčšu porastov tvora krovská, ktoré môžu byť v prebehu prípravých prác odstráeé. Bologckým preskumom sa zstla exsteca hodotejšej chtyofauy, ktorú je potrebé zachovať a pr ávrhu úpravy toku objektov teto fakt zohľadť. Návrhový pretok: vzhľadom a často sa opakujúce vybrehovae vôd z toku sa ako ávrhový pretok pre kapactu opevee odporúča Q,4 m 3.s - doplkové hodoty: N 0,99 R 0,4 Stavebo-techcké rešee stavby trasa toku: úprava toku začía v,570-3,6 km, apája sa a eupraveý vodý tok, trasa je zložeá z protsmerých oblúkov a pramych celkov, celkovo je trasa zložeá z oblúkov a pramych celkov R R R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 0 R R [m] 60,5 49,66 45,8 56,84 45,7 36,63 45,48 43,09 40,09 5,39 54,3 α [ ] 39 9' 79 30' 70 3' 73 44' 7 50' 7 3' 7 57' 69 40' 74 4' 59 39' 59 48' t [m],7 4,9 3,86 4,63 3,79 79,5 33,0 9,99 30,59 30,03 3,8 z [m] 3,78 4,93 0,0 4, 0,63 30,48 0,7 9,4 0,34 8,00 8,3 o [m] 4,96 68,9 55,50 73,5 56,76 50,84 57, 5,40 5,6 54,54 56,59 veleta da: sa plyulo apája a začatočý a kocový bod úpravy (ZÚ,570 km, KÚ 3,6 (0,656) km), pozdĺžy sklo je totožý s prrodzeým skloom typ a kapacta rečeho proflu: pôvodý tvar prrodzeého koryta bol trojuholíkový, profl koryta po úprave bol avrhutý ako jedoduchý lchobežík (b 0,95 m, h 0,6 m), prčom sa uvažovalo s opeveím prečeho proflu, prečy profl má asledujúce parametre: b 0,95 m S,90 m h 0,6 m O 3,633 m N 0,99 - R 0,355 m 0,03 - c 5,96 m /.s - m,00 - v,899 m.s - 0,06 Q,450 m 3.s - typ opevea objektu a toku: pre do ebolo avrhuté opevee, pretože do toku bolo a základe posúdea evymeľajúcch rýchlostí posúdeé ako stablé a preto je avrhuté bez opevea
5 opevee päty svahu: pretokové rýchlost v päte svahu spôsobeé, že táto časť koryta bola posúdeá ako establá a preto bolo avrhuté opevee, kameá rozpresterka s hrúbkou zra 75 mm (malé kamee) a hrúbkou vrstvy 30 mm. brehové porasty: a južej expozíc a trase vodého toku avrhujem výsadbu dreví, výsadba dreví bude odsuutá od brehovej čary 4,0 m a avrhujem takéto zložee: vŕba bela (salx), jeľša lepkavá (alus glutosa), vzdaleosť vysádzaých dreví bude m, medz jedotlvým stromam avrhujem kríkovú výsadbu. prevádzka a údržba vodého toku: pre zabezpečee fukčost avrhovaej úpravy je potrebé vykoávať pravdelé ročé prehladky vodého toku. V jarom období avrhujem bráee zatráveých svahov toku (zarovae erovostí, der a pod.), x roče vykoať kosbu tráveho porastu a zabezpečť aspoň raz za rok hojee dusíkatým hojvam. Po 3 roku je potrebá pravdelá údržba porastu (peróda mmále 3 roky).
6 C/ Dokumetáca a stavebé výkresy Návrh pozdĺžeho sklou da Zadaé hodoty: N 0,990 - R 0,400 - Q,400 m 3.s - d e 66 mm H H 76,3 m..m 86,8 m..m S 0,4 m l 656 m Výpočet kompezačého sklou da s s de + 0,8 0, R ,8 0, ,4 [ ] 0,07 s, kompezačý sklo [ ] d e, premer efektíveho zra [mm] R, hydraulcký polomer (Rh) [mm] Výpočet prrodzeého sklou da h l h h l [ ] 86,8 76, ,06 Výpočet počtu stupňov, prrodzeý sklo da [ ] h, výškový rozdel medz začatkom a kocom úpravy [m] l, dĺžka úpravy [m] sl sl sl h s s l [ ] ( 86,8 76,3) 5,44 6 0, ,4 sl, počet stupňov [-] h, výškový rozdel medz začatkom a kocom úpravy [m] l, dĺžka úpravy [m] s, výška stupňa (0,3 0,4 m) [m] Výpočet pozdĺžeho sklou da po úprave o o h l sl s 00 ( 86,8 76,3 ) 656 [ ] 6 0,4 00 0,035 o, pozdĺžy sklo po úprave [ ] h, výškový rozdel medz začatkom a kocom úpravy [m] l, dĺžka úpravy [m]
7 Návrh rozmerov stablého koryta bez opevea (Teóra režmov podľa Grškaa) Zadaé hodoty: Q,400 m 3.s - m - 0,03 - o 0,03 R K Q 0, pre Q<0 m 3.s - je K 0,45 Q>0 m 3.s - je K 0,5 b 0,5 β 3 Q m h b β h Q h β + + m S R O R h β + + m β + + R h m h ( β + m) h kotrola správost: v c R S R h β + + m Q S v 3 0,5 o R o Návrh: b 0,64 m v,44 m.s - h 0,58 m výsledé hodoty S,043 m β,00 Q,549 m 3.s - Navrhovaý rozmer koryta je schopý prevesť požadovaé možstvo vody, t.j. Q,400 m 3.s - < Q,549 m 3.s -.
8 Návrh rozmerov stablého koryta s opeveím Zadaé hodoty: N 0,99-0,03 - m,00 - y 0,5-0,06 Q,400 m 3.s - b β + m m h ( 0,5 + y Q ) h 0,5 ( β + m) kde y ¼,5 + y V N V v volíme z tervalu N <0,97;,03>, N 0,99,5 + y 0,5 + y h N h h,5 + y 0,5 + y N b h β + m β m h h N b β h Návrh: b 0,95 m v,899 m.s - h 0,6 m výsledé hodoty S,90 m β,479 Q,450 m 3.s - Navrhovaý rozmer koryta je schopý prevesť požadovaé možstvo vody, t.j. Q,400 m 3.s - < Q,450 m 3.s -.
9 Posúdee stablty da (metóda proflová evymeľajúcej rýchlost) Zadaé hodoty: h 0,6 m de 0,066 m α 6,565 deg ϕ 9,667 deg Proflová evymeľajúca rýchlosť pre do: v v 6 3 e [ m. ] 5,64 h d s h, hĺbka vody pr ávrhovom pretoku [m] d e, hrúbka efektíveho zra [m] ak: v v > v, do koryta v daom úseku je stablé v v < v, do koryta v daom úseku je establé Proflová evymeľajúca rýchlosť v päte svahu: Výpočet strát v päte svahu koryta, ξ 4 cos s α ta α ϕ [ ] α, uhol sklou svahov (:) ϕ, uhol prrodzeej sklotost zemy Výpočet proflovej evymeľajúcej rýchlost v päte svahu, v vs [ m. ] ξ v s v Výpočet proflovej evymeľajúcej rýchlost a svahu, v vsz 0,5 [ m. ] h v vs s z z, vzdaleosť bodu v koryte hlady [m]
10 Prebeh proflových rýchlostí pre do, pätu svahu a svah: z 488 mm 0,0 0,05 0, 0, 0,3 0,4 0,5 0,6 - v [m.s ] v,899 m.s - 0 0,6 0,5 0,4 0,3 0, 0, 0,05 0 h [m] z v vsz m m.s - 0, 4,97 0,,968 0,3,43 0,4,098 0,5,877 0,6,73
11 Kozumčá krvka: h [m] h 0, Q [m 3.s -] 0 Q 0,8 v 0,74 v [m.s -] h S O R y c v Q [m] [m ] [m] [m] [m /.s - ] [m.s - ] [m 3.s - ] 0,0 0,,40 0,08 0,9 6,3 0,59 0,068 0,0 0,7,84 0,5 0,8 9,4 0,94 0,53 0,30 0,47,9 0,0 0,8,4, 0,567 0,40 0,70,74 0,6 0,8,9,46,05 0,50 0,98 3,9 0,3 0,7 4,,69,647 0,60,9 3,63 0,36 0,7 5,,90,450 0,80,04 4,53 0,45 0,7 7,0,9 4,670 pre Q 0 (h 0, odčítaé z grafu) 0,53,04 3,9 0,3 0,7 4,4,74,85
Odvodňovanie a úprava tokov Sprievodná správa, Súhrnná technická správa, Dokumentácia a stavebné výkresy
lovenská poľnohospodárska unverzta v Ntre Fakulta záhradníctva a krajnného nžnerstva Katedra krajnného nžnerstva Odvodňovane a úprava tokov prevodná správa, úhrnná techncká správa, Dokumentáca a stavebné
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Výpočet. grafický návrh
Výočet aaetov a afcký návh ostuu vtýčena odobných bodov echodníc a kužncových obúkov Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene kajnej echodnce č. Vstuné údaje: = 00 ; = 8 ; o = 8 S ohľado
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
YTONG U-profil. YTONG U-profil
Odpadá potreba zhotovovať debnenie Rýchla a jednoduchá montáž Nízka objemová hmotnosť Ideálna tepelná izolácia železobetónového jadra Minimalizovanie možnosti vzniku tepelných mostov Výborná požiarna odolnosť
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
KATALÓG KRUHOVÉ POTRUBIE
H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom...
(TYP M) izolačná doska určená na vonkajšiu fasádu (spoj P+D) ρ = 230 kg/m3 λ d = 0,046 W/kg.K 590 1300 40 56 42,95 10,09 590 1300 60 38 29,15 15,14 590 1300 80 28 21,48 20,18 590 1300 100 22 16,87 25,23
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Trapézové profily Lindab Coverline
Trapézové profily Lindab Coverline Trapézové profily - produktová rada Rova Trapéz T-8 krycia šírka 1 135 mm Pozink 7,10 8,52 8,20 9,84 Polyester 25 μm 7,80 9,36 10,30 12,36 Trapéz T-12 krycia šírka 1
KAGEDA AUTORIZOVANÝ DISTRIBÚTOR PRE SLOVENSKÚ REPUBLIKU
DVOJEXCENTRICKÁ KLAPKA je uzatváracia alebo regulačná armatúra pre rozvody vody, horúcej vody, plynov a pary. Všetky klapky vyhovujú smernici PED 97/ 23/EY a sú tiež vyrábané pre výbušné prostredie podľa
u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.
Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.
Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =
Hydrológia. 9. prednáška
Hydrológa 9. prednáška Rozdelene vody na Zem Kolobeh vody Zotrvane vody v zdrojoch Rezervoár Oceány Glacers Sezónna pokrývka snehu Pôdna vlhkosť Spodné vody Jazerá Reky Atmosféra Premerná doba uchovana
Výpočet potreby tepla na vykurovanie NOVÝ STAV VSTUPNÉ ÚDAJE. Č. r. ZÁKLADNÉ ÚDAJE O BUDOVE. 1 Názov budovy: 2
Výpočet potreby tepla na vykurovanie NOVÝ STAV Č. r. ZÁKLADNÉ ÚDAJE O BUDOVE 1 Názov budovy: 2 Ulica, číslo: Obec: 3 Zateplenie budovy telocvične ZŠ Mierová, Bratislava Ružinov Mierová, 21 Bratislava Ružinov
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom
МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)
Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини
ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM JASNÁ
ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM STN EN 15316-1, STN EN 15316-2-1, STN EN 15316-2-3 24 25.9.2012 2012 JASNÁ Tepelná energia potrebná na odovzdanie tepla STN EN 15316-1,
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
(1 ml) (2 ml) 3400 (5 ml) 3100 (10 ml) 400 (25 ml) 300 (50 ml)
CPV 38437-8 špecifikácia Predpokladané Sérologické pipety plastové -PS, kalibrované, sterilné sterilizované γ- žiarením, samostne balené, RNaza, DNaza, human DNA free, necytotoxické. Použiteľné na prácu
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Menovky na dvere, čísla, prívesky, kľúčenky
Menovky na dvere, čísla, prívesky, kľúčenky Farby výrobkov: Von Dnu apex Banská Bystrica - List 10,44 - Žbirkovci 8,70 116 x 140 Benka 7,32 96 x 82-6,10 94 x 38 Sisi 8,16 6,80 Zurich - Hrončekovci 6,00
STREŠNÉ DOPLNKY UNI. SiLNÝ PARTNER PRE VAŠU STRECHU
Strešná krytina Palety 97 Cenník 2018 STREŠNÉ DOPLNKY UNI SiLNÝ PARTNER PRE VAŠU STRECHU POZINKOVANÝ PLECH LAMINOVANÝ PVC FÓLIOU Strešné doplnky UNI Cenník 2018 POUŽITEĽNOSŤ TOHOTO MATERIÁLU JE V MODERNEJ
DIELCE PRE VSTUPNÉ ŠACHTY
DIELCE PRE VSTUPNÉ ŠACHTY Pre stavby vstupných šachiet k podzemnému vedeniu inžinierskych sietí. Pre stavby studní TBS - 1000/250-S TBS - 1000/625-SS TBS - 1000/500-S TBS - 1000/1000-S TBS - 1000/625-SK
3. prednáška. Komplexné čísla
3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
ODVETVOVÁ TECHNICKÁ NORMA MŽP SR Schválená
ODVETVOVÁ TECHNICKÁ NORMA MŽP SR Schválená 17. 2. 1999 KVANTITA POVRCHOVÝCH VÔD Meranie prietokov vodomernou vrtuľou vo vodnom toku OTN ŽP 3108:99 PREDHOVOR Odvetvové technické normy Ministerstva životného
Matematická štatistika
Matematcká štatstka Trochu hstóre: Starovek sčítae ľudu a majetku (vojeské a daňové účely) Egypt, Čía, Mezopotáma Stredovek vzk a kosoldáca ových štátov zsťovae geografckých údajov, hospodársky a poltcký
Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S
1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava
ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3
ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v
Kontrolné otázky z jednotiek fyzikálnych veličín
Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si
YQ U PROFIL, U PROFIL
YQ U PROFIL, U PROFIL YQ U Profil s integrovanou tepelnou izoláciou Minimalizácia tepelných mostov Jednoduché stratené debnenie monolitických konštrukcií Jednoduchá a rýchla montáž Výrobok Pórobetón značky
Technická univerzita v Košiciach. ROČNÍKOVÁ PRÁCA č. 3 PRIBLIŽNÝ VÝPOČET TEPELNÉHO OBEHU LTKM
Technická univerzita Letecká fakulta Katedra leteckého inžinierstva ROČNÍKOVÁ PRÁCA č. 3 PRIBLIŽNÝ VÝPOČET TEPELNÉHO OBEHU LTKM Študent: Cvičiaci učiteľ: Peter Majoroš Ing. Marián HOCKO, PhD. Košice 6
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky
Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický
ΕΤΙΚΕΤΟΓΡΑΦΟΙ ΕΤΙΚΕΤΟΓΡΑΦΟΣ PLM 979 ΕΤΙΚΕΤΕΣ ΓΙΑ ΕΤΙΚΕΤΟΓΡΑΦΟ. Κωδ. ZA.01.131. Κωδ. ZA.01.124
KOYTIA TAMEIOY - ΚΑΛΑΘΙΑ ΚΟΥΤΙΑ ΤΑΜΕΙΟΥ Ατσάλινη κατασκευή με διπλή υποδοχή και κλειδαριά Κατάλληλα για το γραφείο, το κατάστημα, το σπίτι Με αποσπώμενη θήκη για κέρματα Χρώματα: Mαύρο, μπλέ, πράσινο,
Aritmetički i geometrijski niz
Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.
Staromlynská 29, Bratislava tel: , fax: http: //www.ecssluzby.sk SLUŽBY s. r. o.
SLUŽBY s. r. o. Staromlynská 9, 81 06 Bratislava tel: 0 456 431 49 7, fax: 0 45 596 06 http: //www.ecssluzby.sk e-mail: ecs@ecssluzby.sk Asynchrónne elektromotory TECHNICKÁ CHARAKTERISTIKA. Nominálne výkony
ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM JASNÁ
ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM Teplo na prípravu teplej vody Ing. Zuzana Krippelová doc. Ing.Jana Peráčková, PhD. STN EN 15316-3-1- Vykurovacie systémy v budovách. Metóda
Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003
Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium
6. Mocniny a odmocniny
6 Moci odoci Číslo zýve oceec (leo zákld oci), s zýv ociteľ (leo epoet) Číslo s zýv -tá oci čísl Moci s piodzeý epoeto pe ľuovoľé eále číslo pe kždé piodzeé číslo je v ožie eálch čísel defiová -tá oci
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Národná agentúra pre sieťové a elektronické služby
Národná agentúra pre sieťové a elektronické služby Realizácia optických sietí: Banskobystrický kraj Klaster HU-03 (projektová dokumentácia) Obce: Klenovec, Hnúšťa, Poproč, Krokava, Potok, Ratkovská Suchá,
Menovky na dvere, čísla, prívesky, kľúčenky
Menovky na dvere, čísla, prívesky, kľúčenky Farby výrobkov: Von Dnu apex Banská Bystrica - List 9,84 - Žbirkovci 7,92 8,20 116 x 140 Benka 6,96 96 x 82-5,80 94 x 38 Sisi 7,80 6,50 Zurich - Filipová 92
INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50
INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
Modelovanie dynamickej podmienenej korelácie kurzov V4
Modelovanie dynamickej podmienenej korelácie menových kurzov V4 Podnikovohospodárska fakulta so sídlom v Košiciach Ekonomická univerzita v Bratislave Cieľ a motivácia Východiská Cieľ a motivácia Cieľ Kvantifikovať
Rozsah akreditácie. Označenie (PP 4 16)
Rozsah akreditácie Názov akreditovaného subjektu: U. S. Steel Košice - Labortest, s.r.o. Laboratórium Studenej valcovne Vstupný areál U. S. Steel, 044 54 Košice Laboratórium s fixným rozsahom akreditácie.
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Baumit StarTrack. Myšlienky s budúcnosťou.
Baumit StarTrack Myšlienky s budúcnosťou. Lepiaca kotva je špeciálny systém kotvenia tepelnoizolačných systémov Baumit. Lepiace kotvy sú súčasťou tepelnoizolačných systémov Baumit open (ETA-09/0256), Baumit
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε
Deformae. Duljinska (normalna) deformaa. Kutna (posmina) deformaa. Obujamska deformaa Θ Tenor deformaa tenor drugog reda 9 podatakamjerna jedinia Simetrinost tenora deformaa 6 podataka 4. Duljinska deformaa
Metódy spracovania experimentálnych výsledkov Autor pôvodného textu: Peter Ballo
Spracovae výsledkov Metódy spracovaa epermetálych výsledkov Autor pôvodého tetu: Peter Ballo Každé merae je zaťažeé chybam, ktoré sú zapríčeé edokoalosťou ašch pozorovacích schopostí, epresosťou prístrojov,
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B
. písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke
Kioco gibje meijle oke Kiemik meijle oke. dio ) Zje kiocog gibj b) Bi i ubje Položj meijle oke u skom euku eme možemo defiii slijedee ie:. Vekoski i defiij gibj (). Piodi i defiij gibj s s (). Vekoski
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.
Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu
Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Austrotherm GrPS 70 F Austrotherm GrPS 70 F Reflex Austrotherm Resolution Fasáda Austrotherm XPS TOP P Austrotherm XPS Premium 30 SF Austrotherm
Riadenie elektrizačných sústav
Riaenie elektrizačných sústav Paralelné spínanie (fázovanie a kruhovanie) Pomienky paralelného spínania 1. Rovnaký sle fáz. 2. Rovnaká veľkosť efektívnych honôt napätí. 3. Rovnaká frekvencia. 4. Rovnaký
MEHANIKA FLUIDA. Prosti cevovodi
MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O.
Cenovnik spiro kanala i opreme - *Cenovnik ažuriran 09.02.2018. Spiro kolena: Prečnik - Φ (mm) Spiro kanal ( /m) 90 45 30 Muf/nipli: Cevna obujmica: Brza diht spojnica: Elastična konekcija: /kom: Ø100